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Abstract

Accurate kinship predictions using DNA forensic samples is limited to first degree relatives. High throughput sequencing
of single nucleotide polymorphisms and short tandem repeats (STRs) can be used to expand DNA forensics kinship
prediction capabilities. Current kinship identification models incorporate STR size profiles to statistical models that
do not adequately depict genetic inheritance beyond the first degree, or machine learning algorithms that are prone
to over optimization and requiring similar training data. This work presents an alternative approach using a com-
putational framework that incorporates the inheritance of single nucleotide polymorphisms (SNPs) between specific
relationships(patent pending)[I]. The impact of SNP panel size on predictions is visualized in terms of the distribution
of allelic differences between individuals. The confidence of predictions is made by calculating log likelihood ratios. With
a panel of 39108 SNPs evaluated on an in silico dataset, this method can resolve parents from siblings and distinguish

1st, 2nd, 3rd, and 4th degree relatives from each other and unrelated individuals.
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1. Introduction

High throughput sequencing (HTS) is revolutionizing
capabilities in the fields of forensics, biology, and medicine.
DNA forensics is evolving from sizing short tandem repeats
(STRs) to sequencing STRs and single nucleotide polymor-
phisms (SNPs)[2, B]. Currently, DNA forensics uses STRs
sized by capillary electrophoresis to perform both individ-
ual identification and familial searching. Familial search-
ing is employed when the database being searched does
not contain an exact match to a query STR profile. The
use of identity by state(IBS), and/or likelihood ratio based
searches enable query STR profiles to match potentially re-
lated individuals[4]. In familial searching, likelihood ratio
searches are often referred to as a kinship index(KI). Lin-
eage testing is then performed using mitochondrial DNA
or Y chromosome STRs to confirm paternal relationships.
Familial searches are limited to first degree relatives due
to the small number of STRs used (20 loci for US Com-
bined DNA Index System - CODIS)[4], and the high prob-
ability of false positive matches when familial searching is
expanded beyond first degree relations|[5].

Ancestry prediction companies[6, [7| 8] use DNA SNP
microarrays and the aforementioned methods to predict
close and distant relatives. These DNA SNP microarrays
require a lot more DNA than is typically available for
forensic samples. Illumina SNP microarrays require 200
ng of input DNA[9] while as little as 1 ng of input DNA is
recommended using Ion S5 HTS technology[10]. Small in-
put DNA requirements enable the use of HTS technology
when only trace DNA quantities exist at a crime scene.

Machine learning and forensic HTS SNP panels have
been used to predict familial relationships across a set of
three families[IT]. This work trained a support vector ma-
chine based on features including the KING coefficient,
IBS, and IBD[I2]. This model was able to accurately pre-
dict all first degree and three quarters of second degree
relationships. While machine learning models have the
potential for accurate performance, they are highly de-
pendent on the consistency of the training data, and are
prone to over-optimization.

Enhanced kinship prediction capabilities can be ob-
tained by incorporating genetic inheritance into a statisti-
cal framework applied to HTS data. This paper formalizes
the expected relationship between any two individuals us-
ing the aforementioned approach with applications to HTS
forensic SNP panels. The Genetic Chain Rule for Proba-
bilistic Kinship Estimation provides a mathematical model
that can predict likely relationship between two individ-
uals. This model does not require training data, thereby
increasing generalizability. Furthermore, this work reflects
the biological underpinnings of inheritance allowing for im-
proved kinship predictions.
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2. Methods

2.1. Input Data

All results were tested on an in silico dataset that sim-
ulated millions of individuals from African American, Es-
tonian, Korean, and Palestinian ethnic groups[I3]. Mi-
nor allele frequencies for 39,108 SNPs well characterized
across all four groups were taken from the Allele Frequency
Database (ALFRED) [14]. The data were simulated across
9 generations with inter and within group marriage rates
set to reflect public census data. The last four generations
of data were used to simulate individuals with relation-
ships spanning first through fifth degree and strangers.

2.2. Data Representation

All data are represented as a series of SNPs, with each
locus having a minor allele, coupled with a minor allele
frequency (mAF). The probability of the major allele oc-
curring across a population is represented as p, while the
probability of the minor allele occurring across a popula-
tion is represented as q. As the SNPs analyzed have one
major, and one minor allele, p, and g are set such that:

ptg=1 (1)

This follows Hardy-Weinberg equilibrium and leads to
the number of people with a homozygous major genotype
to occur with a frequency of p?, the number of individuals
with a heterozygous genotype to occur with a frequency
of 2pq, and the number of homozygous recessive genotypes
to occur with a frequency of ¢2. By satisfying Eq. [1] it is
ensured that:

PP 42pq+q* =1 (2)

Using this information, the conditional probability of
any genotype occurring, given another individual of a
known relationship having a certain genotype is derived.

2.8. Parent Child Relationships

2.3.1. Child Given Known Parent

The first relationship calculated is the probability of a
child having a particular genotype G, given that their
parent has a genotype Gp1. Given that one parent’s geno-
type is known, the possible alleles that they could pass on
to their child is also known. The probability of inheriting
each allele from G, for the child is % The probability for
a G, allele not in G, is zero. The genotype of the sec-
ond parent is represented as G,2. While the alleles for the
second parent are not known, Pr(G.allele=A) = py and
Pr(Geallele=a) = ¢ for the child for alleles inherited from
Gp2. Where A is a major allele, and a is a minor allele.

Pr(Ge|Gp)
+ Pr(Geallelel|Gpa) *

= Pr(G.allelel|Gp1) * Pr(G.allele2|Gz)
Pr(G.allele2|Gp1)  (3)

2.8.2. Parent Given Known Child

Leveraging the information presented in Table it
is possible to calculate the probability of a parent having a
particular genotype G, given that the child has a known
genotype G.. This is formulated through an application
of Bayes’ rule.

Pr(Ge|Gp) x Pr(Gp)

Prieden) = sprae, = core,=cy Y
G;

In the above and subsequent equations, G;, is used to
represent all possible allele combinations. As a result, G;
can be expressed as:

G; € (AA, Aa, aa) (5)

2.4. Sibling Relationships

It is possible to use this information to further compute
the probability that a child will have a genotype G.; given
that a sibling of theirs has an observed genotype G.o. In
order to properly compute the probability of genotype G¢q
occurring, it is essential to factor in genotypes of the two
parents Gp1, and Gpz. Using this information, the desired
sibling-sibling conditional probability is computed as the
probability of Child 1 having a genotype G, given the pos-
sible genotypes that their parents could have, multiplied
by the probability of the two parents having genotypes G
and Gpa given the known genotype of Child 2.

cl|Gc2 Z ZPT cllel - Gzh Gp2 - Gz2)
Gi1 Giz2
* Pr(Gpa = Gi1,Gp2 = Gio|Ge2)  (6)

Given an assumption that the two parents are not close
relatives, it is possible to further rewrite Eq. 6 as:

51|G02 Z ZPT cllel - Gllv Gp2 - Gz2)
Gi1 Giz2
* Pr(Gp1 = Gi1|Gp2 = Giz, Ge2)
* Pr(Gpa = Gi2|lGe2) (7)

As shown in Eq. 7, it becomes possible to compute the
probability of a child having a particular genotype given
that their sibling has a known genotype. This is done
by computing the product of the probability of a child
having genotype G, normalized across the genotypes for
both parents Gj1, and Gpe, and the probability of each
parent having a genotype given the knowledge of the sec-
ond childs genotype. This equation is the product of three
terms, where the first term represents the probability of
a child having a genotype given specified genotypes for
their parents, the second term represents the probability
of the first parent having a specified genotype given the
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Pr(Indg = Child|Ind, = Parent,) Pr(Indg = Parent|Ind, = Child)
Ind, | Indg
Parent; : p1, g1 Parents : ps, g2 Parent; : p1, g1 Parents : ps, g2
* 2
A | Aa v e,
AA aa 0 0
q2*p;
Aa | AA 0.5ps Prastaips
_ (0.5p2+0.5¢2)*2p1g1 __ __ pagq
Aa Aa 0.5p2 +0.5g2 = 0.5 1201¢I2+q21p2 = p1Q21+;1p2
p2xq}
Aa aa 0.5¢2 Pigztaipz
aa AA 0 0
0.5q2%2p1q1
w | A pe Ut _p,
* 2
aa aa q2 ZT*Z; =q
Pr(Indy = childy|Indy, = childs) Pr(Indg = Grandchild|Ind, = Grandparent;)
Ind, | Indg Parent; : py.q1, Parents : ps.q Parent : p1, g1, Parents : ps, qo,
LA 222 Grandparent; : ps, q3, Grandparents : P4, G4
AA | AA || pip2+ 0.5p1g2 + 0.5¢1p2 + 0.25¢1g2 p2pa + 0.5p2qs
AA Aa 0.5(p1g2 + 1p2 + q1G2) q2p4 + 0.5q4
AA aa 0.25¢1 g2 0.5¢2q4
Aa AA 0.5(p1p2 + %) 0.5p2ps + 0.25p4
2 2 2 2
Aa Aa 0.5(p1p2 + 1q2) + plq?;?qgf;f;qupz 0.5p2q4 + 0.25 4+ 0.5g2p4
Aa aa 0.5(q1q2 + %) 0.25¢> + 0.5¢2q4
aa AA 0.25p1po 0.5p2pa
aa Aa 0.5(p1g2 + q1p2 + p1p2) 0.5p4 + p2q4
aa aa q192 + 0.5p1g2 + 0.5¢1p2 + 0.25p1 p2 0.5p2q4 + q2q4

Table 1: Probability of the event (a) an individual with a given genotype (Indq), conditioned (8) on another individual (Indg) having a
given genotype. The genotype letter (A) represents the major allele with population frequency p; for individual i, while genotype letter (a)
represents the minor allele with population frequency g¢;; this allows individuals to have different ethnicities.

child’s sibling and their other parent’s genotype, and the
third term represents the probability of the second parent
having a particular genotype given the child’s sibling.

2.5. Bayesian Chain Rule of Kinship

The above framework can be generalized to compute the
probability of a particular genotype given any relationship
between two people. This formulation is defined as the
Bayesian Chain Rule of Kinship. The Bayesian Chain Rule
of Kinship expresses any relationship between individuals
as the product of a series of relationships. For instance,
if one wished to compute the cousin relationship between

M3, and Fs3 as shown in Fig. |1} one would represent this
as the relationship between child and parent, parent and
sibling, and the parent’s sibling and their child. As can be
noted, all components of the chain rule take the form of
child given parent to move up the tree, sibling given sibling
to move across the tree, and parent given child to move
down the tree. These operations allow for complete nav-
igation between any two individuals. Expressed another
way:

Pr(Pa|Pp) = Pr(Pa|z)Pr(X,|Pp) [ [ Pr(z —1]z) (8)

=2
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Figure 1: Reference Family Tree
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This takes the product of all people between two in-
dividuals, and uses the Bayesian Chain Rule of Kinship
to compute a probability of a genotype given a particular
relationship.

2.6. Eztended Relationships

Extended relationships can be computed using the pre-
viously defined Bayesian Chain Rule of Kinship.

Figure [1] shows a family tree where each individual is
identified as male (M) or female (F), and with two indices
identifying their generation, along with a unique identifier
for that individual within the generation. For instance,
F53 represents the third unique woman appearing in the
second generation.

2.6.1. Grandchild Given Grandparent

The probability of a child (Ms1) having a given genotype
G., given their grandparent (Mi;) has a known genotype
G4 can be computed using the Markov and chain rule as-
sumptions to model the child (Ms;) as dependent on their
parent (Fb), and the parent (F1) to be dependent on the
grandparent (Mjiq).

Pr(Ge|Gy) = Y _Pr(G.|G, = G;) = Pr(G, = Gi|G,)
G;
(9)

Since child(Ms1) can only inherit DNA from
parent(F»1), and parent(Fh;) can only inherit DNA
from grandparent(Mi1), the probability equation de-
composes into the child being directly dependent on
their parent, and the parent being directly dependent
on the grandparent. It is unnecessary to condition the
child’s genotype on the grandparent’s genotype, as that
is already factored into the parent’s genotype. Given
that the parent has an unknown genotype, G; is used to
marginalize over all possible genotypes for that parent.

2.6.2. Child Given Aunt/Uncle

The same principles apply to identify the likelihood that
a child will have a genotype given that their aunt/uncle
have a known genotype G,,. In this case, the probability
of the child’s genotype is decomposed into the relationship
between child and parent, and parent and sibling.

P’I”(GC|Gau) = Z ZPT(Gcl‘Gpl = Gil, sz = ng)*
Gi1 Gia

P’I"(Gpl = Gi1|G62) * PT(GPQ = Gi2|G62) (10)

2.7. Log Likelihood Calculation

The above formulations can be further used to calculate
the log likelihood of two individuals having a particular
relationship given the observed data. The log likelihood is
defined as the probability of data (D) given a hypothesis
(H).

L =log(Pr(D|H)) (11)

In the case of familial identification, this is computed by
taking the product of all conditional probabilities across
SNPs. This allows for the computation of the likelihood
of any relationship given the observed genotypes of two
individuals.

2.8. Current Limitations

The current calculations rely on the independence of
inheritance of all alleles. This simplifies the calculation;
however, it does not account for haploblocks, or sex chro-
mosomes. As a result, it is not possible to distinguish
between different relationships that are two or more gen-
erations apart, or the direction of the relationship (e.g.
Parent given child, versus child given parent). However,
this framework is generalizable, and fully capable of incor-
porating haploblocks and sex chromosome SNPs.

3. Results

The previously defined mathematical relationships were
validated using the the silico database of four ethnicities
and the lower four of the nine generations[13]. The data
was further subdivided into four different ethnic groups
which have separate mAF values across the 39,108 sampled
SNPs.

3.1. Data Relationship Separability

The relationship separability was examined as a function
of the number of differences across SNPs. A difference
was defined as the number of discordant alleles at each
locus with a value between zero and two. The number
of discrepancies was summed across all SNPs for a single
pairwise relationship. This was then done for one thousand
examples of each relationship. A kernel density estimate
was fitted to this distribution and then shown in the figures
below.

The number of differences across degree were plotted
while varying the number of SNPs used in the comparison.
Fig [2| plots differences across distributions using the full
panel of 39k SNP loci. The level of separation is then
plotted for half this panel, utilizing 20k SNPs as shown in
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Figure 2: Differences separated by degree of relationship for 39k SNP
Panel
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Figure 3: Differences separated by degree of relationship for 20k SNP
Panel

Fig. and finally the number of differences is examined
with the panel reduced to only 2k SNPs, as shown in Fig.
@

3.2. Log Likelthood Prediction

After examining differences between individuals, the log
likelihood was then used to predict the degree of rela-
tion across pairs of individuals. At each pair, the algo-
rithm identifies if it is a parent-child relationship, a sibling-
sibling relationship, 2"? to 5" degree relationship, or two
unrelated individuals. The performance for this assess-
ment is shown in the Table 2

4. Discussion

In this study, in silico data were used to identify the
degree of relatedness between individuals spanning four
generations. Figure [2| demonstrated a clear separability
between parent-child relationships and siblings, as well as
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Figure 4: Differences separated by degree of relationship for 2k SNP
Panel

Table 2: Confusion matrix for degree prediction

Parent-Child | Sibling | Degree 2 | Degree 3 | Degree 4 | Degree 5 | Unrelated
Parent-Child 2000 0 0 0 0 0 0
Sibling 0 1000 0 0 0 0 0
Degree 2 0 0 4000 0 0 0 0
Degree 3 0 0 0 4997 3 0 0
Degree 4 0 0 0 1 949 50 0
Degree 5 0 0 0 0 53 903 44
Stranger 0 0 0 0 0 46 954

between individuals with second, third, and unrelated lev-
els of relationship. This was reflected by the use of log
likelihood values to fully and correctly identify the differ-
ence between individuals of these different degrees. As the
degree increases, the curves become closer together. The
upper tail of the 4th degree relatives is near the lower tail
of unrelated individuals. For the 39k SNP panel, the dis-
tribution for 5th degree relatives overlap the distributions
for 4th degree relatives and unrelated individuals. Larger
SNP panels are required to separate 5th degree relatives
from 4th degree relatives and unrelated individuals. The
confusion matrix shown in Table ] for this method illus-
trates the high accuracy on these in silico pedigrees. The
impact of reducing the SNP panel size is illustrated in Fig-
ure [3] for 20k SNPs and Figure [ for 2k SNPs. For the 2k
SNPs panel, the different relationships become much less
separable. The curves also become wider as a function of
racial heterogeneity /admixture. As the amount of mixed
ancestry increased the standard deviation of the distribu-
tions also increases. This also increases the difficulty of
distinguishing levels of relationship in less related individ-
uals.

5. Conclusion

In this work, we present a Bayesian framework for iden-
tifying the level of relation between different individuals.
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This framework builds on the biology of inheritance, along
with Bayesian statistics to predict degree of relation with-
out requiring a training database or parameter optimiza-
tion. This allows for further improvement by incorporating
more biological properties into the model.
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