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SUMMARY

Cell assembly is a hypothetical functional unit of information processing in the brain.
While technologies for recording large-scale neural activity have been advanced,
mathematical methods to analyze sequential activity patterns of cell-assembly are
severely limited. Here, we propose a method to extract cell-assembly sequences repeated
at multiple time scales and various precisions from irregular neural population activity.
The key technology is to combine “edit similarity” in computer science with
machine-learning clustering algorithms, where the former defines a “distance” between
two strings as the minimal number of operations required to transform one string to the
other. Our method requires no external references for pattern detection, and is tolerant
of spike timing jitters and length irregularity in assembly sequences. These virtues
enabled simultaneous automatic detections of hippocampal place-cell sequences during
locomotion and their time-compressed replays during resting states. Furthermore, our
method revealed previously undetected cell-assembly structure in the rat prefrontal
cortex during goal-directed behavior. Thus, our method expands the horizon of
cell-assembly analysis.

INTRODUCTION

Uncovering neural codes is of fundamental importance in neuroscience. Several
experimental results suggest that synchronous or sequential firing of cortical neurons
play active roles in primates (Abeles et al., 1993; Hatsopoulos et al., 1998; Riehle et al.,
1997; Steinmetz et al., 2000). In the rat somatosensory and auditory cortices,
spontaneous and stimulus-evoked activities exhibit repeating sequences of neuronal
firing (Luczak et al., 2009; 2007). In rodent hippocampus, place cells exhibit
precisely-timed, repeating firing sequences representing the rats trajectory, subsections
of which repeat during each theta cycle (Mehta et al., 2002; O’Keefe, 1976; Villette et
al., 2015). These sequences are replayed at compressed temporal scales during awake
immobile and sleep states (Buzsáki and Moser, 2013; Carr et al., 2011; Foster and
Wilson, 2006; Lee and Wilson, 2002; Pfeiffer and Foster, 2013; Skaggs and McNaughton,
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1996) presumably for memory consolidation (Girardeau et al., 2009; Jadhav et al., 2012).
Similar replay events have also been observed in the rodent prefrontal cortex (Euston et
al., 2007).

The rapid development of techniques for large-scale recording of neuronal activity
provide fertile ground for the analysis of spike sequences. Calcium imaging enables
simultaneous measurement of spike rates from hundreds to thousands of neurons
(Deneux et al., 2016; Greenberg et al., 2008; Kerr et al., 2005; Mukamel et al., 2009;
Ozden et al., 2008; Pnevmatikakis et al., 2016; Sasaki et al., 2007; Vogelstein et al.,
2010), and imaging by voltage indicators may further overcome the poor temporal
resolution in imaging (Emiliani et al., 2015; Grinvald and Petersen, 2015; Knöpfel et al.,
2015). Extracellular recording of membrane potentials with multi-electrodes has also
evolved, allowing access to spike trains from large numbers of neurons (Buzsáki, 2004;
Buzsáki et al., 2015; Einevoll et al., 2012).

Despite this progress in experimental techniques, methods for analyzing the
spatiotemporal structure of cell assemblies are still limited (Chen and Wilson, 2017).
Template matching is a standard technique for the detection of repeated activity
patterns (Abeles et al., 1993; Euston et al., 2007; Greenberg et al., 2008; Kerr et al.,
2005; Luczak et al., 2007; 2009; Mukamel et al., 2009; Sasaki et al., 2008; Tatsuno et al.,
2006; Vogelstein et al., 2010). However, the method requires reference events, such as
sensory cues and motor responses, and is easily disrupted by biological noise, such as
jitters in spike timing and variation in sequence length. On the other hand, only a few
studies have attempted the blind detection of cell-assembly sequences without relying
on reference events (Humphries, 2011; Picado-Muiño et al., 2013; Russo et al., 2017;
Shimazaki et al., 2012), and such data analysis remains a challenge.

Here, we develop a novel method to detect self-similar firing patterns within cell
assemblies by using the edit similarity score. Edit similarity is a metric originally
introduced in computer science to measure the distance between arbitrary strings, and
has been utilized for analyzing various types of sequences in network science and biology.
Edit similarity measures matching between two sequences with flexible temporal
alignment, which is an essential feature for detecting noisy spatiotemporal patterns
embedded in neural activity. We extend the edit similarity score to a form applicable to
neural activity data, and develop a clustering method for blind cell-assembly detection.
We evaluated the performance of the method with artificial data, and found that our
method is more robust against background noise than conventional clustering methods.
Furthermore, we applied our method to experimental data recorded from the rat
hippocampus (Mizuseki et al., 2009) and prefrontal cortex (Euston et al., 2007), and the
algorithm detected several multi-cell sequences linked with behavior in an unsupervised
manner. Robustness to noise and computational efficiency of our method will help the
exhaustive search of repeated spatiotemporal patterns in large-scale neural data, which
may lead to the elucidation of hidden neural codes.

RESULTS

Our goal is to develop a method for detecting similar temporal patterns repeatedly
occurring in neural population activity without relying on external sensory or
behavioral events. Each of these patterns may represent a sequence of neural ensembles
coincidently firing in irregularly repeated temporal windows of a certain length (Figure
1A). The detection of sequentially activated cell assemblies is difficult because repeated
sequences are usually not exactly the same (Figure 1B): (i) temporal structure of the
target sequence is shown; (ii) sequences may be contaminated by noisy spikes belonging
to none of the cell assemblies; (iii) sequences may not always repeat a complete set of
cells; (iv) repeated sequences of the member neurons may exhibit large jitters; (v)
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sequences can be expanded or compressed from one repetition to another; and (vi)
different sequence may share the same neurons. Furthermore, some neurons may belong
to multiple sequences. Such overlaps further complicate sequence detection.

Extended edit similarity score between cell-assembly sequences

To overcome these difficulties, we developed a novel method for robust sequence
detection based on the edit similarity score known in computer science (Levenshtein,
1966). Suppose that we evaluate similarity between two strings of genes, “ATCGTAC”
and “ATGTTAT”. We may naively count the number of coincident bases at the
corresponding positions in the two strings. In the above example, the first two bases
“AT” coincide, so the similarity is two. However, if we count the maximal number of
coincidences preserving the serial orders of bases but allowing the insertion of blanks
“-”, we may compare “ATCGT-A-C” and “AT-GTTAT-” to obtain the maximal number
of five (i.e., A, T, G, T and A coincide in this order). This explains the basic concept of
edit similarity score.

We modified the Needleman-Wunsch (N-W) algorithm (Needleman and Wunsch,
1970) for scoring edit similarity such that it is applicable to neural data (see
Experimental Procedures for details). Briefly, we segmented data with a sliding time
window of width Tw, and divided each data segment into L bins with size b (thus, L =
Tw/b). If we consider the activity pattern of the neural ensemble in each bin (i.e., the
rate vector r of coincidently firing neurons in Figure 1C) as a “letter”, we obtain a
string of letters in each data segment. Note that each neuron may fire multiple spikes in
a bin, so each component of the activity vector represents the number of spikes
generated by the corresponding neuron in the bin. The window size and bin size are
determined from the temporal features of the neural data. In this study, the typical
values of Tw ranged from 100ms to 250ms and those of b from 1 ms or 10 ms.

Our task is to find all data segments that contain similar activity vectors in the
same temporal order (Figure 1C). In the previous comparison of two gene sequences,
how to count the number of coincident letters (i.e., nucleotide bases) between the two
sequences was naturally defined. However, the same scoring scheme is not applicable to
neural activity data because neural population in vivo will hardly repeat exactly the
same patterns due to various noise sources. In this study, we extended the edit
similarity score using the inner product of activity vectors (Experimental Procedures).

Another important characteristic of our algorithm is an exponentially growing
penalty. Edit similarity score is tolerant to various types of noise such as spike timing
jitters, failure of firing, contamination of noisy spikes, and temporal variation in
sequence length. However, even if their temporal orders are identical, the score should
be reduced when two sequences involve significantly different time lags between the
corresponding successive member neurons. To systematically reduce the score in such
cases, we subtract a penalty term from the score whenever we inserted an extra blank
(time bin) into one of the two sequences to increase the match between them. If
continuous blanks are inserted, the net penalty grows exponentially as the length of
inserted blanks is increased. The score is set equal to zero if the subtraction results in a
negative value (Experimental Procedure).

Finally, the proposed method, in its original form, requires extensive computational
resources when used on neural data. The major difficulty comes from the calculation of
a similarity matrix that has a computational complexity of O(M 2), where M is the
number of data segments and grows with the data length T. We accelerated the
calculation of edit similarity drastically by employing an approximation algorithm based
on Jaccard similarity (Cohen et al., 2001). For instance, this algorithm reduced the
computation time by approximately 97% on the hippocampal data analyzed here. The
details are explained in Experimental Procedures.
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Figure 1: Detection of repetitive cell-assembly sequences. (A) A temporal pattern
in a sliding time window is schematically illustrated. Such a pattern may contain neurons
belonging to a cell assembly as well as non-member neurons. Member neurons may fire
at different rates with different temporal precision. Similarity between cell assembly
sequences will increase when they share more member neurons and when they fire in a
more similar temporal order at similar firing rates with higher temporal precision. Note
that each member neuron may appear multiple times at different temporal positions
in a time window. (B) Difficulties in detecting repetitive cell-assembly sequences are
schematically illustrated. Blue and red bars show spikes of member neurons, while gray
bars represent noisy spikes of non-member neurons: (i) temporal structure of target
sequence; (ii) contamination by spikes of non-member neurons; (iii) missing spikes of
member neurons; (iv) jitters in spike timing of member neurons; (v) arbitrary scaling of
sequence length; (vi) member overlaps between different sequences. (C) Sliding time
windows W(tk) are divided into L bins with an identical size, where tk refers to the start
time of the k-th time window. Population rate vector consists of the spike counts of
individual neurons in each bin.
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Figure 2: Performance comparison between different clustering algorithms. A
density-based clustering algorithm (OPTICS) and a community detection algorithm
(CORPA) were separately (A and B) and sequentially (C) applied to an identical dataset.
Data points (blue, green) generated by two Gaussian distributions with different centers
and an identical variance were mixed with uniformly distributed background data points
(gray). (A) OPTICS could remove background noise but failed to discriminate the two
clusters. (B) COPRA could separate these clusters but failed to remove background
noise. (C) The combined application of OPTICS and COPRA successfully separated
the two clusters and removed background noise.

Density- and community-based algorithms for sequence
clustering

To find the data segments containing similar sequential activity patterns, we introduced
a high dimensional metric space in which data segments form a cluster of neighboring
data points. We can use the edit similarity score to define a metric among data points
in this feature space (Experimental Procedures). While similar activity patterns give a
dense cluster in the feature space, data segments containing no repeated patterns are
scattered over the space as outliers. To remove these “noisy” components, we combined
two different types of clustering algorithms. The first algorithm is called “OPTICS”
and it finds dense clusters of data points (Ankerst et al., 1999). However, this algorithm
cannot discriminate two clusters if they share a non-negligible number of data points.
Such an example is shown in Figure 2A for an artificial dataset in which the algorithm
identifies a single dense cluster and removes noisy components surrounding the cluster,
but it does not separate the cluster into two parts.

The other algorithm “COPRA” performs clustering based on a community detection
scheme (Gregory, 2010). In short, the data points connected with relatively short
distances are distinguished from other data points as a community in the feature space.
The algorithm identified two separate clusters in the same dataset as used above
(Figure 2B). Each cluster, however, contained a considerable number of noisy data
points: an outlier may be invited to a community if its distance from any member of the
community is short enough. In this study, we sequentially applied OPTICS and CORPA
to take advantage of each method. The combination of the two methods worked
efficiently in most of the cases tested here (Figure 2C).

Profiling cell-assembly sequences

We devised a method to identify the core temporal structure of the cell assembly
sequences belonging to each cluster. Our method finds clusters of data segments within
a neural ensemble that contain similar activity patterns, but these patterns in general
exhibit large temporal variation. To find the core temporal cell-assembly structure for
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each cluster, called the “profile” in this study, we modified an iterative algorithm
proposed previously (Barton and Sternberg, 1987). First, we choose two initial activity
patterns from a cluster and construct a tentative profile from the sequence elements
that commonly appear in the two patterns. Then, we sample another pattern that best
matches this tentative profile of the cluster, and construct a new profile by taking the
common elements between the tentative profile and the new sample. We repeat this
updating procedure until the profile converges to a fixed pattern. For the applications
reported in this study, updating 10 to 100 times yielded sufficiently good results. See
Experimental Procedures for the details of our profiling procedure.

Comparison between different methods on artificial data

We compared the performance of our method with that of PCA- (Lopes-dos-Santos et
al., 2011; Peyrache et al., 2009) or ICA-based method (Lopes-dos-Santos et al., 2013) by
using synthetic population activity data. We embedded 5 non-overlapping cell
assemblies into background activity constructed using 100 simulated neurons firing
independently at a rate of 2 [Hz]. Each cell assembly consisted of 20 synchronously
firing neurons with ±10 milliseconds jitter and appeared 50 times at randomly
determined positions within the data length of 300 seconds. The cell assemblies
detected by our method are shown in Figure 3A. We evaluated the performance of each
method in terms of F measure, which is widely used in the field of machine learning (c.f.
(Artiles et al., 2007)∼:

Fγ =
1

γ
Purity + 1−γ

Inverse Purity

where γ is the mixing weight for Purity and Inverse Purity, Purity is a weighted average
of the fractions of true members in detected clusters, and Inverse Purity is a weighted
average of correctly classified portions of true clusters. If a classification is perfect, both
Purity and Inverse Purity take the maximal value of unity. Other details of the
evaluation method are described in Experimental Procedures.

We generated 40 different artificial data by changing background activity. We then
analyzed each data by three different methods and calculated F1/2 (the harmonic mean
of Purity and Inverse Purity) for each trial. The resultant F measure was significantly
larger in the proposal method (Mean ± Std 0.89±0.09) than in the PCA-based
(0.61±0.07) and ICA-based (0.59±0.11) methods (Figure 3B). In fact, our method
correctly detected all target cell assemblies.

We also investigated if our method is able to extract spike sequences in noisy
artificial data. Sequential firing of three cell assemblies each consisting of 20 neurons
was embedded into background activity at a rate of 1[Hz] in both forward, synchronous
and reverse orders with ±10 milliseconds jitter(Figure 3C). Each sequences appeared 20
times. In Figures 3D and 3E, different values of parameters were tested to study the
parameter dependence of our method, where criteria for timing jitters and clustering are
stricter in Figure 3D (Experimental Procedure). In Figure 3D, our method detected the
groups of cells which fire sequentially but in different orders as separate clusters (e.g.,
orange and red clusters). In contrast, the same group of cells firing in different orders
was detected as a single cluster in Figure 3E. Namely, three separate groups of cells can
fire with either an upward ramp, a downward ramp, or all simultaneously. Although
some spikes are misidentified, the algorithm correctly identified each of the three
clusters as was indicated by the colors. In summary, the investigation demonstrated the
flexibility of the proposed method that would be useful for the investigation of memory
reactivation; it can detect the forward and reverse replays separately or together
depending on the researcher’s need.
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Figure 3: Comparison between different methods. (A) An example of the embed-
ded artificial cell assemblies used for the comparison. In the raster plot, each dot is a
spike. Each color indicates a cell assembly. For clarity, massively many noisy spikes are
not shown. (B) F-score was significantly higher for the proposed method than for PCA-
and ICA-based algorithms (p < 0.0001, Welch’s t-test). The time window used was
200ms. (C) Nine artificial spike sequences embedded into noisy spike trains are shown.
Noise spikes are not shown here. The time window was 200 ms. (D) Sequences detected
by the proposed method from the artificial data shown in C are shown in two intervals
together with all noisy spikes (grey). The nine embedded sequences were successfully
detected. (E) Sequences detected from the same artificial data are shown for different
values of parameters in our algorithm.
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Place-cell firing sequences in the hippocampus

We now demonstrate that our method enables an automatic detection of firing sequences
of rat hippocampal neurons during spatial exploration (Mizuseki et al., 2009). The data
is available at the data sharing website of Collaborative Research in Computational
Neuroscience (CRCNS.org., http://dx.doi.org/10.6080/K09G5JRZ). The data contains
the activity of 108 neurons recorded from the CA1 region of the rat hippocampus
during voluntary exploration of a linear maze. The total duration of recordings is 1928
seconds. See Experimental Procedures for the choices of parameter values.

Our method extracted 60 distinct clusters of data segments, each of which appeared
repeatedly at a different location in the maze and in a specific movement direction
(Figure 4A). We separated these clusters in terms of their observed locations. Twenty
clusters appeared when the rat ran from the start to the goal (we call it the Go cluster),
20 clusters appeared during the opposite movement (called the Back cluster). There are
five overlapping clusters between the two types (#6, #10, #21, #40, #48). Another 20
clusters mainly appeared during immobilility. The relationship between each cluster and
a behavioral state indicates that our method successfully detected behaviorally relevant
cell assemblies, which likely consist of hippocampal place cells. Some clusters (e.g.,
clusters #4 and #10) were detected during both locomotion and the resting state. These
patterns presumably correspond to place-cell firing phase-locked to theta oscillation and
their ripple-associated replays, respectively (Foster and Wilson, 2006; Nádasdy et al.,
1999), and it is notable that our method automatically extracted these sequences in
spite of the different time scale. Such reactivation was also observed in (Mizuseki et al.,
2009). Figure 4B shows visualization of the feature space with t-SNE, which defines a
mapping from high-dimensional data space to a low-dimensional space for visualization
such that the spatial relationships between data points are optimally preserved (Maaten
and Hinton, 2008). Figure 4C displays 4 sample profiles of activity patterns for the
clusters detected (Experimental Procedures), where only the first 10 neurons are shown.
Three examples (#4, #16, #53) were selected from clusters observed at separate places
whereas cluster #10 was selected as it appeared at two places.

Figure 5 shows four examples of spike rasters from our extracted cell assemblies
corresponding to two clusters (cluster 4 and cluster 10) together with the position and
velocity of the animal. In each cluster, the spatiotemporal activity patterns vary from
segment to segment, but they also resemble each other. Thus, our method is robust
against changes in the temporal scale of sequences. In addition, each of the two clusters
include an example of replays (at 1479 sec in cluster 4 and at 1868 sec in cluster 10) of a
cell assembly in the immobile state of the animal. For the parameter values used here,
these sequences were grouped into the same cluster because our method allows a certain
degree of spike timing jitters. If the allowance of jitters had been narrower, they would
have formed different clusters. In Figure 6A, we plotted the receptive fields of neurons
and clusters when the rat was running forward, backward and stopping. It suggests that
a cluster detected at a given spatial location consists of neurons that have similar
receptive fields around the location. Edit similarity score for the cell-assembly sequences
is significantly suppressed for shuffled neural data in which the values in each row were
shuffled randomly (Figure 6B). The result suggests that the cell-assembly sequences and
their profiles captured the characteristics of neural population activity.
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Figure 4: Cell assemblies extracted from hippocampal CA1. The dataset was
recorded from a rat exploring a linear maze (Mizuseki et al., 2009) and is available at the
data sharing site CRCNS. (A) The spatial locations in the linear maze are shown for the
detected cell-assembly sequences. The x-axis shows time and y-axis shows the position
of the rat. Twenty Go clusters and 20 Back clusters of data segments are shown. Each
colored region shows where each segment was observed. Cluster indices are shown on
the right, which were sorted and colored according the order of appearance during the
going and returning along the maze. We sorted cluster indices according to their mean
kernel density estimate (which is shown in Figure 6A). The window size was 100ms. (B)
t-SNE visualization of the feature space. Note that most of the neighboring colors in A
are also adjacent in B, suggesting that two neuronal activities observed at contiguous
spatial positions have similar temporal patterns, but are still separate enough in the
feature space. (C) Profiles of cell-assembly sequences are shown for each cluster. The
first 10 neurons for four profiles are shown with number indicating cluster identity. Color
indicates normalized firing rate of each neuron after alignment within the cluster from
lowest (dark blue) to highest (yellow). Some neurons show zero rate values because
their spikes were dropped from the profile during the alignment. The cells (y-axis) were
sorted according to the relative temporal order (x-axis) of the peak activity of each
cell in each profile. Note that the absolute length of the x-axis in each profile does not
necessarily represent the actual temporal length of sequences, though the approximate
length coincides the width of temporal windows (100 ms in this case). The pseudocolor
code represents the firing frequency, which was normalized across neurons in the profile.
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Figure 5: Cell assemblies detected from CA1. Spike trains are shown for four
example spike sequences taken from cluster 4 (top) and cluster 10 (bottom). The top,
middle and bottom panels display the velocity and spatial position of the rat, spike
raster, and local field potentials band-passed at 4-10Hz (theta band) and 150-200Hz
(sharp-wave ripples). In the middle panel, gray vertical bars show noisy spikes and red
bars represent core spikes of the corresponding profile. Neurons are sorted according to
their firing position within the average profile for each cluster.
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Figure 6: The relationships between hippocampal cell-assembly sequences.
(A) The spatial receptive fields are shown for 36 hippocampal neurons (top) and cell
assemblies belonging to the 20 clusters (bottom). The pseudocolor code indicates the
probability of firing. (B) Edit similarity between the profiles of cell assemblies and spike
trains (original and shuffled versions) of hippocampal neural population was calculated
using a sliding time window.
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Cell assemblies in the prefrontal cortex

We further validated the method in neural ensemble activity recorded from the medial
prefrontal cortex of rats performing a memory-guided spatial sequence task (Euston et
al., 2007): see the paper for experimental details). Briefly, the rats were trained to visit
eight locations equally spaced around the perimeter of a circular arena in a prescribed
sequential order with electrical brain stimulation as a reward. Then, multi-neuron spike
trains were recorded with a chronically implanted hyperdrive consisting of 12 tetrodes.
The data contains the activity of 76 neurons and the total duration of recordings is
11,010 seconds. See Experimental Procedures for the choices of parameter values.

Our method detected 11 clusters of prefrontal cell-assembly sequences in total
(Figure 7A). The previous analysis based on template matching revealed a sequence and
its replay pattern in the same rat as we analyzed here (Euston et al., 2007). Though
some of the detected clusters are overlapped, the larger number of detected clusters
indicate that the method extracted activity patterns without any reference to events or
positions on the track. These clusters were detected in both behaving state and sleep
state, and some clusters were frequently replayed during sleep (Figure 7A). During the
behavior, cell assemblies were typically found when the rats were approaching or leaving
a reward zone (Figure 7B). The profiles of three cell assemblies are shown in Figure 7C.
Each sequence usually appeared just once in a 200 ms window during behaving state,
whereas they were repeated multiple times during sleep state (Figure 7D). Thus, the
detected sequences were time compressed during sleep. These results are consistent with
the previous findings.
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Figure 7: Cell assemblies detected from the prefrontal cortex. The width of
time windows was 250ms. (A) The onset times of detected time windows are shown for
all the clusters. (B) The spatial positions and movement directions of a rat are shown at
the onset times of detected time windows belonging to three clusters. (C) Profiles are
shown for three prefrontal cell assemblies in terms of the sorted neuron id and relative
temporal order. The approximate length of the x-axis coincides the width of temporal
windows (250 ms). (D) Cell assembly sequences detected in awake (left three panels)
and sleep (rightmost panel) are shown for the three clusters. From top to bottom, each
row corresponds to the profile 2, 8 and 9, respectively. Some sleep replay events showed
evidence of multiple replays within the 250 ms window. This is most apparent in the
first row, where the upward ramp is seen twice.
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DISCUSSION

In this study, we have developed a method for extracting multiple repeated sequences of
cell assemblies from multi-neuron activity data. Our method is based on edit similarity,
which was developed in computer science as a measure of similarity between strings.
Edit similarity compares the serial order of common elements appearing in two strings
with or without discounting variations in inter-element intervals, hence it provides a
flexible and efficient metric for comparing highly noisy spatiotemporal activity patterns
of cell assemblies. We have validated the method first in artificial data and then in
neural activity data recorded from the hippocampus and prefrontal cortex of behaving
rodents.

In the assessment with artificial data, we showed that our method is superior to
PCA- (Lopes-dos-Santos et al., 2011; Peyrache et al., 2009) and ICA-based methods
(Laubach et al., 1999; Lopes-dos-Santos et al., 2013). Dynamic programming (DP)
based methods were previously introduced to quantify the similarity between spike
trains of neurons(Victor and Purpura, 1996; Victor et al., 2007). To our knowledge, no
methods have been developed with edit similarity to detect similar sequences of cell
assemblies from noisy population neural data in unsupervised manner. Other methods
also exist and discovered the activation of specific neuron ensembles (Chen and Wilson,
2017; Lee and Wilson, 2002; Ohki et al., 2005). The previous methods, however, are
generally not effective when data has a low signal-to-noise ratio, for instance, when most
of the recorded neurons do not participate in sequences. In addition, the previous
methods have difficulties in distinguishing partially overlapping cell-assemblies.

In particular, our method enables blind detection of cell-assembly sequences without
referring to external events such as sensory stimuli and behavioral responses. Recently,
a statistical approach was proposed for the detection of cell assembly structure with
multiple time scales (Russo et al., 2017). Starting from pairwise correlations in neuron
pairs, the method finds significantly correlated neurons within the set of cell assemblies
detected at the previous step. Acceleration of the analysis was achieved by discarding
statistically less significant combinations at the next step. However, in the successive
statistical tests, the detection of long sequences becomes rare and time consuming. In
contrast, our method is computationally more efficient when searching longer
cell-assembly sequences. It may also be inappropriate to discard long sequences just
because they are statistically less significant. For instance, place-cell sequences spanning
several seconds of behavior emerge in the hippocampus during spontaneous activity
after spatial experience (Dragoi and Tonegawa, 2013; Grosmark and Buzsáki, 2016). We
propose that behaviorally relevant cell-assembly sequences should be addressed after all
possible candidates have been identified. Our method enables such an analysis of
cell-assembly sequences.

It is noted that both of the examples provided here rely on highly stereotyped,
repeated behaviors, which presumably entrain similar repeated patterns in the neural
activity. Whether the present algorithm can be used to detect spontaneous (as opposed
to stimulus- or activity-driven) patterns, such as those reported by (Luczak et al., 2007;
2009) remains to be tested. Other intriguing extensions of this method include the
detection of hierarchically organized cell assemblies over multiple spatio-temporal scales.
Such an extension requires a flexible on-line tuning of time windows, which is a
challenge at the moment. One area where time-scaling would be particularly relevant is
in the detection of replay events during sleep, which often occurs at a compressed
timescale. Our method might detect considerably more reactivation events were we to
adjust the temporal scaling between behavior and sleep epochs. We also note that in
principle our method is applicable to optical imaging data if we can find adequate sizes
of the time window and temporal discount factor.

In sum, we proposed a novel method for the blind detection of cell-assembly
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sequences based on the edit similarity score and an exponential discount for timing
jitters. This method does not rely on the external references, hence is useful for
detecting not only externally-driven firing sequences, but also internally-driven
sequences emergent from arbitrary mental procedures. Whether the method reveals the
involvement of cell-assembly sequences in mental processes is an interesting open
question.
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EXPERIMENTAL PROCEDURES

We explain three major steps of the proposed method, i.e., edit similarity score with an
exponentially growing gap penalty, clustering algorithms and profile generation
algorithm. The implementation of the algorithm by Python 3.6, Julia 0.5 and Bash shell
script with which we carried out our analysis is available at Github (link should be
added in here). We used the original implementation of the COPRA (Gregory, 2010)
publicized by the author. A minor modified version of (Zhang et al., 2013) was used for
the OPTICS. We have also used gnu parallel (O. Tange, 2011) for data processing.

N-W algorithm for edit similarity

We explain the fundamentals of edit similarity score without gap penalty since this
metric is not popularly used in neuroscience. Edit similarity score or edit distance
quantifies the similarity between two strings with the minimum number of operations
required to transform one string into the other. We can define arbitrary scoring schemes
for each manipulation on strings, that is, insertion of a gap, deletion of a character, and
comparison of two characters for coincidence. Needleman and Wunsch (Needleman and
Wunsch, 1970) proposed one of the most widely used evaluation algorithms of this
metric (N-W algorithm).

The original N-W algorithm uses DP, which essentially partitions given problem into
subsequent small subproblems and composes a solution of the original problem from
those of the subproblems. As an example, we evaluate the score between two
strings, W (1) = ATCGTAC and W (2) = ATGTTAT. As shown in Figure 7, we prepare
a grid (DP table) and arrange the two strings along the abscissa and ordinate of the DP
table. We add a null character “#” to the heads of the two strings and fill the leftmost
column and the bottom row with zeros to initialize the following iterative operation.

We assign an appropriate score to each operation (insertion, deletion and
coincidence). For the sake of simplicity, in this example without gap penalty we assign
+ 1 to a coincidence, 0 to an insertion and a deletion. Let εij be the number of partial
coincidences obtained up to the i -th element of W (1) and the j -th element of W (2).
Then, we determine the value εij of the cell (I,j ) of DP table by the following recursive
equation:

εij = max


εi−1
j

εij−1

εi−1
j−1 + δ(W (1)[j],W (2)[i])

where δ(i, j) is the Kronecker’s delta: δ (i, j) = 1 if i = j and 0 if i 6= j. We can fill
the grid from the lower left cell to the top right cell with the scores calculated by the
above equation (Figure 7). We note that δ(x, #)=0 for any character x including a null
character itself. Then, we obtain the similarity score of two strings W (1) and W (2),
which is five in this case, at the top right cell ε88. Note that the operation εij = εi−1

j

corresponds to a deletion of W (2)[i], or equivalently, a gap insertion after W (1)[j].
Likewise, εij = εij−1 corresponds to a deletion of W (1)[j] or a gap insertion after W (2)[i],

and εij = εi−1
j−1 + 1 corresponds to taking a coincidence.

The DP table enables us to obtain the substring that gives the maximum number of
coincidence. We can determine this substring (ATGTA in the example) by tracing
arrows from the top right cell back to the bottom left cell and aligning the characters
that appear after every diagonally upward move. This procedure is illustrated with gray
arrows in Figure 7, and the resultant alignments of W (1) and W (2) are shown at the
bottom.
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Extended N-W algorithm for neural activity

To make the N-W algorithm applicable to spike data, we make three extensions: scoring
with the inner product, exponential gap penalty, and the local alignment of starting
points. First, the degree of similarity between activity vectors is measured by the inner
product of the vectors instead of delta function δ(W (1)[j],W (2)[i]) in the N-W
algorithm because exact matching between two patterns is very rare in neural data. As
explained in the main text, we introduced a sliding time window to get data segments of
fixed length L. Let a matrix W (tk) be spiking activities of N neurons in the segment
starting at time tk, and ri(tk) be the column vector in the i -th bin of W (tk) (see Figure
1B):

W (tk) = (r1 (tk) , r2 (tk) , . . . rL (tk)) ,
W (tk′ ) = (r1 (tk′ ) , r2 (tk′ ) , . . . rL (tk′ )) .

we regard w(tk) and ri(tk) as a string and a character in n-w algorithm, respectively,
and we evaluate similarity between activity patterns observed in two data segments at
tk and tk’ by the inner product ri (tk) · rj (tk′ ).

Second, we developed a scoring scheme with exponential gap penalty, which
penalizes edit similarity score with an exponential discount factor when the
corresponding elements appear after different time lags in two sequences, similar in
spirit to the well-known linear gap penalty scheme (Gotoh, 1982). Below, two symbols
υij and ρij refer to the optimal numbers of vertical gap insertion and horizontal gap
insertion required for partial comparison up to the i -th element of W (tk) and the j -th
element of W (tk‘ ), respectively. By inserting an additional gap we may earn another
coincidence at the cost of an additional discount factor in the similarity. Whether one
should stop or continue the insertion of a gap is determined by the comparison of the
cost and benefit of the two operations. To optimize the cost-benefit balance, we should
insert a maximal number of gaps that does not cost more than the benefit. After setting
the initial conditions υ1:L+1

1 = υ1
1:L+1 = ρ1:L+1

1 = ρ1
1:L+1 = 0 at the bottom row and the

leftmost column of the table, we calculate the values of υij and ρij by the following
recursive formula

υij =

{
1 εi−1

j − exp (α) ≥ εi−1−υi−1
j

j − exp
(
αυi−1

j

)
υi−1
j + 1 otherwise

ρij =

{
1 εij−1 − exp (α) ≥ εi

j−1−ρij−1
− exp

(
αρij−1

)
ρij−1 + 1 otherwise

where α is the weight for gap penalty. The conditions

εi−1
j − exp (α) ≥ εi−1−υi−1

j

j − exp
(
αυi−1

j

)
and

εij−1 − exp(α) ≥ εij−1−ρij−1
− exp(αρij−1)

are satisfied if the cost exceeds the benefit, and then we stop insertion of a gap. The
values of υij and ρij are calculated before εij in each cell.

Third, We solved the local alignment problem by applying the algorithm proposed
by (Smith and Waterman, 1981). In the case of strings (Figure 7), the heads of strings,
from which we should start the comparison, are obvious. However, the heads of cell
assembly sequences are not given a priori in neural data. In our scheme, when no
significant coincidences are found up to cell (i,j ) and the score in that cell is below 0,
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we restart recursive evaluation by setting εij to 0. In other words, we can jump from the
bottom left cell to an arbitrary cell. This scheme results in the automatic search of the
optimal starting points of the comparison.

In sum, recursive equation in N-W algorithm is changed into the following rule:

εij = max


0

ε
i−υi−1

j

j − exp(aυi−1
j )

εi
j−ρij−1

− exp(aρij−1)

εi−1
j−1 + ri(tk) · rj(tk′)

which is evaluated along with υij and ρij . Initial conditions are given as

ε11, ε
1
2, · · · ε1L = 0, ε11, ε

2
1, · · · εL1 = 0,

and εL+1
L+1 gives the maximum coincidence between the activity sequences, that is, the

edit similarity score, as in the standard N-W algorithm. Below, we express
ε11, ε

1
2, · · · ε1L = 0 by the notation ε11:L=0.

In addition to the starting points, the end points are not given a priori, but should
be determined such that the two subsequences optimally coincide with each other. We
can solve this problem by backtracking of max ε. The procedural dependency among
the cells is stored in variables βij : from the top to the bottom of the rules shown above,

we assign “start”, “upward” (↑) , “rightward” (→) , and “diagonal up” (↗) to βij ,
respectively. As previously mentioned, we can obtain optimal coincident substrings by
back-tracking allows in the β table from the top right cell to the left bottom cell.

Metric space for the clustering analysis

The algorithm described above gives a similarity matrix consists of edit similarity scores
E (k,k’ ) between pairs of data segments W (tk) and W (tk’). We calculate a distance
matrix as D(k,k’ ) = max(E (k,k’ ))-E (k,k’ ), where the maximum is taken over all
possible pairs of segments. The distance matrix defines a distance metric in a
high-dimensional feature space in which data segments containing similar activity
patterns are distributed at neighboring locations. As demonstrated in Figure 2, we can
extract similar cell-assembly sequences through the clustering of data points in this
feature space.

Dimensionality reduction by t-SNE

t-Distributed Stochastic Neighbor Embedding (t-SNE) is an algorithm that maps
high-dimensional data into a low dimensional space, typically two or three-dimensional
space while maintaining the original data structure in the high-dimensional manifold. It
accomplishes the mapping by reducing the Kullback-Leibler divergence between pij and
qij, KL(P | |Q) =

∑
i 6=j pijlog(

pij
qij

), where pij is the conditional probability distribution

between two data points labeled by i and j in the original manifold and qij is the
conditional probability distribution of the corresponding data points in the embedded
manifold. This algorithm uses a normal distribution for pij and a Cauchy distribution
for qij to faithfully preserve the data distribution in the original space.

Tricks for reduction of the computational cost

Evaluation of the similarity matrix is generally quite heavy; the complexity is O(M2)
where M is the total number of data segments. To avoid the heavy computation, we
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reduced the number of the matrix elements to be evaluated by an algorithm proposed
by (Cohen et al., 2001). In this procedure, we reduce the calculation of edit similarity
for pairs of data segments that do not share active neurons. Let w be a Boolean matrix
in which the element (i,k) is 1 if neuron i fires at least once in the segment W (tk) or
otherwise 0:

wi (tk) =

{
1
∑L
j=0(W i

j (tk)) ≥ 1

0 otherwise

Our goal is finding pairs of data segments yielding similar column vectors w(tk) and
w(tk’) with low computational cost. We measure the similarity between w(tk) and
w(tk’) by Jaccard similarity defined as

Jaccard (w (tk) ,w (tk′ )) =
|w (tk) ∩w (tk′ )|
|w (tk) ∪w (tk′ )|

, (k, k
′

= 1, · · · , Nw)

where |x∩y| denotes inner product of given two vectors, |x∪y| counts number of
non-zero element of the sum of them. The value of Jaccard similarity is between 0 and
1, and is close to unity if the column vectors at time tk and tk’ are similar.

Because calculation of Jaccard similarity for every possible pair of vectors is also
O(M2), we wish to find out pairs that are likely to give highly similar w(tk) without
direct calculation. For this purpose, we can make use of the statistical properties of
Jaccard similarity. Now a trick is to use hash function h̃(x) which randomly assign an
integer to the given integer/vector x. Throughout this study, we used a built-in hash
function of programming language Julia. We define function

h(x) = min h̃
(
x
′
i

)
, x

′

i ∈ x, x
′
i 6= 0 that returns the minimum hashed number

made by non-zero elements of x. The value is called the minimum hash (min-hash)
value. Importantly, we can prove the following relationship (Cohen et al., 2001):

Prob [h(w (tk)) = h (w (tk′))] =
|w(tk)∩w(t

k
′ )|

|w(tk)∪w(t
k
′ )|= Jaccard (w (tk) ,w (tk′ ))

With this relationship, we can obtain Jaccard similarity without pair-wise
comparisons of column vectors:

Jaccard(w̃(tk), w̃(tk′)) ≈
|{q|1≤q≤n and S̃q

k=S̃q

k′}
n

where S̃ is called a signature matrix that contains the min-hash values in different
hash functions, i.e., S̃qk = hq(w̃(tk)), and hq is the q-th hash function and n is the
number of hash functions. In this matrix, elements in a column are min-hash values of a
data segment generated with different hash functions, and elements in a row are
min-hash values of all data segments generated with a hash function.

To further reduce computation, we used the banding technique in the evaluation of
Jaccard similarity (Cohen et al., 2001). We divided S̃ into b bands of l rows each, thus
n=bl. Suppose that two vectors w̃(tk) and w̃(tk′) have Jaccard similarity s, then the
probability that the min-hash signatures of two columns coincide at least in one row of
the matrix is s. Then, the probability that the signatures of two columns are identical
in all rows of at least one band is p(s) = 1− (1− sl)b, which is an S -shaped function of
s and hence can be used for determining a threshold value of the similarity. We hash all
the bands, and search bands in which two columns have the same hash value. The only
pairs of data segments that have the same hash value in more than one band are used
for similarity matrix calculation. For instance, p(0) =0.000, p(0.3) =0.007,
p(0.5)=0.091, p(0.7) =0. 424, p(0.8) =0.696, p(0.9) =0.931, and p(1.0) =1.000 when b
= 5 and l = 2. In the present analysis, the values of b and l were dynamically adjusted
by data itself. We explain the method for the adjustment in the next section.
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A policy for division of signature matrix

To apply the above algorithm to neural data, we employed a heuristic method to
determine two parameters for Jaccard similarity (b and l) from neural data. We
calculated the average firing rates of individual neurons over the entire length of data,
and we determined b and l assuming independent Poisson spiking neurons having the
same firing rates. The parameter for a smaller threshold (Jaccard1) gives the similarity
expected under the assumption of independent Poisson spiking, whereas a parameter for
a larger threshold (Jaccard2) represents the similarity expected when the two data
segments contain sequences with a certain length. Let #i be the total number of spikes
of neuron i during the interval [0, T ]. From #i, we can calculate the probability that

neuron i has at least one spike in the segment W (tk) as p1i = 1− (1− (#i/T ) ∆)
(L/∆)

,

where ∆ is the size of a bin. Then, the index N1 =
∑N
i=1 p1i is the expected number of

active neurons within the time window. Then, the expected number of coincidently
active neurons in an arbitrary pair of data segments is N2 =

∑N
i=1 (p1i)

2, and Jaccard1

is calculated as N 2/(2N 1-N 2). Now, suppose that two data segments contain additional
N 3 coincidently active neurons. In this case, the expected Jaccard similarity, or
Jaccard2, is given as (N 2+N 3)/(2N 1-N 2+N 3). In this study, we searched such values
of b and l that keep the probability 1− (1− sr)b sufficiently high compared with
Jaccard1 and sufficiently low compared with Jaccard2.

The proposed method is different from the standard approach based on statistical
analysis and remains somewhat heuristic. However, the aim of this method is to reduce
the load of heavy computation for large neural data without losing candidate sequences,
as we consider that the behavioral importance of detected sequences should be analyzed
based on their relationships to behavioral data.

Construction of profiles for clustered sequences

Here, we explain our iterative multiple alignment algorithm for constructing profiles of
clusters. It is based on the algorithm by (Barton and Sternberg, 1987). In the original
algorithm, we initialize the algorithm with a tentative profile, which is obtained by
taking the longest common subsequence between the two data segments in a cluster
that show the highest match in edit similarity. After the initialization, we search a next
data segment that gives the most similar profile to the tentative one, and update the
tentative profile using edit similarity. We repeat this procedure until the tentative
profile converges.

In our method, we made two major modifications to the original algorithm. First,
we chose two arbitrary data segments in the initiation step to reduce the computational
cost. The final results did not significantly differ between our approach and the original
one. Second, in generating a profile, we used the z-score of spike count in each data
segment. Namely, for each neuron we calculated the average and variance of spike count
per bin over the data segment, and then subtracted the average from spike count in each
bin and normalized the difference by the variance. The use of z-score suppresses the
influences of highly active neurons on the detection of ensemble firing sequences. Finally,
in each step, a Gaussian filter with mean 0 and variance σ was applied to the tentative
profile. Variance σ was initially as large as the window size and gradually reduced to
the bin size as iterations proceeded. This filtering prevented a profile from containing
more than two similar sequences, thus enabled a robust detection of minimal sequences.

F-score for artificial data analysis

Purity and Inverse Purity are defined as

Purity =
∑m
i=1

|Ci|
T Precision,
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Inverse Purity =
∑n
i=1

|Li|
T Precision,

where m is the number of detected clusters C = {C1, C2, . . . , Cm}, n (=11) is the
number of true clusters and a noise cluster in the artificial data
L = {L1, L2, . . . , Ln}, and T is the total number of data points (i.e., segments of
spiking data). The noise cluster consists of spurious cell assemblies. Precision(C i, Lj) is
defined as (C i∩Lj)/C i , which represents the fraction of members of the j -th true
cluster in the i -th detected cluster. In the above expressions, weights are determined
such that a larger cluster contributes more strongly to the weighted sums. We note that
Purity and Inverse Purity take their values within the interval [0, 1]. F-score is defined
as the harmonic mean of Purity and Inverse Purity to penalize two trivial solutions. In
one such solution, each data point constitutes an independent cluster (i.e., m = T ). In
the other solution, all data points are classified into a large cluster. In these trivial
cases, Purity, but not Inverse Purity, takes the maximum value of unity.

In the evaluation of our method with simulated data, we searched the optimal
clustering that maximizes the F-score by gradually changing threshold for the
agglomeration/division of data points. We optimally separated the target cell assemblies
from spurious cell assemblies. In evaluating the PCA- and ICA-based methods, we
calculated overlaps between the population activity vector and the principal (or
independent) components in all data segments. Then, we searched for a segment that
showed the highest value of the overlaps, and the component yielding the highest value
was associated with the cell assembly that was activated in the segment. The detected
data segments were removed from the next search. The above search procedure was
repeated until all cell assemblies were associated with some components without
overlapping. The remaining components had no partner cell assemblies and were
regarded as noise cluster. Thus, we obtained n = 11 clusters including a noise cluster of
spurious cell assemblies.

Parameter choices

Here we list the values of parameters in our algorithm. For the artificial data, we have
tested multiple parameter searched different parameter settings to find the values that
record the maximum performance. Each parameter tested within the following range;
the power of exponential growing gap penalty α=1.0; the number of points for a
minimal cluster in OPTICS MinPts 2 to 20 (Ankerst et al., 1999); parameter for
COPRA v 2 to 20(Gregory, 2010).

For the hippocampal data, the following parameter values were used: the power of
exponentially growing gap penalty a = 0.1; the length of sliding time window Tw= 100
(ms), which is the typical period of one cycle of theta oscillation; criteria for fast
computation minlen = 10; the number of points for a minimal cluster in OPTICS
MinPts = 20; parameter for COPRA v = 4.

The prefrontal data were analyzed with various widths of time windows ranging
from 250 ms to 2.5 sec because the characteristic time scale of sequences were not
known. All the results shown here are obtained for the width of 250 ms, which yielded
reasonable sequences. The temporal discount factor was set as a = 0.03. The number of
points for a minimal cluster in OPTICS MinPts = 400; parameter for COPRA v = 30.
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