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Abstract

Cell assembly is a hypothetical functional unit of information processing in the brain. 1

While technologies for recording large-scale neural activity have been advanced, 2

mathematical methods to analyze sequential activity patterns of cell-assembly are 3

severely limited. Here, we propose a novel method to extract cell-assembly sequences 4

repeated at multiple time scales and various precisions from irregular neural population 5

activity. The key technology is to combine “edit similarity” in computer science with 6

machine-learning clustering algorithms, where the former defines a “distance” between 7

two strings as the minimal number of operations required to transform one string to the 8

other. Our method requires no external references for pattern detection, and is tolerant 9

of spike timing jitters and length irregularity in assembly sequences. These virtues 10

enabled simultaneous automatic detections of hippocampal place-cell sequences during 11

locomotion and their time-compressed replays during resting states. Furthermore, our 12

method revealed previously undetected cell-assembly structure in the rat prefrontal 13

cortex during goal-directed behavior. Thus, our method expands the horizon of 14

cell-assembly analysis. 15

Introduction 16

Uncovering neural codes is of fundamental importance in neuroscience. Several 17

experimental results suggest that synchronous or sequential firing of cortical neurons 18

play active roles in primates (Abeles et al., 1993; Hatsopoulos et al., 1998; Riehle et al., 19

1997; Steinmetz et al., 2000). In the rat somatosensory and auditory cortices, 20

spontaneous and stimulus-evoked activities exhibit repeating sequences of neuronal 21

firing (Luczak et al., 2009; 2007). In rodent hippocampus, place cells exhibit 22

precisely-timed, repeating firing sequences representing the rats trajectory, subsections 23

of which repeat during each theta cycle (Mehta et al., 2002; O’Keefe, 1976; Villette et 24

al., 2015). These sequences are replayed at compressed temporal scales during awake 25

immobile and sleep states (Buzsáki and Moser, 2013; Carr et al., 2011; Foster and 26

Wilson, 2006; Lee and Wilson, 2002; Pfeiffer and Foster, 2013; Skaggs and McNaughton, 27

1996) presumably for memory consolidation (Girardeau et al., 2009; Jadhav et al., 2012). 28
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Similar replay events have also been observed in the rodent prefrontal cortex (Euston et 29

al., 2007). The rapid development of techniques for large-scale recording of neuronal 30

activity provide fertile ground for the analysis of spike sequences. Calcium imaging 31

enables simultaneous measurement of spike rates from hundreds to thousands of neurons 32

(Deneux et al., 2016; Greenberg et al., 2008; Kerr et al., 2005; Mukamel et al., 2009; 33

Ozden et al., 2008; Pnevmatikakis et al., 2016; Sasaki et al., 2007; Vogelstein et al., 34

2010), and imaging by voltage indicators may further overcome the poor temporal 35

resolution in imaging (Emiliani et al., 2015; Grinvald and Petersen, 2015; Knöpfel et al., 36

2015). Extracellular recording of membrane potentials with multi-electrodes has also 37

evolved, allowing access to spike trains from large numbers of neurons (Buzsáki, 2004; 38

Buzsáki et al., 2015; Einevoll et al., 2012). Despite this progress in experimental 39

techniques, methods for analyzing the spatiotemporal structure of cell assemblies are 40

still limited (Chen and Wilson, 2017). Template matching is a standard technique for 41

the detection of repeated activity patterns (Abeles et al., 1993; Euston et al., 2007; 42

Greenberg et al., 2008; Kerr et al., 2005; Luczak et al., 2007; 2009; Mukamel et al., 2009; 43

Sasaki et al., 2008; Tatsuno et al., 2006; Vogelstein et al., 2010). However, the method 44

requires reference events, such as sensory cues and motor responses, and is easily 45

disrupted by biological noise, such as jitters in spike timing and variation in sequence 46

length. On the other hand, only a few studies have attempted the blind detection of 47

cell-assembly sequences without relying on reference events (Picado-Muiño et al., 2013; 48

Russo et al., 2017), and such data analysis remains a challenge. Here, we develop a 49

novel method to detect self-similar firing patterns within cell assemblies by using the 50

edit similarity score. Edit similarity is a metric originally introduced in computer 51

science to measure the distance between arbitrary strings, and has been utilized for 52

analyzing various types of sequences in network science and biology. Edit similarity 53

measures matching between two sequences with flexible temporal alignment, which is an 54

essential feature for detecting noisy spatiotemporal patterns embedded in neural 55

activity. We extend the edit similarity score to a form applicable to neural activity data, 56

and develop a clustering method for blind cell-assembly detection. We evaluated the 57

performance of the method with artificial data, and found that our method is more 58

robust against background noise than conventional clustering methods. Furthermore, we 59

applied our method to experimental data recorded from the rat hippocampus (Mizuseki 60

et al., 2013) and prefrontal cortex (Euston et al., 2007), and the algorithm detected 61

several multi-cell sequences linked with behavior in an unsupervised manner. 62

Robustness to noise and computational efficiency of our method will help the exhaustive 63

search of repeated spatiotemporal patterns in large-scale neural data, which may lead to 64

the elucidation of hidden neural codes. 65

Results 66

Our goal is to develop a method for detecting similar temporal patterns repeatedly 67

occurring in neural population activity without relying on external sensory or 68

behavioral events. Each of these patterns may represent a sequence of neural ensembles 69

coincidently firing in irregularly repeated temporal windows of a certain length (Figure 70

1A). The detection of sequentially activated cell assemblies is difficult because repeated 71

sequences are usually not exactly the same (Figure 1B): (i) temporal structure of the 72

target sequence is shown; (ii) sequences may be contaminated by noisy spikes belonging 73

to none of the cell assemblies; (iii) sequences may not always repeat a complete set of 74

cells; (iv) repeated sequences of the member neurons may exhibit large jitters; (v) 75

sequences can be expanded or compressed from one repetition to another; and (vi) 76

different sequence may share the same neurons. Furthermore, some neurons may belong 77

to multiple sequences. Such overlaps further complicate sequence detection. 78
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Figure 1: Detection of repetitive cell-assembly sequences. (A) A temporal pattern
in a sliding time window is schematically illustrated. Such a pattern may contain neurons
belonging to a cell assembly as well as non-member neurons. Member neurons may fire
at different rates with different temporal precision. Similarity between cell assembly
sequences will increase when they share more member neurons and when they fire in a
more similar temporal order at similar firing rates with higher temporal precision. Note
that each member neuron may appear multiple times at different temporal positions
in a time window. (B) Difficulties in detecting repetitive cell-assembly sequences are
schematically illustrated. Blue and red bars show spikes of member neurons, while gray
bars represent noisy spikes of non-member neurons: (i) temporal structure of target
sequence; (ii) contamination by spikes of non-member neurons; (iii) missing spikes of
member neurons; (iv) jitters in spike timing of member neurons; (v) arbitrary scaling of
sequence length; (vi) member overlaps between different sequences. (C) Sliding time
windows W(tk) are divided into L bins with an identical size, where tk refers to the start
time of the k-th time window. Population rate vector consists of the spike counts of
individual neurons in each bin.
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Extended edit similarity score between cell-assembly sequences 79

To overcome these difficulties, we developed a novel method for robust sequence 80

detection based on the edit similarity score known in computer science (Levenshtein, 81

1966). Suppose that we evaluate similarity between two strings of genes, “ATCGTAC” 82

and “ATGTTAT”. We may naively count the number of coincident bases at the 83

corresponding positions in the two strings. In the above example, the first two bases 84

“AT” coincide, so the similarity is two. However, if we count the maximal number of 85

coincidences preserving the serial orders of bases but allowing the insertion of blanks 86

“-”, we may compare “ATCGT-A-C” and “AT-GTTAT-” to obtain the maximal number 87

of five (i.e., A, T, G, T and A coincide in this order). This explains the basic concept of 88

edit similarity score. 89

We modified the Needleman-Wunsch (N-W) algorithm (Needleman and Wunsch, 90

1970) for scoring edit similarity such that it is applicable to neural data (see 91

Experimental Procedures for details). Briefly, we segmented data with a sliding time 92

window of width Tw, and divided each data segment into L bins with size b (thus, L = 93

Tw/b). If we consider the activity pattern of the neural ensemble in each bin (i.e., the 94

rate vector r of coincidently firing neurons in Figure 1C) as a “letter”, we obtain a 95

string of letters in each data segment. Note that each neuron may fire multiple spikes in 96

a bin, so each component of the activity vector represents the number of spikes 97

generated by the corresponding neuron in the bin. The window size and bin size are 98

determined from the temporal features of the neural data. In this study, the typical 99

values of Tw ranged from 100ms to 250ms and those of b from 1 ms or 10 ms. 100

Our task is to find all data segments that contain similar activity vectors in the 101

same temporal order (Figure 1C). In the previous comparison of two gene sequences, 102

how to count the number of coincident letters (i.e., nucleotide bases) between the two 103

sequences was naturally defined. However, the same scoring scheme is not applicable to 104

neural activity data because neural population in vivo will hardly repeat exactly the 105

same patterns due to various noise sources. In this study, we extended the edit 106

similarity score using the inner product of activity vectors (Experimental Procedures). 107

Another important characteristic of our algorithm is an exponentially growing 108

penalty. Edit similarity score is tolerant to various types of noise such as spike timing 109

jitters, failure of firing, contamination of noisy spikes, and temporal variation in 110

sequence length. However, even if their temporal orders are identical, the score should 111

be reduced when two sequences involve significantly different time lags between the 112

corresponding successive member neurons. To systematically reduce the score in such 113

cases, we subtract a penalty term from the score whenever we inserted an extra blank 114

(time bin) into one of the two sequences to increase the match between them. If 115

continuous blanks are inserted, the net penalty grows exponentially as the length of 116

inserted blanks is increased. The score is set equal to zero if the subtraction results in a 117

negative value (Experimental Procedure). 118

Finally, the proposed method, in its original form, requires extensive computational 119

resources when used on neural data. The major difficulty comes from the calculation of 120

a similarity matrix that has a computational complexity of O(M 2), where M is the 121

number of data segments and grows with the data length T. We accelerated the 122

calculation of edit similarity drastically by employing an approximation algorithm based 123

on Jaccard similarity (Cohen et al., 2001). For instance, this algorithm reduced the 124

computation time by approximately 97% on the hippocampal data analyzed here. The 125

details are explained in Experimental Procedures. 126
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Figure 2: Performance comparison between different clustering algorithms. A
density-based clustering algorithm (OPTICS) and a community detection algorithm
(CORPA) were separately (A and B) and sequentially (C) applied to an identical dataset.
Data points (blue, green) generated by two Gaussian distributions with different centers
and an identical variance were mixed with uniformly distributed background data points
(gray). (A) OPTICS could remove background noise but failed to discriminate the two
clusters. (B) COPRA could separate these clusters but failed to remove background
noise. (C) The combined application of OPTICS and COPRA successfully separated
the two clusters and removed background noise.

Density- and community-based algorithms for sequence 127

clustering 128

To find the data segments containing similar sequential activity patterns, we introduced 129

a high dimensional metric space in which data segments form a cluster of neighboring 130

data points. We can use the edit similarity score to define a metric among data points 131

in this feature space (Experimental Procedures). While similar activity patterns give a 132

dense cluster in the feature space, data segments containing no repeated patterns are 133

scattered over the space as outliers. To remove these “noisy” components, we combined 134

two different types of clustering algorithms. The first algorithm is called “OPTICS” 135

and it finds dense clusters of data points (Ankerst et al., 1999). However, this algorithm 136

cannot discriminate two clusters if they share a non-negligible number of data points. 137

Such an example is shown in Figure 2A for an artificial dataset in which the algorithm 138

identifies a single dense cluster and removes noisy components surrounding the cluster, 139

but it does not separate the cluster into two parts. 140

The other algorithm “COPRA” performs clustering based on a community detection 141

scheme (Gregory, 2010). In short, the data points connected with relatively short 142

distances are distinguished from other data points as a community in the feature space. 143

The algorithm identified two separate clusters in the same dataset as used above 144

(Figure 2B). Each cluster, however, contained a considerable number of noisy data 145

points: an outlier may be invited to a community if its distance from any member of the 146

community is short enough. In this study, we sequentially applied OPTICS and CORPA 147

to take advantage of each method. The combination of the two methods worked 148

efficiently in most of the cases tested here (Figure 2C). 149

Profiling cell-assembly sequences 150

We devised a method to identify the core temporal structure of the cell assembly 151

sequences belonging to each cluster. Our method finds clusters of data segments within 152

a neural ensemble that contain similar activity patterns, but these patterns in general 153

exhibit large temporal variation. To find the core temporal cell-assembly structure for 154

5/23

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 13, 2017. ; https://doi.org/10.1101/202655doi: bioRxiv preprint 

https://doi.org/10.1101/202655
http://creativecommons.org/licenses/by-nc-nd/4.0/


each cluster, called the “profile” in this study, we modified an iterative algorithm 155

proposed previously (Barton and Sternberg, 1987). First, we choose two initial activity 156

patterns from a cluster and construct a tentative profile from the sequence elements 157

that commonly appear in the two patterns. Then, we sample another pattern that best 158

matches this tentative profile of the cluster, and construct a new profile by taking the 159

common elements between the tentative profile and the new sample. We repeat this 160

updating procedure until the profile converges to a fixed pattern. For the applications 161

reported in this study, updating 10 to 100 times yielded sufficiently good results. See 162

Experimental Procedures for the details of our profiling procedure. 163

Comparison between different methods on artificial data 164

We compared the performance of our method with that of PCA- (Lopes-dos-Santos et 165

al., 2011; Peyrache et al., 2009) or ICA-based method (Lopes-dos-Santos et al., 2013) by 166

using synthetic population activity data. We embedded 5 non-overlapping cell 167

assemblies into background activity constructed using 100 simulated neurons firing 168

independently at a rate of 2 [Hz]. Each cell assembly consisted of 20 synchronously 169

firing neurons with ±10 milliseconds jitter and appeared 50 times at randomly 170

determined positions within the data length of 300 seconds. The cell assemblies 171

detected by our method are shown in Figure 3A. We evaluated the performance of each 172

method in terms of F measure, which is widely used in the field of machine learning (c.f. 173

Artiles et al., 2007): 174

Fγ =
1

γ
Purity + 1−γ

Inverse Purity

where γ is the mixing weight for Purity and Inverse Purity, Purity is a weighted average 175

of the fractions of true members in detected clusters, and Inverse Purity is a weighted 176

average of correctly classified portions of true clusters. If a classification is perfect, both 177

Purity and Inverse Purity take the maximal value of unity. Other details of the 178

evaluation method are described in Experimental Procedures. 179

We generated 40 different artificial data by changing background activity. We then 180

analyzed each data by three different methods and calculated F1/2 (the harmonic mean 181

of Purity and Inverse Purity) for each trial. The resultant F measure was significantly 182

larger in the proposal method (Mean ± Std 0.89±0.09) than in the PCA-based 183

(0.61±0.07) and ICA-based (0.59±0.11) methods (Figure 3B). In fact, our method 184

correctly detected all target cell assemblies. 185

We also investigated if our method is able to extract spike sequences in noisy 186

artificial data. Sequential firing of three cell assemblies each consisting of 20 neurons 187

was embedded into background activity at a rate of 1[Hz] in both forward, synchronous 188

and reverse orders with ±10 milliseconds jitter(Figure 3C). Each sequences appeared 20 189

times. In Figures 3D and 3E, different values of parameters were tested to study the 190

parameter dependence of our method, where criteria for timing jitters and clustering are 191

stricter in Figure 3D (Experimental Procedure). In Figure 3D, our method detected the 192

groups of cells which fire sequentially but in different orders as separate clusters (e.g., 193

orange and red clusters). In contrast, the same group of cells firing in different orders 194

was detected as a single cluster in Figure 3E. Namely, three separate groups of cells can 195

fire with either an upward ramp, a downward ramp, or all simultaneously. Although 196

some spikes are misidentified, the algorithm correctly identified each of the three 197

clusters as was indicated by the colors. In summary, the investigation demonstrated the 198

flexibility of the proposed method that would be useful for the investigation of memory 199

reactivation; it can detect the forward and reverse replays separately or together 200

depending on the researcher’s need. 201
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Figure 3: Comparison between different methods. (A) An example of the embed-
ded artificial cell assemblies used for the comparison. In the raster plot, each dot is a
spike. Each color indicates a cell assembly. For clarity, massively many noisy spikes are
not shown. (B) F-score was significantly higher for the proposed method than for PCA-
and ICA-based algorithms (p < 0.0001, Welch’s t-test). The time window used was
200ms. (C) Nine artificial spike sequences embedded into noisy spike trains are shown.
Noise spikes are not shown here. The time window was 200 ms. (D) Sequences detected
by the proposed method from the artificial data shown in C are shown in two intervals
together with all noisy spikes (grey). The nine embedded sequences were successfully
detected. (E) Sequences detected from the same artificial data are shown for different
values of parameters in our algorithm.
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Place-cell firing sequences in the hippocampus 202

Our method extracted 60 distinct clusters of data segments, each of which appeared 203

repeatedly at a different location in the maze and in a specific movement direction 204

(Figure 4A). We separated these clusters in terms of their observed locations. Twenty 205

clusters appeared when the rat ran from the start to the goal (we call it the Go cluster), 206

20 clusters appeared during the opposite movement (called the Back cluster). There are 207

five overlapping clusters between the two types (#6, #10, #21, #40, #48). Another 20 208

clusters mainly appeared during immobilility. The relationship between each cluster and 209

a behavioral state indicates that our method successfully detected behaviorally relevant 210

cell assemblies, which likely consist of hippocampal place cells. Some clusters (e.g., 211

clusters #4 and #10) were detected during both locomotion and the resting state. These 212

patterns presumably correspond to place-cell firing phase-locked to theta oscillation and 213

their ripple-associated replays, respectively (Foster and Wilson, 2006; Nádasdy et al., 214

1999), and it is notable that our method automatically extracted these sequences in 215

spite of the different time scale. Such reactivation was also observed in (Mizuseki et al., 216

2013). Figure 4B shows visualization of the feature space with t-SNE, which defines a 217

mapping from high-dimensional data space to a low-dimensional space for visualization 218

such that the spatial relationships between data points are optimally preserved (Maaten 219

and Hinton, 2008). Figure 4C displays 4 sample profiles of activity patterns for the 220

clusters detected (Experimental Procedures), where only the first 10 neurons are shown. 221

Three examples (#4, #16, #53) were selected from clusters observed at separate places 222

whereas cluster #10 was selected as it appeared at two places. 223

Figure 5 shows four examples of spike rasters from our extracted cell assemblies 224

corresponding to two clusters (cluster 4 and cluster 10) together with the position and 225

velocity of the animal. In each cluster, the spatiotemporal activity patterns vary from 226

segment to segment, but they also resemble each other. Thus, our method is robust 227

against changes in the temporal scale of sequences. In addition, each of the two clusters 228

include an example of replays (at 1479 sec in cluster 4 and at 1868 sec in cluster 10) of a 229

cell assembly in the immobile state of the animal. For the parameter values used here, 230

these sequences were grouped into the same cluster because our method allows a certain 231

degree of spike timing jitters. If the allowance of jitters had been narrower, they would 232

have formed different clusters. In Figure 6A, we plotted the receptive fields of neurons 233

and clusters when the rat was running forward, backward and stopping. It suggests that 234

a cluster detected at a given spatial location consists of neurons that have similar 235

receptive fields around the location. Edit similarity score for the cell-assembly sequences 236

is significantly suppressed for shuffled neural data in which the values in each row were 237

shuffled randomly (Figure 6B). The result suggests that the cell-assembly sequences and 238

their profiles captured the characteristics of neural population activity. 239
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Figure 4: Cell assemblies extracted from hippocampal CA1. The dataset was
recorded from a rat exploring a linear maze (Mizuseki et al., 2013) and is available at the
data sharing site CRCNS. (A) The spatial locations in the linear maze are shown for the
detected cell-assembly sequences. The x-axis shows time and y-axis shows the position
of the rat. Twenty Go clusters and 20 Back clusters of data segments are shown. Each
colored region shows where each segment was observed. Cluster indices are shown on
the right, which were sorted and colored according the order of appearance during the
going and returning along the maze. We sorted cluster indices according to their mean
kernel density estimate (which is shown in Figure 6A). The window size was 100ms. (B)
t-SNE visualization of the feature space. Note that most of the neighboring colors in A
are also adjacent in B, suggesting that two neuronal activities observed at contiguous
spatial positions have similar temporal patterns, but are still separate enough in the
feature space. (C) Profiles of cell-assembly sequences are shown for each cluster. The
first 10 neurons for four profiles are shown with number indicating cluster identity. Color
indicates normalized firing rate of each neuron after alignment within the cluster from
lowest (dark blue) to highest (yellow). Some neurons show zero rate values because
their spikes were dropped from the profile during the alignment. The cells (y-axis) were
sorted according to the relative temporal order (x-axis) of the peak activity of each
cell in each profile. Note that the absolute length of the x-axis in each profile does not
necessarily represent the actual temporal length of sequences, though the approximate
length coincides the width of temporal windows (100 ms in this case). The pseudocolor
code represents the firing frequency, which was normalized across neurons in the profile.
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Figure 5: Cell assemblies detected from CA1. Spike trains are shown for four
example spike sequences taken from cluster 4 (top) and cluster 10 (bottom). The top,
middle and bottom panels display the velocity and spatial position of the rat, spike
raster, and local field potentials band-passed at 4-10Hz (theta band) and 150-200Hz
(sharp-wave ripples). In the middle panel, gray vertical bars show noisy spikes and red
bars represent core spikes of the corresponding profile. Neurons are sorted according to
their firing position within the average profile for each cluster.
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Figure 6: The relationships between hippocampal cell-assembly sequences.
(A) The spatial receptive fields are shown for 36 hippocampal neurons (top) and cell
assemblies belonging to the 20 clusters (bottom). The pseudocolor code indicates the
probability of firing. (B) Edit similarity between the profiles of cell assemblies and spike
trains (original and shuffled versions) of hippocampal neural population was calculated
using a sliding time window.
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Cell assemblies in the prefrontal cortex 240

We further validated the method in neural ensemble activity recorded from the medial 241

prefrontal cortex of rats performing a memory-guided spatial sequence task ((Euston et 242

al., 2007): see the paper for experimental details). Briefly, the rats were trained to visit 243

eight locations equally spaced around the perimeter of a circular arena in a prescribed 244

sequential order with electrical brain stimulation as a reward. Then, multi-neuron spike 245

trains were recorded with a chronically implanted hyperdrive consisting of 12 tetrodes. 246

The data contains the activity of 76 neurons and the total duration of recordings is 247

11,010 seconds. See Experimental Procedures for the choices of parameter values. 248

Our method detected 11 clusters of prefrontal cell-assembly sequences in total 249

(Figure 7A). The previous analysis based on template matching revealed a sequence and 250

its replay pattern in the same rat as we analyzed here (Euston et al., 2007). Though 251

some of the detected clusters are overlapped, the larger number of detected clusters 252

indicate that the method extracted activity patterns without any reference to events or 253

positions on the track. These clusters were detected in both behaving state and sleep 254

state, and some clusters were frequently replayed during sleep (Figure 7A). During the 255

behavior, cell assemblies were typically found when the rats were approaching or leaving 256

a reward zone (Figure 7B). The profiles of three cell assemblies are shown in Figure 7C. 257

Each sequence usually appeared just once in a 200 ms window during behaving state, 258

whereas they were repeated multiple times during sleep state (Figure 7D). Thus, the 259

detected sequences were time compressed during sleep. These results are consistent with 260

the previous findings. 261

Discussion 262

In this study, we have developed a novel method for extracting multiple repeated 263

sequences of cell assemblies from multi-neuron activity data. Our method is based on 264

edit similarity, which was developed in computer science as a measure of similarity 265

between strings. Edit similarity compares the serial order of common elements 266

appearing in two strings with or without discounting variations in inter-element 267

intervals, hence it provides a flexible and efficient metric for comparing highly noisy 268

spatiotemporal activity patterns of cell assemblies. We have validated the method first 269

in artificial data and then in neural activity data recorded from the hippocampus and 270

prefrontal cortex of behaving rodents. 271

In the assessment with artificial data, we showed that our method is superior to 272

PCA- ((Lopes-dos-Santos et al., 2011; Peyrache et al., 2009) and ICA-based methods 273

(Laubach et al., 1999; Lopes-dos-Santos et al., 2013). Dynamic programming (DP) 274

based methods were previously introduced to quantify the similarity between spike 275

trains of neurons(Victor and Purpura, 1996; Victor et al., 2007). To our knowledge, no 276

methods have been developed with edit similarity to detect similar sequences of cell 277

assemblies from noisy population neural data in unsupervised manner. Other methods 278

also exist and discovered the activation of specific neuron ensembles (Chen and Wilson, 279

2017; Lee and Wilson, 2002; Ohki et al., 2005). The previous methods, however, are 280

generally not effective when data has a low signal-to-noise ratio, for instance, when most 281

of the recorded neurons do not participate in sequences. In addition, the previous 282

methods have difficulties in distinguishing partially overlapping cell-assemblies. 283

In particular, our method enables blind detection of cell-assembly sequences without 284

referring to external events such as sensory stimuli and behavioral responses. Recently, 285

a novel statistical approach was proposed for the detection of cell assembly structure 286

with multiple time scales (Russo et al., 2017). Starting from pairwise correlations in 287

neuron pairs, the method finds significantly correlated neurons within the set of cell 288
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Figure 7: Cell assemblies detected from the prefrontal cortex. The width of
time windows was 250ms. (A) The onset times of detected time windows are shown for
all the clusters. (B) The spatial positions and movement directions of a rat are shown at
the onset times of detected time windows belonging to three clusters. (C) Profiles are
shown for three prefrontal cell assemblies in terms of the sorted neuron id and relative
temporal order. The approximate length of the x-axis coincides the width of temporal
windows (250 ms). (D) Cell assembly sequences detected in awake (left three panels)
and sleep (rightmost panel) are shown for the three clusters. From top to bottom, each
row corresponds to the profile 2, 8 and 9, respectively. Some sleep replay events showed
evidence of multiple replays within the 250 ms window. This is most apparent in the
first row, where the upward ramp is seen twice.
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assemblies detected at the previous step. Acceleration of the analysis was achieved by 289

discarding statistically less significant combinations at the next step. However, in the 290

successive statistical tests, the detection of long sequences becomes rare and time 291

consuming. In contrast, our method is computationally more efficient when searching 292

longer cell-assembly sequences. It may also be inappropriate to discard long sequences 293

just because they are statistically less significant. For instance, place-cell sequences 294

spanning several seconds of behavior emerge in the hippocampus during spontaneous 295

activity after spatial experience (Dragoi and Tonegawa, 2013; Grosmark and Buzsáki, 296

2016). We propose that behaviorally relevant cell-assembly sequences should be 297

addressed after all possible candidates have been identified. Our method enables such 298

an analysis of cell-assembly sequences. 299

It is noted that both of the examples provided here rely on highly stereotyped, 300

repeated behaviors, which presumably entrain similar repeated patterns in the neural 301

activity. Whether the present algorithm can be used to detect spontaneous (as opposed 302

to stimulus- or activity-driven) patterns, such as those reported by (Luczak et al., 2007; 303

2009) remains to be tested. Other intriguing extensions of this method include the 304

detection of hierarchically organized cell assemblies over multiple spatio-temporal scales. 305

Such an extension requires a flexible on-line tuning of time windows, which is a 306

challenge at the moment. One area where time-scaling would be particularly relevant is 307

in the detection of replay events during sleep, which often occurs at a compressed 308

timescale. Our method might detect considerably more reactivation events were we to 309

adjust the temporal scaling between behavior and sleep epochs. We also note that in 310

principle our method is applicable to optical imaging data if we can find adequate sizes 311

of the time window and temporal discount factor. 312

In sum, we proposed a novel method for the blind detection of cell-assembly 313

sequences based on the edit similarity score and an exponential discount for timing 314

jitters. This method does not rely on the external references, hence is useful for 315

detecting not only externally-driven firing sequences, but also internally-driven 316

sequences emergent from arbitrary mental procedures. Whether the method reveals the 317

involvement of cell-assembly sequences in mental processes is an interesting open 318

question. 319
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exponentially growing gap penalty, clustering algorithms and profile generation 329
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script with which we carried out our analysis is available at github (link should be 331

added in here). We used the original implementation of the COPRA (Gregory, 2010) 332

publicized by the author. A minor modified version of (Zhang et al., 2013) was used for 333

the OPTICS. We have also used gnu parallel (O. Tange, 2011) for data processing. 334
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N-W algorithm for edit similarity 335

We explain the fundamentals of edit similarity score without gap penalty since this 336

metric is not popularly used in neuroscience. Edit similarity score or edit distance 337

quantifies the similarity between two strings with the minimum number of operations 338

required to transform one string into the other. We can define arbitrary scoring schemes 339

for each manipulation on strings, that is, insertion of a gap, deletion of a character, and 340

comparison of two characters for coincidence. Needleman and Wunsch (Needleman and 341

Wunsch, 1970) proposed one of the most widely used evaluation algorithms of this 342

metric (N-W algorithm). 343

The original N-W algorithm uses DP, which essentially partitions given problem into 344

subsequent small subproblems and composes a solution of the original problem from 345

those of the subproblems. As an example, we evaluate the score between two 346

strings, W (1) = ATCGTAC and W (2) = ATGTTAT. As shown in Figure 7, we prepare 347

a grid (DP table) and arrange the two strings along the abscissa and ordinate of the DP 348

table. We add a null character “#” to the heads of the two strings and fill the leftmost 349

column and the bottom row with zeros to initialize the following iterative operation. 350

We assign an appropriate score to each operation (insertion, deletion and
coincidence). For the sake of simplicity, in this example without gap penalty we assign
+ 1 to a coincidence, 0 to an insertion and a deletion. Let εij be the number of partial
coincidences obtained up to the i -th element of W (1) and the j -th element of W (2).
Then, we determine the value εij of the cell (I,j ) of DP table by the following recursive
equation:

εij = max


εi−1
j

εij−1

εi−1
j−1 + δ(W (1)[j],W (2)[i])

where δ(i, j) is the Kronecker’s delta: δ (i, j) = 1 if i = j and 0 if i 6= j. We can fill 351

the grid from the lower left cell to the top right cell with the scores calculated by the 352

above equation (Figure 7). We note that δ(x, #)=0 for any character x including a null 353

character itself. Then, we obtain the similarity score of two strings W (1) and W (2), 354

which is five in this case, at the top right cell ε88. Note that the operation εij = εi−1
j 355

corresponds to a deletion of W (2)[i], or equivalently, a gap insertion after W (1)[j]. 356

Likewise, εij = εij−1 corresponds to a deletion of W (1)[j] or a gap insertion after W (2)[i], 357

and εij = εi−1
j−1 + 1 corresponds to taking a coincidence. 358

The DP table enables us to obtain the substring that gives the maximum number of 359

coincidence. We can determine this substring (ATGTA in the example) by tracing 360

arrows from the top right cell back to the bottom left cell and aligning the characters 361

that appear after every diagonally upward move. This procedure is illustrated with gray 362

arrows in Figure 7, and the resultant alignments of W (1) and W (2) are shown at the 363

bottom. 364

Extended N-W algorithm for neural activity 365

To make the N-W algorithm applicable to spike data, we make three extensions: scoring 366

with the inner product, exponential gap penalty, and the local alignment of starting 367

points. First, the degree of similarity between activity vectors is measured by the inner 368

product of the vectors instead of delta function δ(W (1)[j],W (2)[i]) in the N-W 369

algorithm because exact matching between two patterns is very rare in neural data. As 370

explained in the main text, we introduced a sliding time window to get data segments of 371

fixed length L. Let a matrix W (tk) be spiking activities of N neurons in the segment 372

starting at time tk, and ri(tk) be the column vector in the i -th bin of W (tk) (see Figure 373

1B): 374
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W (tk) = (r1 (tk) , r2 (tk) , . . . rL (tk)) ,
W (tk′ ) = (r1 (tk′ ) , r2 (tk′ ) , . . . rL (tk′ )) .

We regard W (tk) and ri(tk) as a string and a character in N-W algorithm, 375

respectively, and we evaluate similarity between activity patterns observed in two data 376

segments at tk and tk’ by the inner product ri (tk) · rj (tk′ ). 377

Second, we developed a scoring scheme with exponential gap penalty, which
penalizes edit similarity score with an exponential discount factor when the
corresponding elements appear after different time lags in two sequences, similar in
spirit to the well-known linear gap penalty scheme (Gotoh, 1982). Below, two symbols
υij and ρij refer to the optimal numbers of vertical gap insertion and horizontal gap
insertion required for partial comparison up to the i -th element of W (tk) and the j -th
element of W (tk‘ ), respectively. By inserting an additional gap we may earn another
coincidence at the cost of an additional discount factor in the similarity. Whether one
should stop or continue the insertion of a gap is determined by the comparison of the
cost and benefit of the two operations. To optimize the cost-benefit balance, we should
insert a maximal number of gaps that does not cost more than the benefit. After setting
the initial conditions υ1:L+1

1 = υ1
1:L+1 = ρ1:L+1

1 = ρ1
1:L+1 = 0 at the bottom row and the

leftmost column of the table, we calculate the values of υij and ρij by the following
recursive formula

υij =

{
1 εi−1

j − exp (α) ≥ εi−1−υi−1
j

j − exp
(
αυi−1

j

)
υi−1
j + 1 otherwise

ρij =

{
1 εij−1 − exp (α) ≥ εi

j−1−ρij−1
− exp

(
αρij−1

)
ρij−1 + 1 otherwise

where α is the weight for gap penalty. The conditions

εi−1
j − exp (α) ≥ εi−1−υi−1

j

j − exp
(
αυi−1

j

)
and

εij−1 − exp(α) ≥ εij−1−ρij−1
− exp(αρij−1)

are satisfied if the cost exceeds the benefit, and then we stop insertion of a gap. The 378

values of υij and ρij are calculated before εij in each cell. 379

Third, We solved the local alignment problem by applying the algorithm proposed 380

by (Smith and Waterman, 1981). In the case of strings (Figure 7), the heads of strings, 381

from which we should start the comparison, are obvious. However, the heads of cell 382

assembly sequences are not given a priori in neural data. In our scheme, when no 383

significant coincidences are found up to cell (i,j ) and the score in that cell is below 0, 384

we restart recursive evaluation by setting εij to 0. In other words, we can jump from the 385

bottom left cell to an arbitrary cell. This scheme results in the automatic search of the 386

optimal starting points of the comparison. 387

In sum, recursive equation in N-W algorithm is changed into the following rule:

εij = max


0

ε
i−υi−1

j

j − exp(aυi−1
j )

εi
j−ρij−1

− exp(aρij−1)

εi−1
j−1 + ri(tk) · rj(tk′)

which is evaluated along with υij and ρij . Initial conditions are given as 388
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ε11, ε
1
2, · · · ε1L = 0, ε11, ε

2
1, · · · εL1 = 0,

and εL+1
L+1 gives the maximum coincidence between the activity sequences, that is, the 389

edit similarity score, as in the standard N-W algorithm. Below, we express 390

ε11, ε
1
2, · · · ε1L = 0 by the notation ε11:L=0. 391

In addition to the starting points, the end points are not given a priori, but should 392

be determined such that the two subsequences optimally coincide with each other. We 393

can solve this problem by backtracking of max ε. The procedural dependency among 394

the cells is stored in variables βij : from the top to the bottom of the rules shown above, 395

we assign “start”, “upward” (↑) , “rightward” (→) , and “diagonal up” (↗) to βij , 396

respectively. As previously mentioned, we can obtain optimal coincident substrings by 397

back-tracking allows in the β table from the top right cell to the left bottom cell. 398

Metric space for the clustering analysis 399

The algorithm described above gives a similarity matrix consists of edit similarity scores 400

E (k,k’ ) between pairs of data segments W (tk) and W (tk’). We calculate a distance 401

matrix as D(k,k’ ) = max(E (k,k’ ))-E (k,k’ ), where the maximum is taken over all 402

possible pairs of segments. The distance matrix defines a distance metric in a 403

high-dimensional feature space in which data segments containing similar activity 404

patterns are distributed at neighboring locations. As demonstrated in Figure 2, we can 405

extract similar cell-assembly sequences through the clustering of data points in this 406

feature space. 407

Dimensionality reduction by t-SNE 408

t-Distributed Stochastic Neighbor Embedding is an algorithm that map
high-dimensional data into a two or three-dimensional space while maintaining
low-dimensional manifolds in the original high-dimensional manifolds. Let xi and xj are
data points resides in a high-dimensional space N . Let The algorithm uses conditional
probability distribution

pj|i =
exp

(
− |xi − xj |2

/
2σ2

i

)
∑
k 6=i

exp
(
− |xi − xk|2

/
2σ2

i

)
as a similarity measurement between data points. In the equation, σi is the xi centered 409

variance of the Gaussian which is also determined by the algorithm. We also define data 410

points yi and yj are data points in low-dimensional M space which correspond to xi 411

and xj in the N . It is possible to calculate another similarity function qj|i, 412

qij =
f(|xi − xj |)∑

k 6=i

f(|xi − xk|)
with f(z) =

1

1 + z2

This algorithm uses a Student t-distribution with a single degree of freedom to 413

dissimilar objects in N to be embedded far apart also in M . This algorithm finds the 414

optimal embedding yi in the sense that minimizes the Kullback–Leibler divergence KL, 415

KL(P ||Q) =
∑
i 6=j

pij log
pij
qij
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Tricks for reduction of the computational cost 416

Evaluation of the similarity matrix is generally quite heavy; the complexity is O(M2)
where M is the total number of data segments. To avoid the heavy computation, we
reduced the number of the matrix elements to be evaluated by an algorithm proposed
by (Cohen et al., 2001). In this procedure, we reduce the calculation of edit similarity
for pairs of data segments that do not share active neurons. Let w be a Boolean matrix
in which the element (i,k) is 1 if neuron i fires at least once in the segment W (tk) or
otherwise 0:

wi (tk) =

{
1
∑L
j=0(W i

j (tk)) ≥ 1

0 otherwise

Our goal is finding pairs of data segments yielding similar column vectors w(tk) and 417

w(tk’) with low computational cost. We measure the similarity between w(tk) and 418

w(tk’) by Jaccard similarity defined as 419

Jaccard (w (tk) ,w (tk′ )) =
|w (tk) ∩w (tk′ )|
|w (tk) ∪w (tk′ )|

, (k, k
′

= 1, · · · , Nw)

where S̃ is called a signature matrix that contains the min-hash values in different 420

hash functions, i.e., S̃qk = hq(w̃(tk)), and hq is the q-th hash function and n is the 421

number of hash functions. In this matrix, elements in a column are min-hash values of a 422

data segment generated with different hash functions, and elements in a row are 423

min-hash values of all data segments generated with a hash function. 424

To further reduce computation, we used the banding technique in the evaluation of 425

Jaccard similarity (Cohen et al., 2001). We divided S̃ into b bands of l rows each, thus 426

n=bl. Suppose that two vectors w̃(tk) and w̃(tk′) have Jaccard similarity s, then the 427

probability that the min-hash signatures of two columns coincide at least in one row of 428

the matrix is s. Then, the probability that the signatures of two columns are identical 429

in all rows of at least one band is p(s) = 1− (1− sl)b, which is an S -shaped function of 430

s and hence can be used for determining a threshold value of the similarity. We hash all 431

the bands, and search bands in which two columns have the same hash value. The only 432

pairs of data segments that have the same hash value in more than one band are used 433

for similarity matrix calculation. For instance, p(0) =0.000, p(0.3) =0.007, 434

p(0.5)=0.091, p(0.7) =0. 424, p(0.8) =0.696, p(0.9) =0.931, and p(1.0) =1.000 when b 435

= 5 and l = 2. In the present analysis, the values of b and l were dynamically adjusted 436

by data itself. We explain the method for the adjustment in the next section. 437

A policy for division of signature matrix 438

To apply the above algorithm to neural data, we employed a heuristic method to 439

determine two parameters for Jaccard similarity (b and l) from neural data. We 440

calculated the average firing rates of individual neurons over the entire length of data, 441

and we determined b and l assuming independent Poisson spiking neurons having the 442

same firing rates. The parameter for a smaller threshold (Jaccard1) gives the similarity 443

expected under the assumption of independent Poisson spiking, whereas a parameter for 444

a larger threshold (Jaccard2) represents the similarity expected when the two data 445

segments contain sequences with a certain length. Let #i be the total number of spikes 446

of neuron i during the interval [0, T ]. From #i, we can calculate the probability that 447

neuron i has at least one spike in the segment W (tk) as p1i = 1− (1− (#i/T ) ∆)
(L/∆)

, 448

where ∆ is the size of a bin. Then, the index N1 =
∑N
i=1 p1i is the expected number of 449

active neurons within the time window. Then, the expected number of coincidently 450

active neurons in an arbitrary pair of data segments is N2 =
∑N
i=1 (p1i)

2, and Jaccard1 451

is calculated as N 2/(2N 1-N 2). Now, suppose that two data segments contain additional 452
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N 3 coincidently active neurons. In this case, the expected Jaccard similarity, or 453

Jaccard2, is given as (N 2+N 3)/(2N 1-N 2+N 3). In this study, we searched such values 454

of b and l that keep the probability 1− (1− sr)b sufficiently high compared with 455

Jaccard1 and sufficiently low compared with Jaccard2. 456

The proposed method is different from the standard approach based on statistical 457

analysis and remains somewhat heuristic. However, the aim of this method is to reduce 458

the load of heavy computation for large neural data without losing candidate sequences, 459

as we consider that the behavioral importance of detected sequences should be analyzed 460

based on their relationships to behavioral data. 461

Construction of profiles for clustered sequences 462

Here, we explain our iterative multiple alignment algorithm for constructing profiles of 463

clusters. It is based on the algorithm by (Barton and Sternberg, 1987). In the original 464

algorithm, we initialize the algorithm with a tentative profile, which is obtained by 465

taking the longest common subsequence between the two data segments in a cluster 466

that show the highest match in edit similarity. After the initialization, we search a next 467

data segment that gives the most similar profile to the tentative one, and update the 468

tentative profile using edit similarity. We repeat this procedure until the tentative 469

profile converges. 470

In our method, we made two major modifications to the original algorithm. First, 471

we chose two arbitrary data segments in the initiation step to reduce the computational 472

cost. The final results did not significantly differ between our approach and the original 473

one. Second, in generating a profile, we used the z-score of spike count in each data 474

segment. Namely, for each neuron we calculated the average and variance of spike count 475

per bin over the data segment, and then subtracted the average from spike count in each 476

bin and normalized the difference by the variance. The use of z-score suppresses the 477

influences of highly active neurons on the detection of ensemble firing sequences. Finally, 478

in each step, a Gaussian filter with mean 0 and variance σ was applied to the tentative 479

profile. Variance σ was initially as large as the window size and gradually reduced to 480

the bin size as iterations proceeded. This filtering prevented a profile from containing 481

more than two similar sequences, thus enabled a robust detection of minimal sequences. 482

F-score for artificial data analysis 483

Purity and Inverse Purity are defined as

Purity =
m∑
i=1

|Ci|
T

Precision(Ci, Lj)

Inverse Purity =
n∑
i=1

|Li|
T

Precision(Li, Cj)

where m is the number of detected clusters C = {C1, C2, . . . , Cm}, n (=11) is the 484

number of true clusters and a noise cluster in the artificial data 485

L = {L1, L2, . . . , Ln}, and T is the total number of data points (i.e., segments of 486

spiking data). The noise cluster consists of spurious cell assemblies. Precision(C i, Lj) is 487

defined as (C i∩Lj)/C i , which represents the fraction of members of the j -th true 488

cluster in the i -th detected cluster. In the above expressions, weights are determined 489

such that a larger cluster contributes more strongly to the weighted sums. We note that 490

Purity and Inverse Purity take their values within the interval [0, 1]. F-score is defined 491

as the harmonic mean of Purity and Inverse Purity to penalize two trivial solutions. In 492
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one such solution, each data point constitutes an independent cluster. In the other 493

solution, all data points are classified into a large cluster. In these trivial cases, Purity, 494

but not Inverse Purity, takes the maximum value of unity. 495

In the evaluation of our method with simulated data, we searched the optimal 496

clustering that maximizes the F-score by gradually changing threshold for the 497

agglomeration/division of data points. We optimally separated the target cell assemblies 498

from spurious cell assemblies. In evaluating the PCA- and ICA-based methods, we 499

calculated overlaps between the population activity vector and the principal (or 500

independent) components in all data segments. Then, we searched for a segment that 501

showed the highest value of the overlaps, and the component yielding the highest value 502

was associated with the cell assembly that was activated in the segment. The detected 503

data segments were removed from the next search. The above search procedure was 504

repeated until all cell assemblies were associated with some components without 505

overlapping. The remaining components had no partner cell assemblies and were 506

regarded as noise cluster. Thus, we obtained n = 11 clusters including a noise cluster of 507

spurious cell assemblies. 508

Parameter choices 509

Here we list the values of parameters in our algorithm. For the artificial data, we have 510

tested multiple parameter searched different parameter settings to find the values that 511

record the maximum performance. Each parameter tested within the following range; 512

the power of exponential growing gap penalty α=1.0; the number of points for a 513

minimal cluster in OPTICS MinPts 2 to 20 (Ankerst et al., 1999); parameter for 514

COPRA v 2 to 20(Gregory, 2010). 515

For the hippocampal data, the following parameter values were used: the power of 516

exponentially growing gap penalty α = 0.1; the length of sliding time window Tw= 100 517

(ms), which is the typical period of one cycle of theta oscillation; criteria for fast 518

computation minlen = 10; the number of points for a minimal cluster in OPTICS 519

MinPts = 20; parameter for COPRA v = 4. 520

The prefrontal data were analyzed with various widths of time windows ranging 521

from 250 ms to 2.5 sec because the characteristic time scale of sequences were not 522

known. All the results shown here are obtained for the width of 250 ms, which yielded 523

reasonable sequences. The temporal discount factor was set as α = 0.03. The number of 524

points for a minimal cluster in OPTICS MinPts = 400; parameter for COPRA v = 30. 525
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