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ABSTRACT: A critical issue in many neuroimaging studies is the comparison between brain 
maps. How should we test the hypothesis that two or more brain maps are partially convergent or 
overlap to a significant extent? This “correspondence problem” affects, for example, the 
interpretation of comparisons between task-based patterns of functional activation, resting-state 
networks or modules, and neuroanatomical landmarks. In published work, this problem has been 
addressed with remarkable variability in terms of methodological approaches and statistical 
rigor. In this paper, we address the correspondence problem using a spatial permutation 
framework to generate null models of overlap, by applying random rotations to spherical 
representations of the cortical surface. We use this approach to derive clusters of cognitive 
functions that are significantly similar in terms of their functional neuroatomical substrates. In 
addition, using publicly available data, we formally demonstrate the correspondence between 
maps of task-based functional activity, resting-state fMRI networks and gyral-based anatomical 
landmarks. We provide open-access code to implement the methods presented for two 
commonly-used tools for surface based cortical analysis. This spatial permutation approach 
constitutes a useful advance over widely-used methods for the comparison of cortical maps, and 
thereby opens up new possibilities for the integration of diverse neuroimaging data.  
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INTRODUCTION 
 
The spatial dependence in maps of brain activity, morphology, or connectivity impacts statistical 
inference and the interpretation of neuroimaging studies. It is well-understood that incorrect 
estimation of spatial smoothing and related statistical tests may result in inflated false negative or 
false positive rates in functional magnetic resonance imaging (fMRI) analyses (Eklund et al. 
2016; Slotnick 2017; Mueller et al. 2017). However, a related issue that has received less 
attention arises in the comparison between brain maps, i.e., evaluating the possibility that two or 
more brain maps are partially convergent or overlapping (“the correspondence problem”). 
 
The extent of overlap or convergence between brain maps is a critical issue in many published 
and ongoing studies of cortical organization. For example, maps of intrinsic resting state fMRI 
connectivity may overlap with maps of white matter connectivity derived from diffusion imaging 
data (Honey et al. 2010; Honey et al. 2009; Hagmann et al. 2008; Skudlarski et al. 2008; Horn et 
al. 2014), or task-based fMRI activation across studies (Smith et al. 2009). Structural covariance, 
derived from correlations between regions in morphological properties, has largely been 
interpreted based on the extent of overlap with patterns of intrinsic fMRI connectivity (Kelly et 
al. 2012; Seeley et al. 2009), white matter connectivity (Gong et al. 2012) and longitudinal 
maturational coupling (Alexander-Bloch et al. 2013; Raznahan, Lerch, et al. 2011). Shared 
neurobiological substrates for cognitive functions are often inferred on the basis of overlap 
between patterns of fMRI activation between different tasks (Otto et al. 2014; Wesley & Bickel 
2014; van Belle et al. 2014; Xu et al. 2013), as are shared (or distinct) cellular or developmental 
origins on the basis of overlap between morphological phenotypes such as cortical thickness and 
surface area (Maingault et al. 2016; Raznahan, Shaw, et al. 2011). Finally, differences between 
distinct demographic or clinical cohorts are often inferred in reference to divergent patterns of 
brain morphology (Douaud et al. 2014) or function (Goksan et al. 2015; Baliki et al. 2014; Zaki 
et al. 2016).  Yet, despite numerous examples where investigators compare spatial patterns 
between experiments or conditions, there is currently no standardized statistical method for 
testing convergence.  
 
The manner in which hypotheses about convergence and overlap are tested varies remarkably 
across the above studies, in terms of methodological approach and statistical rigor. For example, 
it is not uncommon to simply visualize two maps side by side as evidence of convergence or 
divergence. Areas of overlap are sometimes highlighted (for example, the conjunction of two 
independently statistically significant maps). While suggestive, these approaches neglect the 
possibility, especially for spatially diffuse maps, that such overlap is due to chance and not 
statistically significant. Statistics such as the spatial correlation between maps are also used to 
quantify the extent of convergence between maps, and the reported statistical significance of 
these correlation is in some cases greatly inflated by failing to take into consideration the spatial 
non-independence of brain maps. In other cases a correction for the spatial degrees of freedom is 
derived via Gaussian random field theory (Smith et al. 2009; Casanova et al. 2007; Bäuml et al. 
2015). Another approach is to use the partial correlation between brain maps after regressing out 
the shared relationship with anatomical distance (Honey et al. 2009; Horn et al. 2014).  
 
A particular area greatly affected by the correspondence problem is the comparison of 
community structures (for example, clustering solutions, functional modules, anatomical 
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parcellations or network partitions). The application of community detection algorithms to 
different datasets is often followed by an attempt to assess whether the resulting community 
structures are similar or distinct from each other. Examples from the literature include the 
following comparisons: resting-state and task-based fMRI networks (Kelly et al. 2012); ICA 
components across different cognitive tasks (Xu et al. 2013); and resting-state modules between 
clinical groups (Glerean et al. 2016; Achard et al. 2012). Group-wise permutation approaches 
can explicitly test hypotheses about differences between groups in community structure 
(Alexander-Bloch et al. 2012), but this approach cannot be extended to the straightforward 
comparison of the spatial properties of two such structures. Although statistics such as the 
adjusted Rand index (Hubert & Arabie 1985) and mutual information (Meilă 2007) can quantify 
the extent of overlap, there is no standard way to interpret the significance of these statistics, 
which are also influenced by the spatial dependence of brain maps.  
 
A standardized approach to the correspondence problem would help to better address several 
open questions in neuroscience which hinge on the degree of spatial alignment between different 
maps of cortical organization. For example, although superficially similar tasks tend to activate 
similar brain regions (Smith et al. 2009), it remains unclear if and how the brain’s diverse 
cognitive and affective capabilities are grouped with reference to statistically-significant spatial 
overlaps in their activation maps. Being able to cluster cognitive tasks into sets that show an 
overlapping brain activation above and beyond the intrinsic spatial dependence in fMRI data 
would represent a major step forward in the definition of core functional modules within the 
brain. A closely related question involves the degree of spatial correspondence between 
spontaneous activity fluctuations within resting brain (Beckmann et al. 2005) and the 
coordinated changes in cortical activity that are induced by tasks (Toro et al. 2008). Again, a 
solution to the correspondence problem would help to resolve this question in a way that controls 
for the inherent spatial smoothness of shifting brain activity during both rest and tasks (Smith et 
al. 2009). Furthermore, a rigorous means of quantifying how statistically surprising any given 
correspondence is, would make it possible to distinguish between brain networks that show 
differing degrees of alignment between rest and task-induced states. These issues are central to 
the detection and definition of a core set of dissociable brain networks for targeted investigation 
on clinical and basic neuroscience (Fornito & E. T. Bullmore 2015). Finally, standardized 
techniques to control for spatial smoothness in the comparison of brain maps would directly 
inform longstanding questions regarding the correspondence (or lack thereof) of functional and 
macroanatomical boundaries within the cortex. To date, this correspondence has been examined 
for a selected sub-set of cognitive tasks and macroanatomical gyral boundaries (Frost & Goebel 
2012), and would benefit from examination throughout the entire cortical sheet across a wide 
range of cognitive domains simultaneously. 
 
In this paper, we address the correspondence problem using a spatial permutation framework to 
generate null models of overlap, by applying random rotations to spherical representations of the 
cortical surface. Our work builds upon initial implementations of spatial permutation (Vandekar 
et al. 2015; Gordon et al. 2016), in three notable directions.  First, we demonstrate the 
applicability of spatial permutation methods across multiple varieties of correspondence tests, 
including (i) the relationships amongst meta-analytic patterns of functional activation as defined 
by the Neurosynth platform (Yarkoni et al. 2011), and (ii) the relationship between canonical 
cortical parcellations defined with reference to resting state functional connectivity (Yeo et al. 
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2011) vs. gyral based anatomy (Desikan et al. 2006). The former of these analyses provides a 
means of determining if sub-groups of cognitive functions (Poldrack & Yarkoni 2016; Poldrack 
et al. 2011) are clustered in terms of their anatomical substrates above and beyond potential 
confounding effects of spatial dependence – thereby providing a powerful synthesis of structure-
function relationships as charted across decades of functional neuroimaging literature. The latter 
of these analyses addresses a long-running debate regarding the inter-relationship between 
morphological and functional boundaries in the human cortex (Ronan & Fletcher 2014). 
Collectively, the Yeo atlas and Desikan atlas have been used in over four thousand prior 
neuroimaging studies (PubMed, 2017), making it especially valuable to understand their 
relationship with each other and with spatial patterns of cortical activation across diverse 
cognitive tasks (Yarkoni et al. 2011).  
 
Finally, we present a method to test the significance of the overlap between two community 
structures, which meets a growing need given the rapid proliferation of network-based 
approaches in neuroimaging science. The ability to ask if and how any two parcellations or 
modular depictions of the brain are aligned would more effectively exploit the current 
diversification of available imaging modalities and techniques for parcellation, clustering and 
community detection (Eickhoff et al. 2017). The code to perform such analyses has been made 
accessible within two popular pipelines for surface-based cortical analysis (FreeSurfer and 
CIVET, URL upon publication), so these methods can be easily applied and extended in future 
work. 
 
 
METHODS 
 
Data 
 
Meta-analytic patterns of functional activation were derived using Neurosynth 
(http://neurosynth.org) (February, 2015 release), which includes automated meta-analyses of 
imaging coordinates associated with >3,300 terms in >10,900 studies. We focused the analysis 
on cognitively relevant maps by filtering for terms that are included in the cognitive atlas 
(http://www.cognitiveatlas.org/concepts/) (Poldrack & Yarkoni 2016; Poldrack et al. 2011), 
which resulted in 120 terms.  We used the reverse inference maps, comprised of z-scores 
corresponding to the likelihood that a term is used in a study given the presence of activation in a 
region (Yarkoni et al. 2011). Compared to the forward inference maps (corresponding to the 
likelihood that a region reported is active in studies that include a given term), the reverse 
inference maps are more selective in excluding regions that are diffusely involved in most 
cognitive tasks. These maps were each projected onto the FreeSurfer average surface by nearest 
neighbors interpolation (fsaverage5, which contains 10242 vertices per hemisphere), using a 
mid-gray surface, 50% of the way in between the white and pial surfaces. 
 
As benchmark representations of anatomical regions and functional networks, we used the 
Desikan Atlas (Desikan et al. 2006) and the Yeo Atlas (Yeo et al. 2011), respectively. The Desikan Atlas, 
distributed with FreeSurfer (v5.3.0), was derived by manually identifying 34 cortical regions of 
interest using gyral-based landmarks in 40 human brain MRI scans. The Yeo Atlas was derived 
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from a mixture model of 1000 resting-state fMRI scans after scans were aligned using surface-
based realignment.  Each vertex was assigned one of 7 resting-state networks. 
 
 
Rotational permutation 
 
Spatial permutation of brain maps was performed using angular permutations of spherical 
projections of the cortical surface. The coordinates corresponding to all of the vertices were 
rotated at angles uniformly chosen between zero and 360 degrees, about each of the x (left-right), 
y (anterior-posterior) and z (superior-inferior) axes. For statistical comparisons that necessitated 
a direct correspondence between the permuted vertices and the original vertices, the original 
coordinate space was used by assigning the value of the nearest neighbor (based on Euclidean 
distance) of the vertices in the rotated coordinate space. For opposite hemispheres, the same 
rotations were applied about the left-right axis of rotation, while opposite (negative) rotations 
were applied about the superior-inferior axis and the anterior-posterior axis, in order to preserve 
the contralateral symmetry of the rotated maps. When non-cortical regions (mid-cut or corpus 
collosum) were rotated into cortical space, these vertices were not included in the calculation of 
the test statistic (the “correspondence statistic”). We use several different correspondence 
statistics depending on the specific experimental context, however, the significance of these 
statistics are always derived relative to the empirical distribution determined by the spatial 
permutation procedure. Please see Figure 1 for a schematic of the permutation method, as 
applied to the Desikan Atlas. 
 
 
Cognitive clusters of meta-analytic patterns of activation 
 
To quantify the degree of relatedness between the patterns of activation for the 120 cognitive 
terms, the correspondence statistic was Pearson’s r between every map and every other map, as 
represented by a 120x120 correlation matrix. These correlations were visualized using complete 
linkage hierarchical clustering, with the distance between the maps calculated as 1 – r. To test the 
statistical significance of these correlations, we generated 1000 rotational permutations of the 
data as described above. For each permutation, we generated a 120x120 permuted correlation 
matrix (the correlations between the permuted data and the original data). The maximum of the 
absolute values of the off-diagonal elements of this permuted correlation matrix, for each 
permutation, was used to generate a null-distribution to test the significance of the original 
correlations. P-values were calculated for each of the original correlations based on the 
frequency with which the elements of null-distribution were greater than or equal to the observed 
correlation coefficient. Note that the method of using the maximum of the permuted correlation 
matrix provides family-wise control for multiple comparisons (Westfall & Young 1993). 
Consequently, a nominal value of P < 0.05 was used as a cut off for statistical significance. 
 
 
The overlap between anatomical gyri and resting state functional clusters 
 
For the overlap between the Desikan and Yeo atlases, the correspondence statistic was the 
normalized mutual information, NMI (Kvalseth 1987): 
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where A and B are the partitions, i.e., assignments of vertices to clusters (or regions) in the 
Desikan or Yeo atlas, respectively; CA is the number of clusters (or regions) in partition A; CB is 
the number of clusters (or regions) in partition B; N is the number of vertices, which is the same 
in both partitions; Nij is the overlap between A’s cluster (or region) i and B’s cluster (or region) j, 
i.e. the number of vertices that they have in common; Ni. is the total number of vertices in A’s 
cluster (or region) i; N.j is the total number of nodes in B’s cluster (or region) j; and this 
calculation follows the convention that 0×log(0)=0. The NMI ranges from 0 to 1, where 0 
signifies that the partitions are totally independent and 1 that they are identical. See the 
discussion for an explanation of some of the terminology involved in the analysis of partitions, 
parcellations and functional clusters. 
 
To test the statistical significance of the degree of the NMI between the Desikan atlas and the 
Yeo atlas, we generated 1000 rotational permutations of the data as described above. For each 
permutation, the NMI was re-estimated. The P-value was calculated as the frequency that which 
the permuted NMI estimates equaled or exceeded the actual NMI. 
 
Additionally, we performed a post hoc analysis to determine which regions appeared to 
contribute disproportionately to the observed overlap. We generated a 34x7 confusion matrix, 
quantifying the overlap (in terms of total number vertices) between each region and each resting-
state network. For each region and each network (41 total tests), the correspondence statistic was 
the pseudo-X2 testing whether each region was equally distributed between networks (weighted 
based on the total size of each network) and whether network was equally distributed between 
regions (weighted based on the size of each region). This statistic is called a pseudo- X2 to 
emphasize that it is not expected to be X2 distributed; rather, the null distribution is empirically 
determined by the permutation procedure. This analysis used FDR-correction for multiple 
comparisons correction (q<0.05). 
 
 
Overlap of meta-analytic patterns of activation with anatomical gyri and resting state functional 
clusters 
 
For the test of overlap between the Yeo atlas and the 120 Neurosynth maps, the correspondence 
statistic was the pseudo-X2 transformation of the Wilk’s lambda from a Multivariate Analysis of 
Variance (MANOVA) (Krzanowski 1990). Significance of the observed correspondence statistic 
was determined with reference to the null distribution generated by 1000 rotational permutations 
of the data as described above.  
 
As a post hoc analysis to investigate which of the 120 Neurosynth maps contributed 
disproportioinately the global correspondence, we performed 120 separate tests where the 
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correspondence statistics were the pseudo-F-statistics from Analysis of Variance (ANOVA) 
tests. Again, this statistic is called a pseudo-F to emphasize that it is not expected to have an F-
distribution. The null distribution is determined by permutation. FDR correction was used to 
account for 120 comparisons.  
 
The overlap between the Desikan atlas and the 120 Neurosynth maps was tested analogously, 
using MANOVA and post hoc ANOVA tests to generate correspondence statistics for spatial 
permutation tests. 
 
 
RESULTS 
 
The permutation method allowed for rigorous hypothesis testing of the proposed relationships 
between patterns of functional activation, resting state fMRI networks and anatomical regions of 
interest. The probability density distribution appeared to stabilize by 1,000 permutations (Figure 
1b-c), suggesting 1,000 as an appropriate number of permutations for subsequent statistical tests. 
 
Spatial Correspondences Between Metaanalytic Patterns of Activation Define Cognitive Clusters 
 
The correlation coefficients between the 120 cognitive maps suggested a broad range in terms of 
the degree of relatedness between the maps (mean r = 0.004, sd = 0.12, range = -0.41 – 0.68). 
Hierarchical clustering of the maps revealed a non-trivial structure, for example with terms 
related to the language and reward systems, respectively, grouping together into relatively 
homogenous clusters of mutual correlation (Figure 2a). Of these correlations, 35 were 
statistically significant based on the family-wise correction for multiple comparisons (see Figure 
2b). A network representation of these significant correlations (where nodes are cognitive terms 
and edges are significant correlations) revealed distinct components (edges within but not 
between sub-groups of nodes) corresponding to cognitive clusters including movement and 
motor planning, language, attention, memory, fear and reward (Figure 2b). 
 
Gyral-Based Anatomical Regions of Interest Overlap with Resting-State Functional Networks 
 
The hypothesized overlap between anatomical regions of interest and functional networks was 
supported by the permutation procedure. The actual NMI between the Desikan atlas (Figure 3a) 
and the Yeo atlas (Figure 3b), 0.389, is unlikely to be simply due to chance overlap (P=0.034) 
(Figure 3c). Put differently, patches of brain that form part of the same gyral-based region of 
interest were significantly more likely to also form part of the same intrinsic functional network. 
This overlap is not due simply to mutual spatial dependence, nor to mutual contralateral 
symmetry, as these potential confounds are controlled for by the permutation procedure. (The 
mean of the null distribution generated by the permutation procedure can be interpreted as an 
estimate of the contribution of these potential confounds to the observed NMI.) 
 
Post hoc analysis suggested that this statistically significant correspondence resulted 
disproportionately from certain resting state networks and anatomical regions. Specifically, the 
visual, somatomotor and frontoparietal networks showed statistically significant correspondence 
with the gyral boundaries of anatomical regions after FDR correction for multiple comparisons 
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(Table 1). Conversely, although no individual region’s statistical significance survived FDR 
correction for multiple comparisons, the anatomical regions that corresponded most closely with 
the boundaries of intrinsic resting-state networks were largely visual and motor areas, as 
evidenced by border-line significant P-values in Table 1. 
 
Metaanalytic Patterns of Activation Overlap with Resting-State Functional Networks  
 
Meta-analytic patterns of functional activation did not only cluster in space to define overarching 
cognitive domains, but also demonstrated statistically-significant overlap with functional 
networks defined by patterns of coordinated intrinsic cortical activity at rest (spatial permutation 
test using the  pseudo-X2 transformation of the Wilk’s lambda from a MANOVA test as the 
correspondence statistic, P=0.001) (Figure 3e). Put differently, the patterns of activation shown 
by the meta-analyses of cognitive concepts tended to respect the boundaries of the resting-state 
functional networks. In the 120 post hoc permutation tests (using pseudo-F-statistics as the 
correspondence statistics), only “movement” was statistically significant after FDR-correction 
for multiple comparisons (q<0.05), but there was borderline significant correspondence with 
resting-state networks for the metaanalytic maps of working memory, pain, autobiographical 
memory and spatial attention (see illustrations in Figure 3d). Movement appeared to 
differentially activate the somato-motor network; working memory differentially activated the 
frontoparietal and dorsal attention networks; autobiographical memory differentially activated 
the default-mode network; and pain differentially activated the ventral attention network (see 
Table 1 for the labels of the individual resting-state networks).  
 
Metaanalytic Patterns of Activation Overlap with Gyral-Based Anatomical Regions of interest 
 
Finally, as would be predicted based on their mutual overlap with intrinsic resting-state 
networks, metaanalytic patterns of activation also demonstrated statistically significant overlap 
with a classical parcellation of the cortical sheet defined by macroanamical gyral boundaries 
(spatial permutation test using the pseudo-X2 transformation of the Wilk’s lambda from a 
MANOVA test as the correspondence statistic, P=0.038) (Figure 3f). In other words, the patterns 
of activation shown by the metaanalyses of cognitive concepts tended to respect gyral 
boundaries. For the 120 post hoc permutation tests using pseudo-F-statistics as the 
correspondence statistics, only “listening” was statistically significant after FDR-correction for 
multiple comparisons (q<0.05), but there was borderline significant correspondence with gyral 
boundaries for the metaanalytic maps of movement, pain, speech perception and reward. 
Listening appeared to differentially activate superior temporal gyrus, tranverse temporal gyrus 
and the bank of the superior temporal sulcus; pain disproportionately activated insula, post 
central and caudal anterior cingulate cortex; movement differentially activated precentral, 
postcentral, supramarginal and superior parietal cortex; speech perception differentially activated 
superior temporal gyrus, bank of the superior temporal sulcus and transverse temporal gyrus; 
reward differentially activated the rostral anterior cingulate, lateral orbitofrontal and medial 
orbitofrontal gyrus. 
 
 
DISCUSSION 
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Our work addresses a number of methodological issues that arise in the statistical comparison of 
brain maps, and in doing so provides evidence in support of specific biological hypotheses 
regarding functional topography and function-structure relationships in the human cerebral 
cortex. We advocate a spatial permutation approach to the issue of comparing cortical maps. This 
approach demonstrates partial overlap or convergence between meta-analytic maps of functional 
activations, gyral-based anatomical regions of interest, and resting-state functional connectivity 
networks.  In making the code for these analyses available and discussing the methodological 
issues, we hope to draw attention to this issue and increase the statistical rigor with which “the 
correspondence problem” is approached. 
 
The utility of the rotational permutation approach is illustrated by the inter-relationships between 
the anatomical substrates of 120 cognitive functions. Although the 120x120 correlation matrix 
appears to have meaningful structure (Figure 2a), P-values generated from a parametric test of 
the significance of these correlation coefficients would have extremely high false positive rates, 
because of falsely assuming spatial and contralateral independence. (Non-parametric tests and 
permutation procedures that do not preserve spatial and contralateral dependence would have 
similarly high false positive rates.) In addition, a correction for multiple comparisons across the 
7140 correlations is required, but as these correlations are not independent, standard approaches 
for multiple comparisons correction may be too conservative.  The permutation procedure 
addresses both of these concerns, by generating permuted data with the same spatial and 
contralateral structure of the original data, as well as a null distribution of maximum correlation 
coefficients that allows for a straightforward family-wise correction for multiple comparisons. In 
general, there is an analogy between spatial permutation and other well-described (although 
perhaps under-utilized) permutation approaches (E. T. Bullmore et al. 1999; Nichols & Holmes 
2002; Winkler et al. 2014); the spatial coordinates of the maps are permuted, rather than the 
task/rest labels of a functional scan, or the patient/control labels in a case-control study.  
 
Spatial dependence and contralateral symmetry are multi-faceted and sometimes problematic 
issues in neuroimaging studies. On the one hand, there is ample evidence that spatial constraints 
are a biological principle of brain network organization (E. Bullmore & Sporns 2012). On the 
other hand, spatial dependence is also introduced by image processing pipelines, for example, 
when images are smoothed in order to make statistical comparisons between anatomically 
divergent individuals. In addition, motion artifact may introduce artefactual smoothing into both 
functional (Satterthwaite et al. 2012) and anatomical (Alexander-Bloch et al. 2016) scans. 
Regardless of the underlying source of spatial dependence, or whether it is biological or 
artefactual in a given experimental context, it has the potential to confound statistical inference 
about partial overlap or convergence between brain maps. Contralateral symmetry is more 
generally appreciated as “biological” compared to spatial autocorrelation within hemispheres. 
However, confounds such as motion are likely to similarly impact contralateral homologues 
(which are the same distance from the axes of rotation). Therefore, similarly to spatial 
dependence, symmetry can falsely inflate the apparent overlap when comparing brain maps that 
include both left and right hemisphere data. 
 
There is no single accepted methodology to compare brain parcellations and partitions, e.g., 
maps of anatomical regions of interest and or intrinsic functional connectivity networks. The 
terminology can be confusing: it is common to call a map of anatomical regions a parcellation 
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(Van Essen et al. 2012), while maps of intrinsic connectivity (or other kinds of connectivity) are 
described as partitions, communities, clusters or modules (Alexander-Bloch et al. 2010). 
However, the practical distinction between these two kinds of maps is that anatomical regions, 
by definition, form spatially contiguous patches. Partitions, while often spatially contiguous, may 
be spatially distributed; in functional parcellations such as the Yeo atlas, sensorimotor clusters 
tend to form distinct patches, while spatially discontiguous clusters are distributed across 
association cortical areas. For the purposes of statistical comparison, similar statistics can 
quantify the degree of overlap, such as the adjusted Rand index (Hubert & Arabie 1985), a 
variation of information criterion (Meilă 2007), and normalized mutual information (Kvalseth 
1987). Because properties such as the number of clusters and the degree of spatial dependence 
affect these statistics, they cannot be interpreted simply based on their magnitude. Spatial 
permutation provides a framework for the significance of these statistics to be evaluated. 
 
By leveraging these strengths of spatial-permutation testing for the comparison of three distinct 
types of cortical map, our study provides a number of insights into cortical organization. First, 
we provide quantitative evidence that task-induced patterns of brain activation (Neurosynth 
meta-analytic maps) are non-randomly related to patterns of coordinated brain activity at rest 
(Yeo 7-network resting state parcellation). The ability to test the apparent similarity between the 
two modes of coordinated brain activity (Eickhoff et al. 2017) provides a necessary empirical 
and technical foundation for asking how this similarity arises, and whether inter-individual 
differences in the strength of this spatial coupling are relevant for behavioral differences in 
health and disease (Braga & Buckner 2017). Second, we test the spatial inter-dependence 
between functional and macroanatomical topography of the cortical sheet. The non-random 
organization of brain function with respect to gyral features is evident with respect to both 
coordinated brain activity at rest (Yeo Atlas) and task-evoked brain activity (Neurosynth data), 
and varies in strength across different functional systems. Specifically, we find that the degree of 
alignment between function and structure tends to be stronger for primary input/output systems 
(visual, auditory, motor) than for higher-order associative systems. The corresponding gyral 
features that show closest alignment for the spatial organization of brain activity during rest and 
tasks are aligned with those “primary sulci” that arise earliest in prenatal human brain 
development (Nishikuni & Ribas 2013), show least variance in morphology across individuals 
(Mangin et al. 2004) and most consistent correspondence with the boundaries of 
cytoarchitectonically-defined cortical areas (Fischl et al. 2008). These observations suggest the 
operation of a strong conjoint constraint on the anatomical and functionally patterning of lower-
order cortical regions, such that these display an alignment of gyral and functional boundaries 
that can be detected at the group level. The spatial permutations approach represents a promising 
quantitative framework for moving beyond group-level analyses in future work to probe 
structure-function relationships in individual cortical sheets. 
 
Several methodological issues with the present analysis should be noted. First, although the 
present method is limited to cortical surface maps, it could be extended to sub-cortical or 
volumetric maps, most readily for structures such as the thalamus that could reasonably be 
projected onto a spherical volume. Second, to highlight the methodological approach, we have 
chosen to present biological results that are largely confirmatory in nature. Clusters of similar 
functional maps correspond to a priori similar cognitive functions, which plausibly explains the 
correspondence of the meta-analytic maps. The inter-dependence  of resting state networks and 
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multivariate patterns of functional activation has previously been described using different 
methodological approaches (Biswal et al. 1995; Smith et al. 2009).  Finally, some degree of 
overlap between known anatomical regions of interest and functional connectivity networks is 
generally assumed, but this assumption has not previously been formally tested to our 
knowledge. The illustrative analyses also depend on upstream methodological choices. For 
example, the choice of terms to include in the automated meta-analysis clearly constrains 
downstream results, and different methods of controlling for multiple comparisons could result 
in different results.  
 
Despite these limitations, the spatial permutation methods described, applied and disseminated 
by our study constitute a useful advance upon current methods for the comparison of cortical 
maps, and thereby open up new possibilities for the surface based integration of diverse 
neuroimaging data.  
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TABLE 
 

 Visual 
Network 
(Yellow) 

Somato-
motor 
Network  
(Red) 

Dorsal- 
attention 
Network  
(Dark 
Blue) 

Ventral-
attention 
Network 
(Maroon)  

Limbic  
Network 
(Orange) 

Fronto-
parietal 
Network 
(Light 
Blue)  

Default-
mode 
Network 
(Green) 

Vertices 
in each 
Region 
(Sum over 
Networks) 

P-value 
(permutation 
test) 

Bank superior 
temporal sulcus 

0 72 0 64 0 0 118 254 0.917 

Caudal anterior 
cingulate 

0 0 0 93 0 29 24 146 0.510 

Caudal middle 
frontal gyrus 

0 0 81 0 0 246 128 455 0.404 

Cuneus 206 0 0 0 0 0 0 206 0.078 

Entorhinal cortex 0 0 0 0 90 0 0 90 0.019 

Fusiform gyrus 360 0 60 0 185 0 0 605 0.163 

Inferior parietal 
gyrus 

138 0 178 17 0 273 489 1095 0.774 

Inferior temporal 
gyrus 

1 0 175 0 231 83 46 536 0.187 

Isthmus cingulate 50 0 0 0 0 10 177 237 0.547 

Lateral occipital 
cortex 

745 0 18 0 0 0 0 763 0.005 

Lateral 
orbitofrontal gyrus 

0 0 0 21 276 112 112 521 0.185 

Lingual gyrus 506 0 0 0 0 0 0 506 0.077 

Medial orbitofrontal 
gyrus 

0 0 0 0 185 0 123 308 0.196 

Middle temporal 
gyrus 

0 0 74 38 22 56 422 612 0.438 

Parahippocampal 
gyrus 

98 0 2 0 55 0 49 204 0.639 

Paracentral gyrus 0 347 0 95 0 0 0 442 0.398 

Pars opercularis 0 0 27 161 0 107 36 331 0.520 

Pars orbitalis 0 0 0 0 0 28 83 111 0.616 

Pars triangularis 0 0 0 94 0 60 111 265 0.828 

Pericalcarine cortex  224 0 0 0 0 0 0 224 0.067 

Postcentral gyrus  0 1114 35 6 0 0 0 1155 0.003 

Posterior cingulate 0 46 0 138 0 85 70 339 0.859 

Precentral gyrus  0 853 251 222 0 10 0 1336 0.172 

Precuneus  147 40 118 96 0 141 416 958 0.965 

Rostral anterior 
cingulate 

0 0 0 0 9 0 123 132 0.396 

Rostral middle 
frontal gyrus 

0 0 0 99 39 647 192 977 0.119 

Superior frontal 
gyrus 

0 148 90 306 3 211 747 1505 0.716 

Superior parietal 
gyrus 

265 169 833 0 0 25 0 1292 0.061 

Superior temporal 
gyrus 

0 459 0 90 99 0 223 871 0.698 

Supramarginal 
gyrus  

0 169 254 386 0 177 66 1052 0.714 

Frontal pole 0 0 0 0 35 0 8 43 0.086 

Temporal pole 0 0 0 0 86 0 0 86 0.019 

Transverse 
temporal gyrus 

0 116 0 0 0 0 0 116 0.226 

Insula  0 216 0 373 1 31 14 635 0.266 

Vertices in each 
Network    

(Sum over Regions) 

2740 3749 2196 2299 1316 2331 3777 18408 - 
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P-value 
(permutation test) 

0.018* 0.004* 0.078 0.056 0.258 0.009* 0.046 - - 

Table 1: Confusion matrix between Desikan Atlas and Yeo Atlas, showing the number of vertices that are shared 
between each anatomical region and each resting state network. Labels of the networks are per the original 
description of the Yeo Atlas, while colors correspond to the Figure 3b. For networks, the correspondence statistic is 

the pseudo-Χ2 statistic for a test of whether each network is randomly distributed between reegions; while for 

regions, the correspondence statistic is the pseudo-Χ2 statistic for a test of whether each region is randomly 
distributed between networks. (These statistics are called pseudo-statics because they are not expected to be follow 

Χ2 distribution; rather, the P-values are determined based on the empirical distribution generated by the permutation 
procedure.) This post hoc test provides a sense of which regions and networks are contributing differentially to 
globally significant overlap between anatomical regions and functional networks (see Results). * significant after 
FDR correction for multiple comparisons 
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FIGURES 
 

 
Figure 1. A schematic of the permutation procedure. A) As an illustration, the Desikan atlas is 
shown in the original space (top left) and spherical space (top right). Each color corresponds to 
different regions.  The spherical coordinates are rotated (mid right, bottom right) and the 
projected back onto the anatomical surface (mid left, bottom left). B) The degree of similarity 
between the original parcellation and the rotated parcellations were estimated using the 
normalized mutual information (NMI). The probability density distributions of this statistic are 
shown for 100, 500, and 1000 rotations, as well as lines marking the 95th percentile of each 
distribution. C) A Q-Q plot of the two independent distributions of 1000 rotations each. 
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Figure 2. Correlation structure and significant correlation between meta-analytic activation 
patterns associated with 120 cognitive terms. A) Heat-map showing 120x120 correlation matrix. 
Terms or organized according to hierarchical clustering, with the resulting dendrogram shown to 
the top and to the left of the correlation matrix. Colors correspond to correlation coefficient, as 
shown in color key on top left. The color key also shows the frequency distribution of the 
correlations that comprise the matrix. Labels of the terms are shown to the right and to the 
bottom of the matrix, with the odd number labels shown on the bottom and the even number 
labels shown on the right (the order of the terms is “fear”, “anxiety”, “stress”, “arousal”, 
“valence,” etc.). B) Network illustration where the significant connections are illustrated as 
edges between the terms illustrated as nodes. The resulting network is comprised of 8 
disconnected components; edges exist within each component’s nodes, but there are no edges 
between components.   
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Figure 3. Spatial relationship between regions based on gyral landmarks (Desikan Atlas), 
intrinsic functional connectivity networks (Yeo Atlas), and task-based fMRI brain maps 
(Neurosynth meta-analyses). A) Representation of the Desikan Atlas, derived from manually 
identifying 34 in each hemisphere based on gyral landmarks, using 40 high resolutaion structural 
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MRI scans. B) Representation of the Yeo atlas, derived by identifying 7 resting-state functional 
networks using a mixture model of 1000 resting-state fMRI scans. C) The normalized mutation 
information between the Yeo and Desikan Atlas, a measure of the similarity of the two atlases, 
for the original data as well as the probability density distribution of 1000 rotational 
permutations. The P-value is calculated as the frequency with which the permuted NMI equals or 
exceeds the actual NMI. D) Representation of 4 of the 120 brain maps derived from automated 
meta-analyses of cognitive concepts included in the cognitive atlas, with color scale 
corresponding to z-statistic (see methods). The top four cognitive terms are shown, ranked via F-
statistic of 120 post hoc ANOVA tests of the relationship between these maps and the Yeo Atlas. 
As the maps are largely symmetric, for illustrative purposes, the left hemisphere is shown for 
movement and working memory, while the right hemisphere is shown for autobiographic 
memory and pain. E) The Chi-square transformation of the MANOVA test statistic where the 
networks of the Yeo atlas were the dependent variable and the 120 cognitive maps were the 
independent variables, for the original data as well as the probability density distribution of 1000 
rotational permutations. The P-value was calculated as the frequency with which the permuted 
Chi-square statistic equaled or exceeded the actual test statistic. F) The Chi-square 
transformation of the MANOVA test statistic where the networks of the Desikan atlas were the 
dependent variable and the 120 cognitive maps were the independent variables, for the original 
data as well as the probability density distribution of 1000 rotational permutations. The P-value 
was calculated as the frequency with which the permuted Chi-square statistic equaled or 
exceeded the actual test statistic. 
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