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Figure 6: Urgency induces graded changes in peripheral muscle activation 

(a-c) Electromyographic (EMG) activity in the response-executing thumb. (a) 

Distributions of “motor times,” quantifying the time lag between muscle activation onset 

and action completion (button click), revealing shorter lags under Speed (red) than 

Accuracy (blue) emphasis. (b) Muscle activation (mean EMG spectral amplitude over 

10-250Hz measured in 100ms-time windows) time-locked to the button click response is 

increased under speed pressure, and for fast (thick traces) compared to slower (thin 

traces) responses. (c) Muscle activation during response execution (100ms-time window 

before click, shaded gray in B) is increased under speed pressure across all response 

time bins, and decreases significantly over reaction time bins (Linear mixed-effects 

model: t(14696)=-5.6; p1.72*10-8, Supplementary Table 1k). Error bars indicate S.E.M. 

(d-f) EMG activity in the response-withholding thumb. (d) In the response-

withholding thumb, the probability of a muscle activation onset occurring without 

triggering a motor response (“partial” burst) is increased under speed pressure across a 

broad time range. (e) Mean spectral amplitudes measured in two response time bins 

show that, especially for late responses (thin traces), response-locked traces of muscle 
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activation in the response-withholding hand show increased activation under speed 

pressure (red traces). (f) With increasing response time, muscle activity in the response-

withholding thumb increases both under Speed and Accuracy emphasis in a time 

window just prior to the mean EMG onset time in the response-executing thumb (-225ms 

to -125ms, shaded in E). Note that activation in the response-withholding hand is plotted 

on a much smaller scale than that of the response-executing hand. Error bars indicate 

S.E.M. 

 

 

Discussion 

 

Our results reveal that speed pressure affects decision-related neural activity at each of 

the key processing levels necessary for contrast discrimination decisions, from the 

lowest cortical sensory level to the peripheral level of muscle activation. These 

modulations across the hierarchy arise from two principal adjustments that are 

fundamentally distinct in nature: an evidence-independent urgency contribution applied 

first at the motor preparation level which creates accuracy costs, and an enhancement of 

differential evidence at the sensory level that acts to alleviate those costs. 

 

Speed-accuracy adjustments at the sensory evidence level 

Our finding of boosted differential sensory evidence under speed pressure stands in 

contrast to classical theoretical assumptions2,4, recent modeling results suggesting a 

lower quality evidence representation16, and fMRI studies finding no changes at the 

sensory level7,19. Given the transient nature of the sensory modulations we observed, it 

is possible that fMRI does not have the requisite temporal resolution to detect such 
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effects, though differing task demands may also play a role. Our findings do broadly 

accord with the observation of earlier and stronger spatial selectivity for visual search 

targets under speed pressure in visual neurons of monkey FEF, although our results are 

distinct in a number of ways. First, while visual FEF neurons serve to represent the 

salience of items in their receptive field and thus furnish the evidence for visual search 

decisions18, our findings show that speed pressure can also impact on low-level 

representations of basic sensory attributes that form the evidence for simple 

discriminations requiring no spatial selection. Second, whereas speed pressure 

increased FEF activity somewhat indiscriminately before, during and at the end of 

decisions in both visual and motor neurons, our SSVEP modulation was strictly 

evidence-selective with no non-selective or baseline components to it (Supplementary 

Fig. 2). That is, the modulation served to widen the differential activity already driven by 

the bottom-up stimulus information, but not by “turning-up” the representation of both 

alternatives. This differential boost effect occurred alongside steepened accumulator 

signal buildup and in the absence of any apparent background noise modulation 

reflected in intervening frequencies (Supplementary Fig. 2), and it was linked with 

improved decision performance, all indicating that this modulation lessens the accuracy 

toll imposed by speed pressure rather than contributing to it. 

 

There are several possible neural mechanisms that may underpin these evidence-

selective changes. At the sensory level itself these include increased competitive 

interactions46,47, or an enhancement of the sensitivity of population contrast response 

functions in early visual cortex in the region of the 50% baseline contrast level, for 

example through the narrowing of orientation tuning centered on the two grating 

orientations48. Alternatively this modulation could come about through positive feedback 

from higher evidence-accumulation and/or motor levels, such that the representation of 
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the currently favored alternative formed during early stages of accumulation is boosted49. 

Future work should aim to adjudicate between these possibilities. 

 

The differential sensory evidence boost was accompanied by increased pupil size, and 

there was trial-to-trial covariation between the two. Pupil size has long been linked to 

generalized factors of effort and arousal35,50 and central neuromodulatory systems 

thought to support them, such as the Locus-Coeruleus Noradrenaline (LC-NA) 

system13,51–54 whose projection sites include sensory areas55,56. These neuromodulatory 

systems are thought to control global levels of neural gain35. Dynamic modulations in 

global gain during decision formation were suggested in theoretical work to play a role in 

optimizing decision making25,57, and recently the integration of empirical measurements 

of pupil size dynamics with computational models gave rise to the proposal that dynamic 

gain modulation may in fact be the generator of evidence-independent urgency11. Since 

gain modulation acts globally, an obvious prediction would be that even the sensory 

level is targeted by urgency influences. However, our observed sensory-level SSVEP 

modulations had no non-selective or evidence-independent component, wholly 

inconsistent with a core defining property of urgency. This does not preclude that the LC-

NA system played a role in our sensory modulations; a growing number of theories of 

LC-NA function have asserted that its global influences may act to enhance selectivity, 

since the interaction of locally released glutamate and systemically released NA would 

act to enhance more active representations while suppressing less active ones13,58–60. 

Thus, our findings suggest that the impact of pupil-linked neuromodulatory systems on 

decision making may come in more forms than only accuracy-compromising urgency. 

 

A motor-independent representation of cumulative evidence spared from urgency  
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While both systematic and random, behavior-predictive variations were found in baseline 

amplitudes at the motor level, no such effects were observed at the motor-independent 

CPP level. Moreover, whereas an invariant action-triggering threshold was observed at 

the motor level, the CPP decreased in the amplitude it reached by the time of response 

for trials associated with greater levels of urgency, such as those with slower RT (Figure 

4h). As illustrated in Figure 5, this can be explained as the knock-on effect of urgency 

influences operating at the motor level. In effect, the rising urgency signal at the motor 

level translates to a corresponding collapse in the attainable quantity of cumulative 

evidence at the CPP level. The effects on pre-response CPP amplitude were 

qualitatively mirrored in the conditional accuracy functions, consistent with the CPP 

reflecting an unadulterated representation of cumulative evidence. The quantitative 

trends in CPP and accuracy were by no means perfectly matched, however, which may 

relate to the form taken by the underlying evidence accumulation circuits that generate 

the CPP on the scalp. The CPP manifests as a positive deflection for either of the two 

decision alternatives in a motion discrimination task33 as well as in the current contrast 

discrimination task (Supplementary Table 1c), even when the incorrect response is 

chosen (t(15)=3.63, p=0.0024), and also for false target detections23, all indicating that 

the underlying neural evidence integration signals for any decision outcome contribute to 

the CPP in the same, positive direction61. This means that any proportional relationship 

between mean centro-parietal amplitude at response and response accuracy would 

break down when the latter approaches chance level. In particular, for longer-RT trials in 

the low-contrast condition, which would be characterized by weak evidence coupled with 

narrowed effective bounds, many errors may be associated with significant diffusion in 

favor of the incorrect alternative, which would translate to relatively elevated, positive 

CPP amplitudes at response even though response accuracy is greatly reduced. 
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An ongoing debate has centered on whether slow errors are, in general, better 

explained by a collapsing decision bound62 (equivalent to additive, evidence-

independent urgency8,9,11) or by drift rate variability2 (e.g. see Hawkins et al.63 and 

Ratcliff et al.3). The collapsing CPP-amplitude effect observed here clearly points to the 

presence of the former mechanism. This does not preclude that there is some amount of 

drift rate variability, but renders it an unlikely primary driver behind slow errors. It is also 

noteworthy that this collapse in CPP amplitude contrasts strikingly with observed 

patterns in continuous monitoring tasks, where CPP amplitude is stable across RT in a 

similar way to motor signals23,33. In our proposed framework, this would indicate an 

absence of time-dependent dynamic urgency at the motor level in these tasks, which is 

plausible given that subjects are unable to predict the onset of the sensory evidence 

“targets” and, indeed, are unaware of missing them.   

 The decline in response accuracy (Figure 1c) and CPP amplitude at response 

(Figure 4h) occurred to a similar extent in the Accuracy and Speed regimes, suggesting 

that, despite an offset reflected in pre-evidence motor preparation levels, the rate of 

increase in urgency may be similar across the two regimes. This is likely due to the fact 

that the fixed stimulus duration imposed a response deadline even in the Accuracy 

regime, combined with the fact that difficulty levels were interleaved in both regimes, for 

which collapsing bounds represent the optimal strategy12. Moreover, in contrast with 

previous studies observing differences in urgency steepness across regimes8,11, here 

regime was randomly cued trial-by-trial rather than manipulated block-by-block.  

 Our finding of an invariant threshold level at response in effector-selective motor 

preparation signals accords with similar findings in monkeys8,10 and humans11 during 

feature discriminations, but this finding is not ubiquitous. For example, evidence 

accumulation signals reflected in FEF motor neurons during visual search decisions did 

not terminate at a stereotyped threshold level but rather exhibited increased termination 
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levels under speed pressure18, running contrary to a central tenet of sequential sampling 

models and leading the authors to propose a further stage of integration beyond FEF. 

This might suggest that the task of visual search involves qualitatively different 

mechanisms for speed emphasis than simple discriminations. 

Our demonstration that the brain computes a unitary representation of cumulative 

evidence that is spared from urgency influences at the motor level offers new insights 

into how choice-relevant information is represented in the brain. Abstract choice 

representations have been proposed as an efficient means for the brain to flexibly route 

sensory information to goal-relevant motor regions20,21,33 and, in fact, the suggestion was 

made in very early work that such signals may not be influenced directly by speed 

pressure64,65. We have previously demonstrated that, when speed pressure is absent 

and the onset of sensory evidence unpredictable, the evidence-dependent build-up of 

the CPP reliably precedes that of effector-selective signals33, suggesting that it 

intermediates between sensation and action preparation. Neurons in area LIP of the 

monkey have been found to encode goal-relevant stimulus categories but it is not known 

whether these signals exhibit evidence accumulation dynamics21. Moreover, while the 

CPP appears to rise solely as a function of cumulative evidence, LIP neurons multiplex a 

variety of task- and motor-related signals including urgency. Thus, the CPP appears to 

represent a decision variable signal of a different nature than the abstract signals 

identified to date in the monkey brain. Exactly how the two are related is a topic for 

future research. 

 

Urgency at the peripheral level of muscle activation 

At the peripheral motor level, we found that muscle activation for even the unchosen 

response increased with elapsed time consistent with a dynamic urgency component of 

a similar nature to that found at the cortical level of motor preparation. Further, the time 
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between the onset of substantial muscle activation and the button click was significantly 

decreased under speed pressure. At first glance, this appears consistent with a 

decrease in the additive “non-decision time” component of RT as found in computational 

model fits in some studies66. However a growing number of studies have demonstrated 

that action execution, even for simple button clicks, is not deferred until a decision bound 

is crossed but rather can be dynamically shaped by the ongoing evidence-accumulating 

decision variable41,67,68. The existence of partial EMG bursts in our task as well as 

others’41 underlines that EMG onset does not mark complete commitment or a “point of 

no return.” Assuming a fixed mapping of the decision variable to EMG activation, the 

decreased motor time could arise from either a decreased decision bound or steeper 

accumulation. The fact that our EMG signals rise more steeply and reach a higher 

amplitude under Speed pressure points to the latter explanation. This faster motor build-

up may arise directly from the acceleration of the decision process under speed 

pressure due to enhanced sensory evidence encoding and potentially also from 

increased arousal. Whatever the mechanism, shortened motor time reduces the 

opportunity for retracting incorrect, partial responses40,69. 

In contrast to our findings of shortened and intensified muscle activation, work in 

primates suggests no differences in saccade velocity as a function of RT or speed 

pressure18, implying that this finding does not necessarily generalize to all actions. While 

the muscle activations required to initiate saccadic responses stand in direct conflict with 

one another for different response alternatives, most other response modalities allow for 

the simultaneous preparation of multiple responses at the muscular level with a much 

lower degree of antagonism70. The presence of significant muscle activation and discrete 

EMG bursts in the response-withholding effector in our data presents strong evidence 

that subjects were indeed preparing both responses simultaneously, and to a greater 

degree under speed pressure. 
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        Taken together, our results serve to highlight the value of the global systems-

level view over decision making mechanisms afforded by noninvasive assays in humans 

employed in the context of purpose-designed paradigms. We uncovered multifaceted 

adaptations to speed pressure at the sensory, evidence accumulation, motor preparation 

and motor execution levels as well as dynamic neuromodulatory influences reflected in 

pupillometry. As demonstrated here, multi-level signal tracking affords the ability to test 

predictions of a hypothesis at multiple hierarchical processing levels, or to adjudicate 

between alternative interpretations of an effect at one level by testing predictions that 

apply to other levels. More generally, our findings underscore the emerging imperative to 

move from one-dimensional decision models to more neurally-based models embracing 

the hierarchical, interactive, and flexible nature of real neural systems accomplishing 

adaptive decisions1,24–27, and highlight that neural recordings in humans can act as a 

strong guide. 
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Online Methods 

 

Participants 

 

Sixteen participants (five male, 𝑚𝑒𝑎𝑛 ± 𝑠𝑡𝑑 = 27.06 ± 4.72) gave written and informed 

consent to partake in this study. All participants had normal or corrected-to-normal 

vision, and no history of psychiatric illness or head injury. All procedures were approved 

by the Institutional Review Board of the City College of New York and were in 

accordance with the Declaration of Helsinki. Subjects gave informed consent and were 

compensated for their participation with between $9/hour and $15/hour depending on 

their task performance. 

 

Contrast discrimination task 

 

Participants were asked to perform a discrete two-alternative forced-choice contrast 

discrimination task. Visual stimuli were presented on a gamma-corrected CRT monitor 

(Dell M782) with a refresh rate of 100 Hz inside a dark, sound attenuated, and radio 

frequency interference-shielded room. Visual and auditory stimulus presentation was 

programmed in Matlab (MATLAB 6.1, The MathWorks Inc., Natick, MA, 2000) using the 

PsychToolbox extension71,72. Participants were seated at a viewing distance of 57 cm 

from the monitor, and asked to fixate on a central fixation point. The participants’ task 

was to judge which of two overlaid, orthogonal gratings was greater in contrast. The 

imperative stimulus was an annular pattern with an inner and outer radius of 1° and 6° of 

visual angle, respectively, presented centrally on a gray background with the same 

mean luminance (65.2 cd/m2). The pattern consisted of two overlaid square-wave 
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gratings (spatial frequency = 1 cycle per degree) tilted at -45 and +45 degrees relative to 

vertical, which were phase-reversed at 20Hz and 25Hz, respectively (Figure 1a). After 

200ms of presenting just the fixation point (2x2 pixels), trials began with a linear fade-in 

of this stimulus from 0% contrast to 50% contrast of both gratings over 800ms at the end 

of which a reward-regime cue was presented in the form of a change in the color of the 

fixation point (colors randomized across subjects). This regime cue remained on the 

screen throughout the duration of the trial. During the following baseline stimulus 

presentation (800, 1200 or 1600 ms in a pseudorandomized order) the contrast of both 

gratings was held at 50%. The contrast of one grating was then stepped up to 56% (low) 

or 62% (high) and that of the other grating simultaneously stepped down to 44% (low) or 

38% (high), and this contrast differential was held fixed for a full 2400-ms evidence-

presentation interval. Evidence onset was marked by a simultaneously onsetting 100 

ms-tone (10 kHz, 5ms fade-in/fade-out) to exclude any temporal ambiguity about 

evidence onset. Participants indicated that the left-tilted or right-tilted grating was higher 

in contrast by clicking a mouse button with the thumb of the corresponding hand. At the 

end of this interval, feedback was provided in the form of the number of points won on 

the current trial presented close to fixation for 200ms alongside a tone whose pitch was 

proportional to this number of points and whose length indicated whether the response 

given had been correct (100ms/250ms beep for correct/incorrect responses, double 

beep for responses after deadline). After every 10 trials, participants received an 

extended feedback in the form of an information screen stating the number of points won 

on the last 10 trials as well as the number of points won in the current experimental 

block to that point. Within experimental blocks each trial’s evidence-onset delay, target-

direction, contrast level, and Speed/Accuracy regime (see next paragraph) was assigned 

pseudorandomly. 
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Speed/Accuracy regimes 

 

This contrast discrimination task was performed in four different reward regimes, where 

particularly fast or accurate responses were rewarded highly on Speed or Accuracy-

trials, respectively. Reward conditions included 1) response time (RT)-independent 

rewards up to a late deadline which coincided with evidence offset (‘Accuracy deadline’), 

2) RT-independent rewards up to an early deadline at 1s after evidence-onset (‘Speed 

deadline’), 3) RT-dependent rewards, which decreased at a low rate (-4.2pts/s, 

‘Accuracy slope’), and 4) RT-dependent rewards, which decreased at a high rate (-

50pts/s, ‘Speed slope’). Rewards as a function of response time are displayed in 

Supplementary Fig. 1A-B. These reward regimes were initially designed to enable 

exploration of differences in speed-adaptation mechanisms in the decreasing-reward 

versus deadline regimes. Through extensive piloting the exact temporal deadlines and 

rates of reward decrease were adjusted to match mean reaction times across the two 

different methods of Speed/Accuracy emphasis manipulation. In each experimental 

block, the two regimes for a single reward manipulation method were randomly 

interleaved for comparison (i.e., either ‘Accuracy deadline’ vs. ‘Speed deadline’, or 

‘Accuracy slope’ vs. ‘Speed slope’). 15 participants completed 16 blocks of 60 trials, and 

one subject completed 24 blocks of 40 trials. Subjects were instructed to try to maximize 

their points won in every experimental block, as their monetary reward after the 

experiment was calculated as a function of the sum of points won in four randomly 

chosen blocks. 

 

Behavioral analysis 

 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 14, 2017. ; https://doi.org/10.1101/203141doi: bioRxiv preprint 

https://doi.org/10.1101/203141
http://creativecommons.org/licenses/by-nc/4.0/


	 42 

Participants’ behavior was evaluated based on reaction time (RT) distributions for 

correct and incorrect responses. As an initial step, we determined whether there was a 

significant difference in reaction time distributions between the deadline and slope 

conditions of the two different Speed/Accuracy regimes (‘Speed deadline’ vs. ‘Speed 

slope’, and ‘Accuracy deadline’ vs. ‘Accuracy slope’) using Kolmogorov-Smirnov tests. 

Since these tests revealed no significant differences between RT distributions in any 

experimental condition, all consecutive analyses were performed on data pooled across 

the deadline and slope methods, but separately for Speed and Accuracy emphasis. All 

patterns of results were, however, verified for the individual deadline and slope methods. 

Conditional accuracy functions were computed as the proportion of correct trials within 

reaction time deciles. To examine potential differences in the rate of decline of accuracy 

over the slower-RT trials for which this decline was evident, we identified trials with RTs 

slower than the mean RT in the RT-bin with the greatest performance in each 

individual’s conditional accuracy function (trials pooled across conditions). We then 

performed a linear mixed-effects analysis on these trials, with fixed effects of RT, 

Speed/Accuracy emphasis, and Contrast, and Subject identity as a random effect. A 

likelihood ratio test was performed to determine whether the inclusion of an interaction 

between RT and Speed/Accuracy emphasis significantly improved model fits to the data. 

 

Data acquisition and pre-processing 

 

Continuous Electroencephalogram (EEG) and Electromyogram (EMG) were acquired 

using a 96-channel actiCAP system and Brain Products DC amplifiers (Brain Products 

GmbH, München, Germany) at a sample rate of 500 Hz. 93 channels were used for a 

customized EEG montage including standard site FCz used as the online reference. The 

remaining four electrodes were used for recording EMG from the thenar eminence of the 
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left and right thumb. Simultaneously, eye gaze and pupil size were acquired 

continuously using an EyeLink 1000 (SR-Research) eye tracker. Data were analyzed 

offline using in-house Matlab scripts in conjunction with data reading routines and 

topographic mapping functions of the EEGLAB toolbox73. 

EEG and EMG data were detrended linearly offline within each experimental block. 

Potentials in each EEG electrode were further re-referenced to the average of all EEG 

channels, a Hamming low-pass filter with a cutoff frequency of 45 Hz was applied, and 

noisy channels were detected based on their elevated signal variance with respect to the 

rest of the channels, and interpolated for individual blocks using spherical spline 

interpolation (an average of 0.67 ± 0.46  channels per block). Individual trials were 

rejected from the analysis if the amplitude of a channel of interest exceeded 90 V or any 

electrode’s potential exceeded 180 V at any time point before the response. All EEG 

data were converted to current source density (CSD)74 to increase spatial resolution and 

specifically to reduce spatial overlap between the centro-parietal positivity and the 

fronto-central negativity33. Event-related potentials were then extracted from the EEG, 

EMG and pupillometry data for two different epochs: regime cue-locked epochs were 

extracted from 500 ms before the onset of the regime cue to 4000 ms thereafter, and 

target epochs spanned the 1000 ms before and the 3200 ms after evidence onset. EEG 

epochs were baseline-corrected relative to the 100 ms interval preceding the regime-

cue, or evidence onset, respectively, and trials were rejected if the delay between the 

visual contrast change on the screen and the tone marking this evidence onset for the 

participant exceeded 30 ms, which occurred on less than 2.5% of trials. Due to the 

longer time constants associated with changes in pupil size, event-related pupil size 

waveforms were baseline-corrected with reference to the 500 ms prior to the onset of the 

regime-cue for both the cue-locked and the evidence onset-locked epochs. Response-

aligned traces in all modalities were derived by extracting epochs from -1000 ms to 600 
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ms relative to the response on every trial. Spectral EEG measures were extracted from 

both stimulus-aligned epochs and response-aligned epochs through short-term Fourier 

transforms using boxcar windows of 300 ms (8 to 30Hz) or 400 ms (20 and 25 Hz) 

measured in steps of 50 ms. 

 

Signal Analysis 

 

Sensory evidence representation. The cortical representation of visual evidence was 

quantified as the difference in Steady-State Visually Evoked Potentials (SSVEP) of the 

two target frequencies of 20 and 25 Hz averaged together with their respective first 

harmonics, and normalized to their respective neighboring frequency bins at standard 

site ‘Oz’. SSVEPs were measured on a single-trial basis using a standard short-time 

Fourier transform with a boxcar window size of 400ms, fitting an integer number of 

cycles of both the 20-Hz and 25-Hz components, with a step size of 50ms. 3-Way 

repeated-measures Analyses of Variance (ANOVAs) were used to determine the effect 

of the imposed Speed/Accuracy regime, stimulus Contrast (high vs. low) and Target 

Type (left-tilted increase vs. right-tilted increase) on the differential evidence signal (20 

Hz minus 25 Hz spectral amplitude) in a time range of 250-450 ms post evidence onset. 

Sphericity was confirmed for all inputs to this and all other ANOVAs using Mauchly’s 

test. For visualization, these SSVEP amplitudes were baseline-corrected to the 400 ms 

preceding evidence onset. Having established a differential modulation effect in a 

Regime x Target Type interaction in this timerange, we examined the temporal extent of 

the effect by repeating the same ANOVA on all individual time windows after evidence-

onset, and plotting the timecourse of F-values (Figure 2b, top). To determine whether 

the observed SSVEP modulations effects were specifically invoked during decision 

formation related to active stimulus evaluation, we repeated the same ANOVA on a 
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response-locked time windows just prior (-50ms) and just after the button click (+50ms). 

On raw SSVEP amplitudes of each individual SSVEP frequency we carried out ANOVAs 

with the same factors, so that common, or non-selective effects could be assessed 

through main effects of Speed/Accuracy Regime (Supplementary Fig. 2).   

Evidence accumulation. A centro-parietal positivity (CPP) previously linked to evidence 

accumulation (O’Connell et al 2012) was measured at standard site ‘Pz’. Because the 

onset of evidence was marked by a readily-audible tone, which itself generates a 

stereotyped auditory evoked potential, we employed an iterative algorithm for signal 

decomposition to separate out any strictly stimulus-locked auditory component from the 

decision-related signals based on the variability in response latency across single 

trials75. Critically, the algorithm was naive to all stimulus conditions, and the resulting 

stimulus-locked component was constrained to be invariant across all trials within each 

individual subject, so that differences in potentials evoked by stimulus contrast or 

Speed/Accuracy regime were left untouched by this method. This stimulus-locked 

component was then subtracted from the evoked potential of all trials.     

From the resulting centro-parietal positivities we obtained three single-trial measures. 

The level of baseline activity was quantified as the average potential in the 50 ms before 

evidence onset (measured in the regime cue-locked epochs), and statistically assessed 

via a linear mixed-effects model. This as well as all following mixed-effects models 

included the fixed effects factors of Speed/Accuracy regime, Contrast difference, 

Reaction Time, squared Reaction Time, and Response hand or Target type (left vs. 

right), and Subject identity was always included as a random effect. We adopted the 

blanket policy of modeling any potential differences between left and right target trials 

because the two gratings had different phase-reversal frequencies, and similarly always 

included the RT-squared term based on the observation that conditional accuracy 

functions followed an inverted-U shape, suggesting potentially separate mechanisms at 
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work to explain the lower accuracy in the fastest, versus the slowest RT trials. Neural 

measures and reaction times were always z-scored within subjects before being entered 

into the models. The rate of rise of the CPP was measured as the slope of the response-

locked traces between -300 and -50 ms with respect to the response, chosen to capture 

the period of evidence accumulation on the vast majority of trials. The impact of stimulus 

Contrast and Speed/Accuracy regime on this rate of rise was established through a 2-

Way repeated measures ANOVA. Statistical test outcomes did not depend on the exact 

choice of this time window. The CPP amplitude at response was measured in a 60-ms 

window around the inflection point of the lateralized motor potential traced over 

contralateral motor cortex (-130 to -70ms, Supplementary Fig. 4), and statistically 

assessed via a linear mixed-effects model. The exact time window used for the CPP 

amplitude analysis did not influence the results qualitatively. These analyses were 

repeated using the raw-EEG data without subtracting the auditory evoked component, 

and results remained qualitatively unchanged (see Supplementary Fig. 3). To assess 

whether the CPP amplitude at response was significantly greater than zero when 

subjects made incorrect decisions, we pooled error trials across experimental conditions 

and computed a repeated-measures ANOVA across subjects. The peak time of the 

mean CPP within each subject, evidence-level and Speed/Accuracy regime was 

measured as the maximum amplitude between -150ms and +100ms relative to the 

response of a smoothed average trace. Smooth traces were computed by applying local 

regression using weighted linear least squares and a first degree polynomial model to 

moving windows of 200ms. A 2-Way ANOVA was computed to determine the effect of 

Speed/Accuracy regime and evidence-strength on this delay.   

Motor preparation. Motor preparation signals were measured in the decrease of 

Mu/Beta amplitude (8-30Hz; integrated across both bands as in32,34) at motor cortical 

sites ‘C3’ (left) and ‘C4’ (right) for the preparation of contralateral responses. Spectral 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 14, 2017. ; https://doi.org/10.1101/203141doi: bioRxiv preprint 

https://doi.org/10.1101/203141
http://creativecommons.org/licenses/by-nc/4.0/


	 47 

amplitude was quantified using a standard short-time Fourier transform with a boxcar 

window size of 300ms at intervals of 50ms. Motor preparation at baseline activation and 

at response were quantified as the Mu/Beta amplitude in the 300 ms preceding evidence 

onset and the button click, respectively, separately for the hemisphere contralateral and 

ipsilateral to the eventually executed response on a single trial basis. All measures were 

statistically assessed via linear mixed-effects models. To test for signatures of evidence-

independent components of motor preparation that grow over time, we computed a 

linear mixed-effects model on the signal excursion of Mu/Beta amplitude ipsilateral to 

correct responses, where “excursion” is computed as the difference between levels at 

response and at the pre-evidence baseline. It was important to measure excursion in this 

case in order to account for the significant variation of baseline motor preparation with 

RT, which otherwise could obscure the influence of systematic urgency increases during 

evidence accumulation. Excluding the SSVEP frequencies (20 Hz and 25 Hz) from the 

Mu/Beta computations did not change the pattern of results. The rate of change in motor 

preparation was calculated on a single trial basis by measuring the slope of a line fit to 

the Mu/Beta amplitude in the interval between -350 and -150 ms relative to the 

response, chosen to capture as long a section of decision formation as is feasible while 

avoiding influences of post-response changes due to temporal blur associated with the 

300-ms windows. A repeated measures ANOVA was computed to test the significance 

of the influence of stimulus Contrast level and Speed/Accuracy emphasis on the 

Mu/Beta slope contralateral to response for trials that resulted in a correct response 

only. Restricting this analysis to correct trials ensured a positive relationship between the 

physical evidence and the neural measure of motor preparation. 

 

Response execution. EMG data were analyzed for effects on movement onset times 

and muscle activation levels. Motor time was quantified on a single-trial basis as the time 
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between the onset of the muscle activity burst closest to response and the registration of 

a button click. EMG onset bursts were identified manually by visual inspection of the raw 

data, using a custom-made Graphical User Interface, and the results were verified on 

times derived from an automated algorithm relying on changes in variance of the 

broadband EMG signal and on the times estimated by another, independent human 

observer. The difference in mean motor time between Speed/Accuracy regimes was 

assessed using a two-tailed t-test. The effect of stimulus Contrast and Speed/Accuracy 

regime on the mean delay between EMG burst onset and the peak of the CPP were 

evaluated by 2-Way repeated measures ANOVAs. Muscle activation was quantified as 

the mean spectral amplitude between 10 and 250 Hz in 100-ms time windows stepped 

by 25ms. The ultimate response-producing muscle activation was quantified as the 

spectral EMG amplitude in the responding thumb in the 100ms preceding the button 

click. Insight into evidence-independent components of muscle activation was sought by 

quantifying the mean EMG spectral amplitude in the response-withholding thumb in a 

100-ms time window preceding the mean onset time of the response-producing EMG 

burst (-225ms to -125ms). In this latter analysis only correct trials were included so that 

the sensory evidence runs counter to the measured action alternative, enabling us to 

more confidently attribute any increase over RT to evidence-independent urgency. Both 

measures were evaluated by linear mixed effect models. 

On a single-trial basis, we additionally measured the rate of building muscle activation 

during responses initiation. Specifically, we measured the slope of a line fit to the 

spectral muscle activation timecourse (as before but stepped by 5 ms for increased 

resolution) in the response-executing thumb in the interval between -175ms and -125ms 

relative to the button click. This interval was chosen based on visual inspection of grand-

average traces in single subjects. We statistically tested these temporal EMG slope 

measures using linear mixed effect models.   
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Pupillometry. To examine the role of pupil-linked arousal systems in the speed 

pressure adaptations, we continuously measured pupil size using the eye tracker. Pupil 

size was compared across Speed/Accuracy regimes in the pre-evidence baseline by a t-

test. To test the influence of time on pupil size, we computed mean pupil size in 30 50-

ms time windows spaced at 50ms starting at stimulus onset. We then tested these time 

series for a significant interaction between Speed/Accuracy emphasis and Time across 

subjects using a two-way (2x30), repeated measures ANOVA. We further measured 

pupil size at response in a 100-ms time window centered on the time of the button click 

and assessed it statistically via a linear mixed-effects model. In order to test whether, 

above and beyond the average adjustments for speed pressure, variations in pupil size 

were linked with variations in the differential evidence representation, we split the trials in 

each individual condition into two pupil-size bins based on mean pupil size between 0 

and 1500ms after evidence onset. We then computed a 4-Way ANOVA including factors 

of Speed/Accuracy Regime, Contrast, Target type (Left/Right), and Pupil size to capture 

the effect of pupil size on the differential SSVEP in a Pupil x Target type interaction. 

Here differential SSVEP was measured in the same time frame during which the 

Speed/Accuracy effect was significant (200-550ms).   
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