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Abstract	

A	 cytometric	 imaging	 approach,	 called	 CO-Detection	 by	 indEXing	 (CODEX),	 that	 enables	 high	
parameter	 multiplexing	 of	 antibody-tagged	 target	 epitopes	 is	 used	 here	 to	 create	 high	 parameter	
imaging	datasets	 of	 normal	mouse	 and	 lupus	 (MRL/lpr)	 spleens.	 In	 this	 procedure,	 antibody	binding	
events	 are	 rendered	 iteratively	 using	 DNA	 barcodes,	 fluorescent	 dNTP	 analogs,	 and	 an	 in-situ	
polymerization-based	 indexing	 procedure.	 	 Fluorescent	 signals	 from	multiple	 rounds	 of	 indexing	 are	
computationally	combined	into	a	multi-channel	image	stack	and	subjected	to	image	segmentation	and	
quantification.	 A	 segmentation	 and	 linear	 model	 algorithm	 was	 developed	 to	 accurately	 quantify	
membrane	 antigen	 levels	 on	 dissociated	 cells	 as	 well	 as	 tissue	 sections.	 Leveraging	 the	 spatially	
resolved	nature	of	CODEX	multiplexed	single-cell	 imaging	data,	quantitative	de	novo	characterization	
of	 lymphoid	 tissue	 architecture	 was	 enabled	 and	 overlaid	 onto	 previously	 described	 morphological	
features.	 We	 observed	 an	 unexpected,	 profound	 impact	 of	 the	 cellular	 neighborhood	 on	 the	
expression	of	protein	receptors	on	immune	cells.	By	comparing	normal	murine	spleen	to	spleens	from	
animals	 with	 systemic	 autoimmune	 disease	 (MRL/lpr),	 extensive	 and	 previously	 uncharacterized	
splenic	 cell	 interaction	 dynamics	 in	 the	 healthy	 versus	 diseased	 state	 was	 observed.	 The	 fidelity	 of	
multiplexed	 imaging	 data	 analysis	 demonstrated	 here	 will	 allow	 deep	 proteomic	 analysis	 and	
systematic	characterization	of	complex	tissue	architecture	in	normal	and	clinically	aberrant	samples.	

Introduction	

Tissue	 imaging	 has	 been	 at	 the	 foundation	 of	 basic	 research	 and	 clinical	 studies	 since	 the	
advent	 of	 the	 microscope.	 Dyes	 that	 recognize	 cellular	 constituents	 and	 the	 conventional	 use	 of	
fluorophore-conjugated	 antibodies	 to	 tag	 specific	 epitopes	 typically	 allow	only	 limited	multiplexing--
largely	 based	 on	 the	 number	 of	 fluorophores	 that	 can	 be	 simultaneously	 imaged.	Microscopes	with	
associated	 optical	 systems	 capable	 of	 reading	 five	 fluorophores	 simultaneously	 are	 common	 in	
academic	 practice,	 with	 specialty	 instruments	 reaching	 eight	 parameters.	 Approaches	 have	 been	
developed	to	overcome	such	limitations1-3,	but	these	protocols	have	required	multiple	stain/strip/wash	
cycles	 of	 the	 antibodies	 that	 can	 be	 time	 consuming	 or	 lead	 to	 sample	 degradation	 over	 time.	
Multiplexed	ion	beam	imaging4	and	imaging	mass	cytometry5	methods	that	detect	antibodies	tagged	
with	 metal	 isotopes	 on	 platform-dependent	 mass	 spectrometry	 instruments	 have	 a	 multiplexing	
capability	 reported	 to	 40	 channels;	 however,	 instrument	 availability	 and	 user	 expertise	 has	 so	 far	
limited	the	adoption	of	these	technologies.		

The	 need	 for	 highly	 multiplexed	 imaging	 is	 especially	 critical	 to	 our	 understanding	 of	 tissue	
architecture	 at	 the	 subcellular,	 cellular,	 and	 tissue	 level.	 Indeed,	 initiatives	 have	 been	 recently	
proposed	to	detail	a	cellular	scale	map	in	the	entire	human	body	as	well	as	model	organisms	(Human	
Cell	Atlas,	Chan-Zuckerberg	 Initiative).	 	As	 such,	among	 the	many	 ‘omics	 systems	of	 interest,	a	deep	
phenotyping,	multiplexed	 histological	 analysis	 would	 provide	 linkage	 to	 existing	 developmental	 and	
clinical	 knowledge	 of	 tissue	 structure.	 The	 potential	 for	 multiplexed	 in	 situ	 imaging	 at	 cellular	 and	
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subcellular	 scales	 can	be	measured	against	 the	understandings	brought	by	decades	of	 fluorescence-
based	flow	cytometry	to	basic	researchers	and	clinicians	alike6.	The	advent	of	cytometry	technologies	
based	 on	 mass	 spectroscopy	 has	 increased	 the	 depth	 at	 which	 single	 cell	 proteomics	 and	 RNA	
expression	can	be	accomplished7-14.	Such	flow	cytometric	procedures	have	provided	critical	biological	
information	at	the	single-cell	level	regarding	ploidy,	immunophenotype,	frequency	of	cell	subsets,	and	
expression	 levels	 of	 proteins,	 as	 well	 as	 functional	 characterization	 in	 basic	 biology	 and	 biomedical	
arenas.		

The	 approach	 described	 here	 (CODEX,	 for	 CO-Detection	 by	 indEXing)	 extends	 these	 deep	
phenotyping	capabilities	to	most	standard	three-color	fluorescence	microscope	platforms	for	imaging	
of	solid	tissues.	Using	polymerase	driven	incorporation	of	dye	labeled	nucleotides	into	the	DNA	tag	of	
oligonucleotide-conjugated	 antibodies	 accurate	 high	 multiplexed	 single-cell	 quantification	 of	
membrane	 protein	 expression	 in	 densely	 packed	 lymphoid	 tissue	 images,	 (which	was	 once	 deemed	
impossible	 15	 )	 was	 achieved.	 Automatic	 delineation	 of	 cell	 types	 from	 multidimensional	 marker	
expression	and	positional	data	generated	by	CODEX	enabled	deep	characterization	of	 cellular	niches	
and	their	dynamics	during	autoimmune	disease	both	for	major	and	rare	cell	 types	populating	mouse	
spleen.	 	 A	 rich	 source	 of	multivariate	 data	 is	 generated	 and	 provided	 for	 the	 community	 to	 further	
efforts	 in	refining	algorithms	for	tissue	segmentation,	sub	tissue	neighborhood	analysis,	and	rare	cell	
type	detection	(http://welikesharingdata.blob.core.windows.net/forshare/index.html).	
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Results	

Single	base	primer	extension	enables	multiplexed	antigen	staining	

DNA	provides	an	 ideal	 substrate	 for	 the	design	and	construction	of	molecular	 tags	due	 to	 its	
combinatorial	 polymer	 nature.	 An	 indexable	 tagging	 system	 whereby	 specific	 tags	 are	 iteratively	
revealed	 in	 situ	 by	 a	 stepwise	 enumeration	 procedure	 was	 designed.	 Antibodies	 (or	 other	 affinity-
based	 probes)	 are	 first	 labeled	 with	 oligonucleotide	 duplexes	 that	 encode	 uniquely	 designed	
sequences	 with	 5’	 overhangs	 (Figure	 1A).	 Cells	 are	 stained	 with	 a	 mixture	 containing	 all	 tagged	
antibodies	at	once.	During	iterative	cycles	of	visualization	of	labeling	(rendering)	the	sequence	of	the	5’	
overhang	determines	the	index	(the	combination	of	a	polymerization	cycle	and	a	fluorescent	channel)	
at	which	a	given	DNA	tag	incorporates	one	of	two	fluorescently	labeled	dNTP	species.	Specifically,	the	
antibody-matched	overhangs	 (indexes)	 include	a	 region	 to	be	 filled	by	blank	 letters	and	a	dedicated	
position	 for	 a	 dye	 labeled	 nucleotide	 at	 the	 end.	 The	 antibodies	 to	 be	 revealed	 first	 generally	 have	
shorter	overhangs	than	the	antibodies	to	be	visualized	(rendered)	in	later	cycles.	

In	Figure	1,	we	show	how	the	CODEX	(CO-Detection	by	indEXing)	method	works	by	iteratively	
extending	 the	3’	of	 the	overhang	 (with	DNA	polymerase)	 in	 the	presence	of	one	of	 two	non-labeled	
INDEX	nucleotides	 (dATP	or	dGTP)	along	with	two	fluorescently	 labeled	“rendering”	nucleotides	 (dU-
SS-Cy5	and	dC-SS-Cy3).	A	set	of	3	pairs	of	indexed	antibodies	bound	to	a	cell	are	schematized.	The	first	
indexing	 nucleotide	 (in	 this	 case	 G	 (dGTP))	 is	 added	 (by	 primer	 extension)	 along	 with	 fluorescent	
nucleotides	 dUTP	 and	 dCTP.	 Note	 that	 all	 6	 antibodies	 have	 the	 unlabeled	 INDEX	 “G”	 at	 the	 first	
position	 (across	 from	 the	 C	 in	 the	 lower	 strand).	 	 Only	 antibodies	 1	 and	 2	 are	 competent	 to	 be	
extended	with	 (dU-SS-Cy5	and	dC-SS-Cy3)	 that	 is	present	 in	 the	mixture	during	the	primer	extension	
because	Abs	3,	4,	5	and	6	have	a	T	in	lower	strand	immediately	after	the	C	in	the	lower	strand.	Cells	are	
washed	of	free	nucleotides	and	the	slide	 is	 imaged.	 	At	this	step,	only	cells	which	have	absorbed	the	
antibodies	1	and	2	will	be	visualized.	Then,	a	clearing	step	is	performed	using	TCEP—which	cleaves	the	
disulfide	 linkers	 to	 release	 the	 fluorophores—and	 the	 slide	 is	 washed.	 The	 slide	 is	 now	 ready	 for	
indexing	cycle	#2.	To	reveal	the	next	index,	observe	the	T	nucleotide	in	lower	strand	of	the	antibodies	
3	,	4,	5	and	6.	At	this	second	cycle,	a	non-fluorescent	A	(dATP)	is	used	to	fill	 index	position	2--	which	
then	 allows	 for	 fluorescent	 nucleotides	U	 and	C	 to	be	 incorporated	onto	Abs	 3	 and	4.	 The	 cells	 are	
reimaged	with	this	cycle	2	set	of	antibodies.	 	Again,	 the	fluorophores	are	cleaved	with	TCEP	and	the	
cells	are	washed.	One	repeats	these	two	indexing	cycles	where	the	next	 index	position	 is	 filled	by	G,	
such	that	the	Abs	5	and	6	are	now	competent	to	be	filled	with	fluorescent	dUTP	and	dCTP.	The	fourth	
indexing	cycle	would	employ	non-fluorescent	A	again,	and	so	forth.		Each	cycle	requires	approximately	
10	minutes.	 Imaging	 time	on	 every	 cycle	 can	 vary	 from	minutes	 to	 hours	 depending	 on	 the	 sample	
dimensions,	resolution	at	which	the	image	is	taken,	and	the	microscope	specifications.	Importantly,	the	
system	enables	multiplexed	tissue	imaging	analysis	by	means	of	a	standard	fluorescence	microscope.		
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To	 test	 the	 premise	 of	 the	 system,	 isolated	 mouse	 spleen	 cells	 were	 incubated	 with	 a	 CD4	
antibody	conjugated	 to	an	 indexing	oligonucleotide	duplex	 (as	 represented	by	Ab	1	 in	Figure	1A).	 In	
this	 trial	experiment	TCRβ-Alexa	488	was	used	as	a	counterstain.	A	single	round	of	primer	extension	
was	done	with	a	mix	of	unlabeled	dGTP	and	dUTP-ss-Cy5.	A	cell	population	positive	for	both	CD4	and	
TCRβ	was	observed	by	flow	cytometry.	Observation	of	this	population	was	dependent	on	the	addition	
of	Klenow	DNA	polymerase	to	the	reaction	mixture	(Figure	1B,	C)	proving	the	feasibility	of	rendering	
the	antibody	binding	pattern	by	primer	extension.	Similarly,	 in	tissue	sections,	CODEX	tag-conjugated	
antibodies	 produced	 lineage-specific	 staining	 comparable	 to	 regular	 fluorescent	 antibodies	 (see	
staining	patterns	of	B220-CODEX	and	B220-APC	in	mouse	spleen,	Figure	1D-F).	

In	 a	 simulated	 multicellular	 mix	 created	 by	 combining	 30	 batches	 of	 mouse	 splenocytes	
barcoded	 with	 pan-leukocytic	 CD45	 antibody	 labeled	 with	 a	 set	 of	 30	 distinct	 CODEX	 tags,	 the	
visualization	of	the	CODEX	15-cycle	staining	pattern	 indicated	the	comparable	quantitative	rendering	
of	every	cellular	batch	per	designated	cycle,	with	low	background,	no	signal	carryover	between	cycles,	
and	 lack	 of	 signal	 deterioration	 across	 the	 15	 cycles	 (Supplementary	 Figure	 1A-F).	 	 As	 per	 flow	
cytometric	and	other	cell	staining	approaches,	appropriate	titration	of	reagents	minimizes	background	
binding	events	and	increases	signal	to	noise.	

	

Multidimensional	staining	of	mouse	hematopoietic	cells	

To	validate	the	quantitative	performance	of	CODEX,	cells	isolated	from	mouse	spleens	were	co-
analyzed	by	mass-cytometry	 (CyTOF)	 and	CODEX	using	 identical	 24-antibody	panels	 (Supplementary	
Table	 1	 available	 online38).	 Use	 of	 the	 same	 antibody	 clones	 and	 the	 same	 splenocyte	 preparation	
ensured	the	validity	of	comparisons.	CyTOF	analysis	was	performed	on	cell	 suspensions	stained	with	
metal-tagged	antibodies	as	previously	described.	For	CODEX	analysis,	isolated	spleen	cells	were	stained	
a	 panel	 of	 antibodies	 conjugated	 to	 indexing	 oligonucleotides.	 Samples	 were	 fixed	 to	 a	 coverslip	
(Figure	 2A)	and	 imaged	over	12	cycles	of	CODEX	protocol.	 Images	were	 segmented	using	 the	 in	 situ	
cytometry	 software	 toolkit	 developed	 for	 this	 study	 (see	Materials	 and	Methods	 and	 Figure	 2A	 for	
exemplary	 segmentation	 of	 the	 cell	 spread),	 and	 the	 staining	 of	 individual	 cells	 across	 the	 indexing	
cycles	was	 quantified.	 Segmentation	 data	was	 converted	 into	 flow	 cytometry	 standard	 (FCS)	 format	
and	 analyzed	 using	 the	 conventional	 flow	 cytometry	 analysis	 software	 Cytobank.	 Biaxial	 scatterplot	
gating	 analysis	 revealed	 a	 consistent	 similarity	 in	 lineage-positive	 populations	 between	 CODEX	 and	
CyTOF	data	(Figure	2B).		

In	 further	 experiments	 (see	 below)	 the	 scope	 of	 CODEX	 was	 expanded	 to	 analysis	 of	 tissue	
sections.	A	3D	segmentation	algorithm	(see	Materials	and	Methods)	was	therefore	created	to	combine	
information	from	the	nuclear	staining	and	a	ubiquitous	membrane	marker	(in	this	case	CD45)	to	define	
single-cell	 boundaries	 in	 crowded	 images	 such	as	 lymphoid	 tissues.	 For	 each	 segmented	object	 (i.e.,	
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cell)	a	marker	expression	profile	(Supplementary	Table	2	available	online38),	as	well	as	the	identities	of	
the	nearby	neighbors	were	recorded	(using	Delaunay	triangulation,	Supplementary	Table	3	available	
online38).	 In	 contrast	 to	 cells	 in	 suspension	 or	 dissociated	 cells	 spread	 on	 glass	 (Figure	 2A),	 cells	 in	
tissue	 sections	 are	 adjacent	 to	 each	other--	 therefore	 a	 large	 fraction	of	 each	 cell’s	membrane	 is	 in	
direct	 contact	 with	 the	 membranes	 of	 neighboring	 cells	 (Figure	 2C).	 Depending	 on	 how	 the	
quantitation	 of	 marker	 expression	 per	 cell	 is	 performed,	 this	 might	 lead	 to	 a	 contribution	 of	
fluorescence	from	neighboring	cells	to	the	cell	of	interest	(Figure	2D).	

To	address	this	latter	challenge,	a	novel	linear	algorithm	for	positional	spillover	compensation	
was	created.	This	algorithm	is	based	on	the	same	principles	used	in	fluorescent	spillover	compensation	
in	 traditional	 flow	 cytometry,	 except	 that	 our	 algorithm	performs	 compensation	 between	 physically	
adjacent	 cells	 based	 on	 approximated	 pairwise	 cell-to-cell	 contact	 ratios	 (Figure	 2D).	 Use	 of	 this	
compensation	method	resulted	in	a	considerable	reduction	of	spillover	signal	(Figure	2E).		

Multidimensional	analysis	of	cellular	neighborhoods	in	murine	spleen	

Despite	 the	 large	 number	 cells	 that	 traffic	 through	 the	 mouse	 spleen,	 this	 lymphoid	 organ	
maintains	clear	structural	sub-compartments--	each	with	distinct	cellular	compositions	and	functions.	
The	white	pulp,	wherein	 T	 and	B	 lymphocytes	 are	 spatially	 segregated	 into	distinct	 T	 cell-rich	 zones	
(peri-arteriolar	lymphoid	sheath,	PALS)	and	B	cell-rich	zones	(follicles),	is	circumscribed	by	the	marginal	
zone.	The	 red	pulp	contains	cells	of	erythroid	 lineage	and	a	variety	of	 innate	 immune	cells	 including	
granulocytes,	macrophages,	 and	dendritic	 cells	 (see	 schematics	 in	 Figure	3B).	Much	of	 this	 structure	
and	function	has	been	laboriously	determined	over	many	years	—	and	has	never	been	visualized	in	a	
multiplexed	system	comparable	to	high	dimensional	cytometry.	

A	30-antibody	panel	was	therefore	designed	to	identify	splenic-resident	cell	types	(lymphocytes,	
macrophages,	 microvessels,	 conduit	 system,	 splenic	 stroma;	 Figure	 3A,	 Supplementary	 Table	 1	
available	online38)	and	applied	to	the	cryo-sections	of	spleens	from	wild-type	(3	spleens)	and	MRL/lpr	
mice	 (6	 spleens)	 (Supplementary	 Figure	 7).	 The	 staining	 patterns	 of	 28	 DNA-conjugated	 antibodies	
were	acquired	over	14	cycles	of	CODEX	imaging	and	overlaid	with	2	additional	fluorescent	antibodies,	
CD45-FITC	and	NKp46-Pacific	Blue	and	a	DRAQ5	nuclear	stain	 (Figure	3A	and	 low-resolution	views	 in	
Supplementary	Movie	1	available	online38).	Each	tissue	was	imaged	with	a	40x	oil	immersion	objective	
in	a	7x9	tiled	acquisition	at	1386x1008	pixels	per	tile	and	188	nm/pixel	resolution	and	11	z-planes	per	
tile	 (axial	 resolution	900	nm).	 Images	were	subjected	 to	deconvolution	 to	 remove	out-of-focus	 light.	
After	drift-compensation	and	stitching,	we	obtained	a	total	of	9	 images	(one	per	tissue)	with	x=9702	
y=9072	z=11	dimensions,	each	consisting	of	31	channels	(30	antibodies	and	1	nuclear	stain).	

4	major	 classic	 splenic	 compartments:	 red	 pulp,	 B-cell	 follicle,	 PALS	 and	marginal	 zone	 (MZ)	
(Figure	 3B)	 could	be	easily	discerned	 in	CODEX	 imaging	data	 (Figure	 3A).	Next,	 the	CODEX	data	was	
subjected	 to	 segmentation,	quantification	and	 compensation,	 as	described	above,	 yielding	a	 total	of	
734101	30-dimensional	single-cell	protein	marker	expression	profiles	(Figure	3C,	Supplementary	Table	
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2	 available	 online38).	 The	 segmented	 CODEX	 data	 was	 subject	 to	 automated	 phenotype	 mapping	
algorithm	 X-shift	 that	 was	 previously	 developed	 and	 validated	 on	 CyTOF	 data	 16	 (Figure	 3C).	 58	
phenotypic	 clusters	 inferred	 by	 X-shift	 clustering	 were	 manually	 annotated	 (Figure	 3C,	 D	 and	
Supplementary	 Figure	 2	 available	 online38)	 based	 on	 the	 30-color	 marker	 expression	 profile	 and	
thorough	 visual	 inspection	 of	 the	 representative	 image	 samples	 (Supplementary	 Figure	 2.1-2.27	
available	 online38).	 Some	 clusters	 were	 found	 to	 originate	 from	 imaging	 artifacts	 such	 as	 dust	 and	
tissue	sectioning	defects.	That	reduced	the	overall	number	of	cell-like	objects	to	707466.	Each	cluster	
was	 assigned	 to	one	of	 27	broadly	defined	 single-cell	 phenotypic	 groups	 (cell	 types),	which	 in	 some	
cases	 could	be	 clearly	matched	 to	major	 immune	cell	 types	and	 in	others	were	named	according	 to	
expression	of	distinguishing	surface	markers	(see	cluster	annotation	and	cell	counts	in	Supplementary	
Table	4	available	online38).		

Notably	 this	 analysis	 confirmed	 that	 even	 rare	 computationally	 derived	 cellular	 phenotypes	
closely	matched	cell	types	expected	to	be	observed	in	normal	spleen.	For	example,	CD4hi/CD3-/MHCIIhi	
cells	were	identified	by	X-shift	clustering	as	a	rare	(1321	out	of	total	707466	cells)	yet	distinct	cell	type	
present	in	the	spleen	(Supplementary	Figure	4A,	B).	The	CD4hi/CD3-/MHCIIhi	cells	were	sorted	out	with	
FACS	and	subject	to	microarray	expression	profiling,	which	revealed	that	they	were	similar	to	lymphoid	
tissue	 inducer	 (LTi)	 cells	 of	 the	 ILC3	 subtype	 of	 innate	 lymphoid	 cells	 17	 (Supplementary	 Figure	 4,	
Supplementary	Figure	3.28	available	online38).	These	cells	are	crucial	for	the	creation	of	proper	splenic	
microarchitecture	during	development.	Ectopic	introduction	of	LTis	can	induce	formation	of	secondary	
and	tertiary	lymphoid	structures	18	19.	These	cells	occupied	a	distinct	location	at	the	border	between	T	
and	 B	 cells	 in	 the	 normal	 tissue	 (Supplementary	 Figure	 4,	 Supplementary	 Figure	 3.28	 available	
online38)	and	lost	their	distinct	localization	pattern	in	the	MRL/lpr	mice.	CD11c+	B	cells	(age	associated	
B	 cells	 (ABCs),	 have	 been	 shown	 to	 be	 a	 key	 participant	 in	 the	 triggering	 of	 certain	 autoimmune	
responses	20,21)	are	another	example	of	unsupervised	identification	of	a	rare	cell	type	in	CODEX	data,	
the	splenic	location	of	which	has	not	been	previously	described	in	the	literature.	We	observed	them	to	
tightly	associate	with	conventional	dendritic	cells	(cDC)	and	occupy	a	distinct	peri-follicular	space	in	the	
boundary	between	PALS	and	B-zone.	Interestingly,	these	cells	diminished	in	numbers	and	redistributed	
towards	 intra-follicular	 space	 in	 the	 MRL/lpr	 spleens	 (Supplementary	 Figure	 2.5,	 Supplementary	
Figure	3.2	available	online38).	While	multiple	additional	interesting	cell-cell	associations	were	observed,	
it	 is	 obviously	 beyond	 the	 scope	 and	 the	 goals	 of	 this	 report	 to	 describe	 all	 of	 the	 apparently	 new	
observations	 pertaining	 to	 every	 cellular	 subset	 delineated	 in	 this	 study.	 	While	we	 have	 created	 a	
compendium	 of	 observed	 cell	 types	 and	 their	 associations,	 we	 will	 leave	 this	 as	 a	 resource	 to	 the	
community—and	relevant	experts—to	mine	this	data	for	biological	or	clinical	significance.	

Compared	 to	 CyTOF	 data	 on	 splenocytes	 isolated	 from	 homogenized	 spleen,	 CODEX	 in	 situ	
analysis	produced	a	similar	distribution	of	cell	counts	for	major	cell	types	except	that	CODEX	identified	
larger	numbers	of	resident	and	stromal	cell	types	such	as	erythroblasts	and	F4/80	macrophages	than	
CyTOF	did	(Figure	3E).	This	result	can	be	explained	given	that	these	cell	types	are	tightly	 intertwined	
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with	the	splenic	stroma	and	extracellular	matrix,	and	thus	many	of	these	cells	can	get	discarded	during	
cell	suspension	extraction	procedures	used	during	traditional	flow	cytometry	approaches.	

CODEX	 analysis	 provided	 a	 unique	 view	at	 cell	 type	 composition	of	 the	 splenic	 tissue	on	 the	
macro	as	well	as	the	micro	levels	from	the	perspective	of	cell-to-cell	contacts.	Pseudo-color	diagrams	
of	cell	type	distribution	in	splenic	tissue	provided	a	visual	overview	of	distribution	of	the	27	cell	types	in	
the	 splenic	 tissue,	providing	patterns	 that	were	otherwise	not	obvious	 from	single	 channel	overlays.	
(Figure	3F	and	5A).	Various	automated	approaches	were	then	developed	to	quantitatively	describe	the	
splenic	architecture	as	defined	by	cell-to-cell	contacts	and	composition	of	cellular	neighborhoods.	To	
provide	a	high-level	view	of	the	cell	type	interaction	landscape,	the	total	counts	of	contacts	between	
every	pair	of	cell	types	in	the	Delaunay	neighborhood	graph	(see	schematics	in	right	panel	of	Figure	4A	
and	 Supplementary	Table	3	 for	the	data,	available	online38)	 for	each	condition	was	determined.	The	
specificity	of	cell-to-cell	interaction	was	estimated	from	the	“log	odds	ratio”	metric	(ratio	of	observed	
probability	to	expected	probability	of	cell-to-cell	contact	occurring	by	chance)	(Supplementary	Table	5	
available	 online38).	 When	 visualized	 as	 heatmaps,	 this	 metric	 revealed	 a	 significant	 non-random	
distribution	of	cells	in	the	spleen.	In	the	majority	of	cases	cell	types	were	either	selectively	associating	
or	 avoiding	 each	 other	 (red	 or	 blue	 on	 the	 heatmap)	 pointing	 to	 prevalence	 of	 specific	 cell-to-cell	
interactions	 in	 shaping	 the	 spleen	 architecture.	 The	 major	 splenic	 anatomic	 compartments	 were	
reflected	 in	 two	 large	 mutually	 exclusive	 clusters	 of	 positive	 associations,	 which	 appeared	 to	
correspond	to	cell	types	populating	the	red	pulp	and	the	white	pulp,	respectively	(indicated	with	black	
rectangular	 outlines	 on	 Figure	 3G).	 For	 example,	 a	 significant	 positive	 association	 was	 observed	
between	F4/80+	macrophages	and	erythroid	cells,	as	 these	cell	 types	are	both	 found	 in	 the	red	pulp	
and	are	closely	associated	in	so-called	erythroblast	islands	22,23.	Also,	as	expected,	a	mutual	avoidance	
was	observed	between	cells	known	to	more	exclusively	 inhabit	only	 the	 red	or	 the	white	pulp	areas	
(Figure	 3G).	 An	 avoidance	 of	 interaction	 was	 also	 observed	 between	 T	 and	 B	 cells,	 reflecting	
concentration	of	these	cell	types	in	B	cell	follicles	and	PALS,	respectively (Figure	3G).		

Unexpectedly,	 the	 highest	 degree	 of	 association	 was	 observed	 between	 the	 cells	 of	 same	
phenotypic	 class	 (Figure	3G,	 bright	 red	 diagonal),	 suggesting	 that	 homotypic	 adhesion	 constitutes	 a	
major	force	driving	the	heterogeneity	of	cellular	distribution	in	immune	organs.	This	observation	held	
true	both	for	the	major	constituents	of	white	pulp,	T	and	B	cells,	as	well	as	for	rare	cell	types	such	as	
NK	 cells.	 Interestingly,	 even	 though	 CD8	 and	 CD4	 T	 cells	 tended	 to	 mix	 in	 the	 PALS,	 their	 mutual	
distribution	was	nonrandom	and	consisted	of	intertwined	threads	of	homotypic	cells	(Supplementary	
Figure	 5A).	 Interestingly,	 as	 an	 aside,	 similar	 structures	 could	 be	 reproduced	 in	 vitro	 by	 incubating	
heterotypic	 mixtures	 of	 sorted	 splenic	 cell	 populations	 (Supplementary	 Figure	 5B,	 C).	 These	 data	
suggest	 that	homotypic	cell	association	might	be	an	 important	driver	of	 the	white	pulp	substructure	
and	is	worth	investigation	under	other	auspices.	

The	precision	in	situ	cytometry	analysis	of	CODEX	data	allowed	enumeration	of	cellular	contexts	
in	 a	manner	not	possible	previously.	 	We	 specify	here	an	 indexed	 “niche”	 (i-niche)	 as	 a	 ring	of	 cells	
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(excluding	the	central,	or	here	defined	as	“index”	cell)	 in	no	specific	circumferential	order	that	are	in	
direct	 contact	 with	 the	 index	 cell	 (Figure	 4A).	 We	 distinguish	 i-niche	 from	 the	 more	 formal	
understanding	of	“niche”,	which	is	often	used	in	stem	cell	literature	and	where	numbers	of	cells	in	the	
niche	and	their	placement	within	the	niche	is	undefined.		In	our	definition,	we	allow	the	central	cell	to	
be	of	any	type	and	are	counting	the	cell	 types	present	 in	 the	ring.	 	This	 flexible	definition	allows	 for	
multi-cellular	 interactions	 around	 a	 central	 cell	 to	 define	 the	 biology	 of	 that	 cell	 (and	 vice	 versa).		
Computationally,	 the	 i-niche	window	slides	from	cell	 to	cell,	considering	each	set	of	adjoining	cells—
and	 therefore	 allows	 consideration	 of	 the	 constituencies	 of	 different	 central	 cell	 types	 that	 might	
populate	a	given	i-niche.		We	understand	that	our	current	definition	is	arbitrary	and	could	be	extended	
to	include	other	specific	cell	arrangements—including,	though	beyond	the	scope	of	the	current	work,	a	
3D	sphere	of	cells	contacting	the	index	cell.	

We	 identified	 100	 of	 the	 major	 i-niches	 (by	 K-means	 clustering)	 according	 to	 the	 relative	
frequency	of	the	identified	cell	types	present	in	the	ring	of	cells	surrounding	the	index	cell	(Figure	4A)	
—where	in	our	definition	the	index	cell	in	the	center	can	be	any	cell.		For	instance,	in	Figure	4B-i	(top	
panel)	and	expandable	view	 in	Supplementary	 Figure	6	 the	 first	column	represents	an	 i-niche	which	
only	has	B	cells	surrounding	the	index	cell.		As	a	second	example,	the	i-niches	#10	and	#53	(indicated	
by	red	arrows)	contain	variable	numbers	of	B	cells	and	marginal	zone	macrophages.		The	combinations	
of	cells	that	appear	in	the	ring	structure	are	limited	(Figure	4B-i).		In	fact,	most	of	the	i-niche	structures	
do	not	contain	more	than	3	primary	cell	types—indicating	that	in	most	cell	niches	there	is	likely	to	be	
homotypic	association	of	multiple	cells	of	a	given	type.			

Considering	 again	 the	 first	 column	 of	 niche	 composition	 heatmap	 (Figure	 4B-i,	 i-niche	 #96),	
where	the	i-niche	ring	consists	of	only	B	cells,	we	mapped	these	i-niches	back	into	the	original	tissue	
structure	where	they	can	be	seen	primarily	 in	the	follicular	zone	B	cell	region	(Figure	4C,	 left	panel).		
However,	 when	 the	 i-niche	 ring	 had	 B	 cells	 with	 at	 least	 one	 marginal	 macrophage	 neighbor	 (as	
identified	 by	 presence	 of	 CD169),	 these	 i-niches	mapped	 back	 to	 the	 tissue—and	 as	 such	would	 be	
conventionally	 identified	as	marginal	 zone	B	 cells	 (Figure	 4C,	 right	 panel).	 	While	 this	might	 seem	a	
circular	argument,	it	is	important	to	remember	that	traditional	surface	marker	analysis	and	cytometric	
gating	do	not	permit	unequivocal	separation	between	marginal	zone	B	cells	and	follicular	B	cells	with	
the	markers	used	(e.g.	using	B220,	CD19,	CD21/35,	IgD,	IgM	etc).	However,	using	this	i-niche	strategy	
we	 can	 identify	 and	 rapidly	map	 all	 such	B	 cells	 to	 their	 sub-tissue	 origin	 simply	 by	 considering	 the	
immediate	neighbors	of	the	index	cell.		In	other	words,	the	signature	of	tissue	substructure	is	already	
evident	by	the	most	immediate	neighbors	in	each	cellular	region.	

Similar	 to	 the	 case	of	B	 cells,	 specific	populations	of	T	 cells	 could	be	discerned	based	on	 the	
residence	within	i-niches.	T	and	B	cells	are	known	to	utilize	the	extracellular	matrix	(ECM)	secreted	by	
stromal	cell	network	(conduit	system)	as	cues	for	migration.	Therefore,	 in	the	absence	of	any	known	
markers,	classification	of	T	cells	 into	those	residing	in	the	PALS	versus	red	pulp	versus	residing	in	the	
red	pulp	and	being	 in	the	contact	with	ERTR7	ECM	is	enabled	by	neighborhood	context	analysis.	For	
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instance,	 CODEX	 data	 enabled	 precise	 selection	 of	 the	 T-cells	 residing	 in	 ERTR7	 enriched	 niches	 (in	
Figure	4B-iii	see	the	column	below	the	grey	rectangle	indicating	a	family	of	niches	where	index	T	cells	
contact	 ERTR7	 stroma;	 as	 well	 see	 Supplementary	 Figure	 8.2	 and	 8.3	 available	 online38)	 showing	
distribution	of	T	cells	in	contact	with	ERTR7+	stromal	cells).		

Taken	together,	while	we	see	that	surface	marker	expression	alone	was	insufficient	to	associate	
many	cell	 subsets	within	a	given	 tissue	 subcompartment	 (e.g.	CD4+	T	 cells	 can	be	 found	both	 in	 the	
PALS	and	in	the	red	pulp)	--	i-niche	designation	does	provide	such	mapping	data	(most	of	i-niches	were	
enriched	within	a	specific	splenic	subdivision	Figure	4B-v).	 	This	begs	 interesting	questions--	can	new	
cell	types,	or	functional	subsets,	be	discerned	by	this	approach?		What	is	the	frequency	of	a	repeating	i-
niche	structure	that	must	be	observed	to	suggest	a	function?		And	what	would	constitute	proof	that	a	
given	i-niche	enumerates	a	new	cell	type	or	functionality?		

One	way	 to	 address	 these	 latter	questions	 is	 to	 consider	 the	phenotypes	of	 the	 index	 cell	 in	
various	 i-niches.	We	 observed	 that	 for	 several	 index	 cell	 types	 there	 was	 significant	 biasing	 of	 the	
surface	marker	expression	depending	on	the	i-niche	in	which	the	index	cell	resides.	To	systematically	
profile	this	effect,	we	subsetted	the	B	and	CD4	T	index	cells	according	to	the	i-niche	order	in	Figure	4B-i,	
and	depicted	the	average	marker	expression	level	of	the	index	cell	depending	on	the	i-niche	in	Figure	
4B-ii	and	–iii,	respectively.	 	For	B	cells,	a	compelling	difference	is	observed	in	the	CD21/35	and	CD35	
expression	levels	depending	on	the	cell	i-niche	(neighborhood).		In	i-niches	#10,	72,	53	and	33	(two	red	
rectangles	 above	Figure	 4B-ii),	 CD21/35	and	CD35	expression	 is	 high	 in	 these	B	 cells	when	 they	 are	
near	marginal	zone	macrophages,	follicular	zone	dendritic	cells,	other	B	cells.	This	is	in	stark	contrast	to	
the	 lower	expression	of	CD21/35	and	CD35	 for	 the	 index	B	 cell	 in	every	other	 i-niche.	 	Notably,	 the	
literature	supports	higher	levels	of	CD21/35	as	one	of	the	key	markers	of	marginal	zone	B-cells	24.			

Another	 example	 for	 B	 cells	 is	 the	 level	 of	 expression	 of	 B220	 and	 CD19,	 which	 are	 low	
especially	when	 B-cells	 sits	 in	 the	 family	 of	 i-niches	 dominated	 by	 presence	 of	 F4/80+	macrophages	
(cyan	rectangle	at	 top	of	Figure	4B-ii),	B220	 is	a	membrane	associated	protein	tyrosine	phosphatase	
known	to	be	an	essential	regulator	of	BcR	signaling.	In	view	of	similar	co-stimulatory	role	of	CD19	this	
observation	points	to	attenuated	signaling	state	of	B	cells	populating	the	red	pulp.		However,	when	B	
cells	are	adjacent	to	cells	of	the	ERTR7-positive	stromal	mesh	-	the	B220	and	CD19	levels	on	the	index	B	
cells	are	significantly	higher	(see	Figure	4B-ii	columns	above	the	purple	rectangle	–	for	the	composition	
of	ERTR7	high	i-niches	and	below	in	Figure	4B-ii	where	the	CD19	and	B220	expression	is	high).	These	
observations	suggest	a	potential	link	between	signaling	capacity	of	B	cell	membrane	complexes	and	B	
cell	proximity	to	splenic	stroma.		

For	T	cells,	the	story	is	analogous.		For	instance,	CD27	and	CD90	expression	levels	in	the	index	
CD4	T	cells	are	highly	variable	across	the	various	i-niches	(consider	the	columns	under	the	yellow	and	
green	bars	 in	Figure	4B-iii).	 Interestingly,	 in	association	with	 strongly	B	 cell	 rich	 i-niches	 (yellow	bar)	
CD90	 is	diminished	and	CD27	shows	varying	 levels	of	expression.	 	Given	that	CD27	 is	a	known	T	cell	
activation	marker—associated	with	long	term	T	cell	memory	amongst	other	functions25,	it	might	not	be	
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surprising	 to	 see	 varying	 levels	 of	CD27	expression	 (columns	beneath	 yellow	bar,	 Figure	4B-iii).	 	 But	
why	is	CD90	expression	high	in	CD4	cells	when	they	are	in	CD4	or	CD8	cell	contexts	(rows	beneath	the	
green	bar)?		Considering	the	elusive	role	of	CD90--which	can	in	some	situation	substitute	for	CD28	co-
activation	 26	 –	 one	 can	 hypothesize	 that	 perhaps	 CD90	 provides	 an	 alternative	 tonic	 signal	 that	 is	
required	for	the	activity	of	these	cells.	

As	another	example	consider	 the	complex	non-linear	relationship	between	 i-niche	dependent	
levels	of	two	other	molecules,	CD79b	and	B220,	on	B	cells	(Figure	4D).	CD79b	is	a	co-activator	chain	of	
the	B	cell	receptor	complex.	CD79b	is	co-expressed	with	B220	as	a	large	spread	of	the	CD79b	vs.	B220	
levels	(shown	on	a	scatter	plot	of	 isolated	single	cell	splenocytes	Figure	4D,	 top	right	panel).	 	Such	a	
distribution	of	expression	is	sometimes	attributed	to	staining	issues,	measurement	noise,	or	a	simple	
lack	of	understanding	of	the	underlying	biology.	However,	as	seen	on	Figure	4D,	upper	left	panel,	there	
is	 a	 non-random	 pattern	 of	 CD79b	 and	 B220	 expression	 across	 i-niches,	 and	 ,	 depending	 on	 the	
B220/CD79b	 levels,	 the	 i-niches	map	to	specific	 regions	 in	 the	splenic	architecture	 (Figure	 4D,	 lower	
panel).	 	 For	 instance,	 index	 B	 cells	 that	were	 B220int,	 CD79blo	(i-niche	 “59”)	 inhabited	 the	 boundary	
areas	between	the	PALS	and	the	follicles	(Figure	4D	image	montage	on	the	bottom).	Index	B	cells	that	
were	B220lo,	CD79bint	(i-niche	“91”)	were	mostly	found	in	the	red	pulp.		And,	B	cells	that	were	B220int/hi,	
CD79bhi	(i-niche	“76”)	were	yet	different	again	and	were	found	at	the	boundary	of	the	red	pulp	and	the	
follicles.	 	 These	 observations	 suggest	 that	 the	 spread	 of	 the	 CD79b-B220	 levels	 as	 well	 as	 of	 other	
marker	 levels	on	splenic	B-cells	 could	be,	 to	a	 large	degree,	accounted	 for	by	 the	niche	composition	
around	 those	 B-cells	 –	 and	 that	 the	 expression	 levels	 on	 these	 cells	 might	 be	 influenced	 by	 (or	
influences)	the	cells	in	their	immediate	surrounding.	

We	confirmed	that	these	expression	level	observations	are	not	quantification	artifacts	or	signal	
spillover	 from	neighboring	 cells.	 For	 instance,	when	a	CD4	T	 cell	was	 the	 index	 cell,	 such	 index	 cells	
exhibit	a	wide	variability	of	CD4	expression	across	i-niches	(expression	levels	in	the	CD4	row	in	Figure	
4B-iii).		Note	that	even	those	CD4+	index	cells	in	B	cell	enriched	niches	(columns	spanning	the	yellow	
bar	in	Figure	4B-iii)	show	little	to	no	B220	spillover.			And,	when	a	B	cell	served	as	the	index	cell	in	CD4	
rich	 environments	 (see	 the	 niches	 under	 the	 “CD4-rich”	 label	 in	 the	 Figure	 4-i)	 the	 compensation	
algorithm	 effectively	 removed	 all	 CD4+	 expression	 contributions	 into	 the	 index	 B	 cell	 (bottom	 row,	
Figure	4B-ii).		

Most	 i-niches	 could	 be	 readily	 mapped	 into	 one	 of	 major	 anatomical	 compartments	 of	 the	
spleen	(B	cell	follicle,	PALS,	marginal	zone,	or	red	pulp	–	per	Figure	3C).	In	most	cases,	any	given	i-niche	
resided	within	a	single	anatomical	compartment	(although	several	i-niches	were	observed	in	more	than	
one	compartment),	and	every	splenic	compartment	was	populated	by	many	i-niches	(Figure	4B-iv	and	
-v).	 	The	overall	utility	of	the	i-niche	in	determining	any	given	surface	marker	expression	value	for	an	
index	cell	was	evaluated	by	constructing	a	linear	regression	model	of	marker	expression	using	both	the	
cell	 type	 identity	 and	 the	 i-niche	 constituency	 in	 a	 two-featured	 variable	model	 (the	 other	 variable	
being	 the	 cell	 type	 identity).	 Notably,	 adding	 the	 i-niche	 information	 as	 a	 dependent	 variable	
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significantly	 improved	 the	 fitness	 of	 the	 model	 for	 all	 markers	 (Supplementary	 Table	 6	 available	
online38)	 with	 highest	 improvement	 F-values	 for	 CD90,	 B220,	 CD21/35,	 and	 ERTR7	 and	 the	 lowest	
prediction	 rates	 for	 Ly6G,	CD5,	CD11b,	CD5,	 and	TCRβ.	 Thus,	 the	high	 variability	 in	B220	expression	
levels	 is	 correlated	 to	 (driven	 by?)	 the	 i-niche	 in	 which	 the	 B	 cell	 resides.	 	 In	 other	 words,	 B220	
expression	levels	are	not	independent	of	tissue	locale,	and	are	either	driving	the	constituency	of	the	i-
niche	partners,	or	are	driven	by	them.		As	a	counter	point,	the	data	also	shows	that	i-niche	does	not	
reliably	predict	CD5	or	TCRβ	expression	levels	which	is	perhaps	not	surprising	given	that	the	levels	of	
these	surface	receptors	do	not	vary	significantly	across	the	identified	niches	Figure	4B-iii).	Therefore—
to	the	extent	CD5	or	TCRβ	levels	do	differ	across	i-niches,	the	level	of	expression	of	these	proteins	is	an	
autonomously	 determined	 state	 of	 the	 cell	 and	 is	 not	 greatly	 influenced	 by	 the	 i-niche	 in	 which	 it	
resides—a	corollary	is	that	this	cell-autonomous	level	of	CD5	or	TCRβ	does	not	drive	the	constituency	
of	 the	 i-niche.	 	Of	 course,	we	 cannot	 exclude	 that	 there	might	 be	 other	markers	 in	 T	 cells	 that	 are	
correlated	to	i-niche	residence. 

This	 result	 quantitatively	 demonstrates	 that	 for	 many	 markers	 a	 cell’s	 i-niche	 (neighbors)	
determines	a	significant	proportion	of	variance	in	marker	expression.	This	analysis	showed	that	many	
splenic	cell	types	populate	a	wide	variety	of	i-niches,	suggestive	of	a	multiplicity	of	functional	state	for	
any	given	 immune	cell	 type	 (Supplementary	 Figure	 6).	 	Further,	 tissue	 locale	 (i-niches)	 is	a	powerful	
indicator	 of	 potential	 differential	 function	 (to	 the	 extent	 tissue	 locale	 drives	 function)	 and	 these	
deterministic	 changes	 in	 surface	marker	protein	expression	are	 surrogate	 indicators	of	 this	 locale	or	
function.	

	

Changes	in	splenic	composition	associated	with	disease	progression	

It	 is	 long	 observed	 that	 inflammatory	 disease	 states	 change	 how	 cells	 traffic	 in	 tissues,	
especially	 immune	 organs.	 	 Dramatic	 examples	 of	 immune	 re-organization	 have	 been	 seen	 in	many	
autoimmune	 diseases—wherein	 the	 tissue	 targets	 of	 autoimmune	 activity	 are	 often	 infiltrated	 by	 a	
variety	 of	 auto-reactive	 or	 inflammatory	 immune	 cells.	 	 One	 such	 example	 wherein	 the	 spleen	 is	
particularly	 affected	 is	 lupus	 erythematosus	 27	 28.	 In	 this	 disease,	 a	 variety	 of	 organs	 (from	 skin,	 to	
kidney,	 and	 other	 body	 organs)	 can	 be	 targeted	 in	 relapsing-remitting	 flares.	 	We	 chose	mice	with	
MRL/lpr	 genotype	 as	 a	 model	 of	 autoimmune	 response	 because	 with	 age	 they	 are	 known	 to	
spontaneously	develop	symptoms	closely	resembling	lupus	29.	

A	 comparable	 region	 of	 spleen	was	 visualized	 by	 CODEX	 for	 3	 normal	 BALBc	 spleens,	 and	 6	
spleens	from	MRL/lpr	mice.		Image	segmentation	revealed	strong	variation	in	cell	counts	between	the	
norm	and	the	disease	(Figure	5B)	for	most	(19	out	of	27)	of	the	cell	types	identified	by	X-shift	clustering.	
Examples	 include	 a	 dramatic	 increase	 in	 CD71+	 erythroblasts	 (green	 cells	 on	 Figure	 5A	 maps),	 a	
reduction	in	numbers	of	B	cells	and	FDC,	and	increases	in	so-called	B220+	DN	T	cells	(CD4/CD8	double-
negative	B220+	T	cells).	Of	the	many	observed	changes,	two	features	were	used	to	broadly	classify	the	
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MRL/lpr	 spleens	 into	 early,	 intermediate,	 and	 late	 disease	 stages:	 (1)	 marginal	 zone	 disintegration	
associated	with	disease	progression	evident	from	a	drop	in	marginal	zone	macrophage	(MZM)	counts	
(see	 black	 asterisk	 on	 Figure	 5B	 and	 yellow	 arrow	 in	 Supplementary	 Figure	 7	 pointing	 to	 the	 area	
where	CD169	positive	(red)	rim	of	MZMs	is	expected	to	be	observed)	and	(2)	the	emergence	of	atypical	
B220+	DN	T	cells	 (see	red	asterisk	on	Figure	5B).	Early	stage	disease	was	represented	by	three	MZM-
positive	and	B220+	DN	T	cell	–	low	spleens	(Supplementary	Figure	7	and	Figure	5A	panels	4,	5,	and	6).	
Two	spleens	represented	the	 intermediate	stage:	an	example	of	a	spleen	with	MZM	and	B220+	DN	T	
cells	 (Figure	 5A	 panel	 8),	 and	 the	 other	 negative	 for	 both	 (Figure	 5A	 panel	 7).	 Late	 stage	 was	
represented	by	a	single	MZM-negative,	B220+	DN	T	cell	–	high	spleen	(Figure	5A	panel	9).	

We	 undertook	 a	 deep	 quantitative	 characterization	 of	 cell	 neighborhood	 and	 tissue	
architecture	 changes	 associated	 with	 the	 MRL/lpr	 phenotype.	 In	 accordance	 with	 the	 gross	
morphological	 similarity	 of	 red-white	 pulp	 distribution	 seen	 in	 cross-sections	 (Figure	 3A),	 the	
superficial	comparison	of	the	cell-cell	log	odds	ratio	heatmaps	revealed	a	general	similarity	of	cell	type	
interaction	patterns	between	the	normal	and	the	MRL/lpr	spleens	(Supplementary	Figure	7).	 	This	 is	
exemplified	by	a	consistent	presence	of	larger	cell-adjacency	clusters	corresponding	to	red	and	white	
pulp	 and	 the	 positive	 values	 on	 the	 diagonal	 indicating	 the	 persistence	 of	 homotypic	 cell-to-cell	
interaction	across	the	datasets.			

A	 deeper	 statistical	 analysis	 of	 changes	 in	 cell	 interactions	 revealed,	 in	 fact,	 many	 disease-
associated	changes	in	frequency	of	contacts	between	different	cell	types	(see	Supplementary	Table	5).	
Among	the	changes	we	observed	an	increase	in	interaction	between	B	cells	and	CD4-/CD8+	cDC	in	the	
early	 MRL/lpr	 spleen	 compared	 to	 normal,	 (Figure	 5C	 left	 panel)	 suggesting	 an	 increase	 in	 B-cell	
activation.	We	also	observed	a	higher	interaction	frequency	of	granulocytes	with	T	cells,	erythroblasts,	
and	dendritic	 cells;	a	higher	number	of	 contacts	between	erythroblasts	and	various	kinds	of	 stromal	
cells,	as	well	as	B220+	DN	T	cells	(Supplementary	Table	5	available	online38,	Supplementary	Figure	8.15,	
8.17,	 8.20	 available	 online38).	 In	 the	 intermediate	 and	 late	 stage	 MRL/lpr	 spleens,	 there	 was	 a	
significant	increase	in	interaction	of	B220+	DN	T	cells	with	CD4+	T	cells	(Figure	5C	right	panel),	CD8+	T	
cells,	erythroblasts,	and	a	variety	of	other	cell	types	compared	with	numbers	of	these	interactions	 in	
the	 early	MRL/lpr	 stage	 (Supplementary	Table	 5	 available	 online38	 and	Supplementary	 Figure	 8.33,	
8.37,	8.29-39	available	online38).	 	So,	while	there	was	no	obvious	gross	rearrangement	of	the	tissues,	
there	were	many	 homotypic	 and	 heterotypic	 cell-cell	 associations	 that	 are	 altered.	 	 A	 key	 question	
then	becomes—can	we	identify	the	critical	changes	that	are	driving	this	disruption?	

	

Disease	driven	change	in	cell	counts	determines	the	frequency	of	specific	cell–to–cell	contacts	

What	could	be	the	drivers	of	changes	in	frequency	of	pairwise	cell-cell	contacts?	If	the	kinetics	
of	 cell	 contact,	 stickiness,	 and	 dissociations,	 follows	 a	 rate	 law—	 one	 possibility	 would	 be	 that	
modulation	of	specific	cell–to-cell	interaction	potential—or	“attraction”	(for	which	the	odds	ratio	score	
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was	used	as	an	estimate	across	this	study)	is	the	main	driver.	In	other	words,	it	would	be	expected	that	
when	 the	affinity	of	 such	an	 interaction	goes	up,	 the	 fraction	of	 interacting	 cells	of	 a	 given	 cell	 pair	
would	increase.	At	the	same	time,	even	in	the	absence	of	change	in	cell-to-cell	affinity,	the	absolutely	
number	 of	 the	 cell-cell	 pairs	 (defined	 here	 as	 cell	 pair	 aggregates,	 or	 CPAs)	 and	 the	 number	 of	
interacting	 cell	 pairs	 should	 correlate	 with	 the	 frequencies	 of	 interacting	 cell	 types	 (analogous	 to	
concentrations	 in	 the	 rate	 law	 equation).	 	 Importantly,	 the	 latter	 scenario	 could	 be	 as	 biologically	
significant	as	the	former.	Finally,	some	of	the	cell-to-cell	contacts	may	be	observed	due	to	low	cellular	
motility	of	randomly	meeting	cells.	Such	interactions	would	not	produce	spatially	defined	sub-splenic	
CPAs	and	would	have	and	odds	ratio	close	to	1. 

The	perturbation	introduced	to	normal	splenic	composition	with	MRL/lpr	genotype	allowed	us	
to	 identify	 the	mechanisms	 implicated	 in	 transition	 from	norm	 to	 diseased	 like	 spleen.	 In	 short,	we	
found	that,	for	most	cell-cell	pairs	observed,	cell	“stickiness”	or	mutual	attraction,	was	not	the	primary	
determinant	driving	the	change	in	absolute	counts	of	interactions	observed	between	the	MRL/lpr	and	
the	 norm.	 	 In	 Figure	 5D	 we	 plot	 the	 change	 in	 counts	 of	 	 interactions	 of	 two	 cell	 types	 (e.g.	 A:B)	
between	the	MRL/lpr	and	the	normal	BALBc	spleens.	Each	dot	represents	a	pair	of	cell	types.	The	value	
on	 the	 Y	 axis	 is	 the	 difference	 in	 the	 total	 number	 of	 observed	 interactions	 between	 BALBc	 and	
MRL/lpr.	The	X	axis	shows	the	difference	between	 log	odds	ratios	of	 interactions	between	the	same	
conditions.		There	was	no	overall	correlation	observed	(R2	=	0.058).	In	fact	of	the	26	top	scoring	(FDR	<	
0.05	and	change	 in	absolute	 interaction	counts	>	150)	cell	 type	pairs	of	this	cross	comparison	only	2	
showed	 corresponding	 significant	 (FDR	 <	 0.05)	 change	 in	 odds	 ratio	 score.	 Curiously	 these	 two	
interactions	with	a	modest	1.5	times	increase	in	interaction	count	and,	concomitantly,	a	~0.8	increase	
in	 log	 odds	 ratio	 score	 were	 the	 ones	 between	 the	 CD4	 or	 CD8	 T	 cells	 and	 ERTR7+	 stroma	 (see	
Supplementary	Table	5,	 rows	6	and	7,	and	Supplementary	 Figure	8	available	online38),	Visually	they	
appeared	as	persistent	 co-clustering	of	 T	 cells	with	ERTR7+	 stroma	despite	 the	overall	 drop	of	 T	 cell	
numbers	in	the	“early”	MRL/lpr	samples.	Curiously,	ERTR7	positive	fibers	of	splenic	stroma	as	well	as	
ERTR7	protein	itself	were	recently	shown	to	be	critically	involved	in	T	cell	trafficking	30,	suggesting	that	
this	increase	in	the	spatial	association	could	be	reflective	of	the	T	cell	activation.	 

For	the	rest	24	of	the	26	changing	interactions	mentioned	above	at	least	one	of	the	cells	of	the	
pair	 was	 scored	 as	 significantly	 (FDR<0.05)	 changing	 the	 frequency	 across	 scored	 conditions	
(Supplementary	 Table	 5	 last	 column	 of	 the	 “EarlyMRL	 vs	 BALBc	 control”	 spreadsheet,	 available	
online38).		We	therefore	conclude	that—at	least	in	the	diseased	state	of	early	stage	MRL/lpr—most	of	
the	change	 in	counts	of	cell-cell	 interactions	are	driven	simply	by	 increases	or	decreases	 in	cell	 type	
frequencies.	 In	 agreement	with	 this,	we	observed	 a	 correlation	 (R2	 =	 0.288)	 between	 the	 cell	 count	
changes	and	the	interaction	changes	(Figure	5E)	while	there	was	no	apparent	correlation	between	cell	
count	changes	and	the	log	odds	ratio	changes	(R2	=	0.058	–	see	Figure	5D).	What	suggests	the	changing	
frequency	of	any	given	cell	type	in	the	spleen	(driven	by	unknown	processes	in	MRL)	accounts	for	most	
of	changes	of	absolute	counts	of	a	given	A:B	pairing	that	 is	observed.	 	Of	course,	there	appear	to	be	
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outliers	for	each	case,	where	there	are	apparently	odds-fold	changes	that	appear	to	explain	the	MRL	
disease-driven	changes	in	certain	cell-cell	pairings.		While	further	work	is	required	to	determine	which	
of	 these	changes	are	 instrumental	 to	 the	MRL	disease	state,	 the	dataset	here	provides	a	pipeline	 to	
applications	in	this	and	other	disease	areas	for	therapeutic	targeting.	

For	additional	evidence,	χ2	statistics	were	used	to	compare	the	total	magnitude	of	changes	 in	
pairwise	 cell	 type	 interaction	 matrices	 (total	 interaction	 count)	 versus	 changes	 in	 log-odds	 ratio	
matrices	 (propensity	 for	 non-random	 interaction).	 The	 χ2	 deviation	 (sum	 of	 squares	 of	 z-score-
normalized	values)	was	computed	for	each	disease	matrix	compared	to	the	control.	In	every	case,	the	
χ2	values	of	cell	 interaction	matrices	were	larger	than	of	the	respective	log	odds	ratio	matrices	of	the	
same	 biological	 sample	 (Figure	 5F).	 This	 suggests	 that	 as	 the	 cell	 type	 frequencies	 change	 due	 to	
disease	progression,	the	absolute	numbers	of	interactions	change	dramatically	whereas	the	frequency-
normalized	likelihoods	of	cell	interactions	change	to	a	much	smaller	extent	indicating	a	great	degree	of	
robustness	of	the	‘design	principles’	of	the	splenic	tissue	and	that	many	of	the	more	dramatic	disease-
associated	variations	occur	primarily	through	the	shift	in	cell	numbers.		

Thus,	 in	 MRL	 there	 are	 significant	 changes	 in	 the	 pattern	 of	 cell-to-cell	 interactions	 and,	
accordingly,	in	the splenic	architecture.	Largely	these	changes	are	induced	by	modulation	of	cell	type	
frequencies	associated	with	disease	progression.	Later	studies	will	be	required	to	determine	which	of	
those	 changes	 are	 “null”	 for	 driving	 the	 disease	 state,	 and	 which	 reflect	 interactions	 that	 lead	 to	
further	deterioration	of	immune	control	and	splenic	architecture.	

	

Reorganization	of	cells	in	disease-associated	tissue	substructures	

We	catalogued	the	cell-cell	interaction	“connectivity”	in	a	circular	correlation	diagram.	Rarely,	if	
ever,	 there	was	 any	 cell	 type	 found	 adjacent	 to	 only	 one	 other	 type	 of	 cell.	 The	 highest	 degree	 of	
connectivity	 was	 observed	 for	 the	 most	 abundant	 cell	 types	 such	 as	 B	 cells	 in	 normal	 spleen	 and	
erythroblasts	(Figure	6A)	in	early	MRL/lpr.	This	high	connectivity	in	turn	led	to	large	effect	on	i-niches	
caused	by	changes	in	cell	numbers	associated	with	progression	of	disease	from	norm	to	autoimmunity.	
Most	dramatic	changes	in	cell	frequencies	were	the	increase	in	erythroblasts	in	the	early	MRL/lpr	and	
the	emergence	of	B220+	DN	T	cells	in	late	MRL/lpr	–	which	were	associated	with	appearance	of	novel	i-
niches	 relative	 to	 the	 normal	 spleen	 (spatial	 localization	 of	 B220+DN	 T	 cell	 dominated	 i-niche	 18,	
erythroblast	driven	 i-niche	29	and	and	B-cells	 rich	 i-niche	96	 is	 indicated	on	Figure	 6B	 and	 their	 cell	
type	composition	is	shown	on	heatmap	on	Figure	6C).	A	corollary	to	this	is	the	question	of	whether	the	
presence	of	these	cells,	and	new	i-niches	dependent	on	these	cells,	somehow	changed	the	observable	
biology	of	the	cells	they	contact?	We	found	an	example	of	this	behavior,	where	the	proximity	of	CD4	T	
cells	to	B220+	DN	T	leads	to	CD4	T	cell	activation	in	spleens	of	MRL/lpr	mice:	Figure	6C	shows	increased	
levels	of	CD27	expression	in	CD4	T	cells	present	 in	 i-niches	dominated	by	B220+	DN	T	cells	(Figure	6C	
red	circle).	
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Other	 cell	 types	 noticeably	 changed	 their	 characteristic	 distribution	 and	 their	 propensity	 to	
engage,	 or	 evade,	 specific	 cell-to-cell	 contacts	 (as	 estimated	 by	 odds	 ratio	 score)	 during	 disease	
progression.	 For	 example,	 stromal	 cells	 of	 CD106+CD16/32-Ly6ChiCD31+	 phenotype	 were	 randomly	
distributed	in	the	red	pulp	of	normal	spleens,	but	were	found	to	aggregate	in	the	areas	proximal	to	the	
germinal	 centers	of	 the	MRL/lpr	white	pulp	 (Supplementary	 Figure	 3.16	 available	online38).	 This	 re-
distribution	correlated	with	erythroid	proliferation	and	reduced	odds	ratio	score	for	the	interaction	of	
CD106+CD16/32-Ly6ChiCD31+	 and	 erythroblasts	 in	 lupus	 spleens	 (Supplementary	 Table	 5	 available	
online38).		

	

As	 noted,	 the	 analysis	 reveals	 that	 the	 development	 of	 the	 autoimmune	 disease	 in	mice	 (as	
exemplified	 by	MRL/lpr	 lupus)	 is	 associated	with	 vast	 rearrangement	 of	 normal	 spleen	 architecture,	
which	 is	 likely	 to	 cause	 loss	 of	 cell-cell	 contexts	 normally	 hosting	 the	 cells	 crucial	 for	 proper	 splenic	
function,	as	well	as	the	observed	emergence	of	novel	i-niches	that	are	not	found	in	the	normal	BALBc	
spleen.	 Additionally,	 certain	 i-niches	 were	 sequestered	 to	 specific	 anatomic	 compartments	 of	 the	
spleen,	which	allowed	us	to	use	such	i-niches	as	reference	points	to	quantitatively	monitor	high-order	
morphological	changes.	The	i-niches	that	in	normal	spleen	were	localized	to	one	distinct	compartment	
(more	than	90%	of	central	cells	reside	within	a	particular	splenic	compartment)	were	used	to	evaluate	
the	dynamics	of	splenic	cells	associated	with	progression	of	autoimmune	disease	 (Figure	 7A,	middle	
heatmap).	 This	analysis	 confirmed	 the	dissipation	of	 the	marginal	 zone	 starting	 from	early	 stages	of	
MRL/lpr	and	revealed	a	progressive	distortion	of	PALS.	Curiously,	depending	on	whether	a	i-niche	was	
based	 on	 F4/80	 macrophages	 or	 primarily	 contained	 erythroblasts,	 the	 red	 pulp	 appeared	 to	
reorganize	in	the	diseased	tissue	(Figure	7A,	right	heatmap),	pointing	to	the	fact	that	more	than	one	
compartment-specific	niche	is	required	to	reliably	trace	the	fate	of	specific	anatomic	compartments.	In	
many	cases	the	definition	of	subsets/morphological	units	constituting	the	tissue	is	subjective,	yet	this	
study	 employed	 niches	 that	 were	 algorithmically	 defined.	 Therefore,	 using	 niches	 as	 markers	 of	
morphology	can	quantitatively	monitor	the	changes	of	high-order	anatomic	architecture.	

	

Automatic	definition	of	disease-specific	tissue	regions	using	convolutional	neural	networks	

To	automatically	isolate	the	specific	local	combinations	of	expression	patterns	characteristic	of	
the	disease	state,	a	fully	convolutional	neural	network	was	trained	to	distinguish	image	patches	from	
normal	and	MRL/lpr	mice.	The	neural	network	operated	by	 identifying,	 in	each	training	 image	patch,	
the	 specific	 areas	 that	 corresponded	 to	 the	 disease	 state.	 	To	 avoid	 the	 learning	 of	 trivial	 sample-
specific	staining	variation,	data	were	quantile	normalized	sample-wise	and	each	marker	was	discretized	
to	four	levels.	Since	disease-specific	hallmarks	could	potentially	have	multiple	scales,	the	training	data	
for	our	neural	network	was	extracted	at	multiple	levels	of	magnification.	A	simple	regularized	logistic	
regression	 model	 that	 considered	 only	 average	 marker	 expression	 and	 did	 not	 incorporate	 spatial	
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information	was	unable	to	successfully	distinguish	patches	normal	and	MRL/lpr	spleens,	whereas	the	
trained	neural	network	model	consistently	achieved	a	90%	precision	of	classification	of	image	patches	
during	cross-validation.	

The	 neural	 network	 highlighted	 the	 regions	 in	 each	 multiparameter	 spleen	 image	 that	
corresponded	 to	 the	 disease	 state	 (Figure	 7B),	 despite	 having	 seen	 no	 images	 from	 these	 spleens	
during	 training.	 	To	 investigate	 the	 specific	 features	 learned	 by	 the	 neural	 network,	 the	 cell-type	
compositions	 of	 the	 regions	 identified	 as	 diseased	 versus	 those	 regions	 identified	 as	 normal	 were	
compared.	There	was	significant	enrichment	of	several	cell	types	in	these	regions	(Figure	7C).	Although	
some	cell	types	enriched	in	diseased	regions,	for	example	B220+	DN	T	cells,	were	present	only	 in	the	
diseased	tissue,	the	most	highly	enriched	cell	type	(CD4+/CD8-	cDCs)	were	present	in	both	the	disease	
state	and	the	healthy	state.		

To	 assess	 the	 specific	 contextual	 changes	 recognized	 by	 the	 neural	 network,	 the	 local	
neighborhoods	of	the	CD4+/CD8-	cDCs	that	the	neural	network	found	to	be	enriched	in	MRL/lpr	regions	
were	analyzed.	In	these	neighborhoods	we	observed	a	significant	enrichment	of	other	CD4+/CD8-	cDCs,	
as	 well	 as	 significant	 depletion	 of	 CD106+/CD16/32+/Ly6C-/CD31-	 stromal	 cells	 (FDR	 <	 10-7).	 This	
suggests	 that	 the	neural	network	had	 identified	an	altered	context	 for	CD4+/CD8-	cDCs	 (distant	 from	
stromal	regions)	as	a	key	descriptor	for	the	disease.	Thus,	the	neural	network	approach	described	here	
enabled	 both	 automatic	 classification	 of	 samples	 according	 to	 disease	 state	 and	 an	 automatic	
identification	of	high-dimensional	regions	of	interest	and	corresponding	cellular	niches.	

	

Primer	dependent	panels	to	extend	the	multiplexing	capacity	of	CODEX	

CODEX	 operates	 using	 an	 indexed	 polymerization	 step	 that	 enables	 precise	 incorporation	 of	
fluorophores	 into	 oligonucleotide-Ab	 conjugates	 at	 predetermined	 cycles.	 Although	 consistent	
performance	 of	 a	 model	 antigen	 (CD45)	 was	 observed	 across	 15	 cycles	 of	 CODEX	 (Supplementary	
Figure	1A-F),	a	gradual	accumulation	of	polymerization	errors	during	each	cycle	could	potentially	result	
in	 non-cognate	 rendering,	 and	 thus	 diminished	 and/or	 non-specific	 signals	 at	 later	 index	 cycles.	 In	
addition,	 the	 use	 of	 long	 single-stranded	 oligonucleotides	 that	 would	 enable	 indexing	 beyond	 15	
rounds	might	be	problematic	due	to	non-specific	binding	events	to	tissues	under	study.	

For	 the	 polymerization	 event	 to	 initiate,	 a	 3’	 hydroxyl	 is	 required.	 Thus,	 we	 reasoned	 that	
dedicated	primers	(each	containing	a	distinct	initiating	sequence	with	a	3’	hydroxyl)	could	be	used	to	
activate	 distinct	 subpanels	 of	 antibodies	 (Supplementary	 Figure	 9A).	 This	 would	 allow	 design	 of	
antibody	 panels	 exceeding	 30	 markers	 into	 subpanels,	 each	 with	 a	 subpanel-specific	 activation	
sequence	 designed	 5’	 to	 the	 indexing	 region.	 In	 this	 design,	 the	 antibody	 attachment	 linker	 is	
terminated	 with	 ddC,	 such	 that	 the	 extension	 is	 only	 possible	 after	 a	 hybridization	 of	 a	 hydroxyl-
containing	panel-specific	activation	primer.		
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The	 feasibility	 of	 such	multipanel	 CODEX	design	 and	 the	 robustness	 of	 CODEX	protocol	 after	
many	 cycles	 and	 its	 independence	 of	 staining	 from	 the	 cycle	 number	 were	 tested	 in	 a	 model	
experiment.	A	22-color	panel	of	antibodies	(11	cycles)	conjugated	to	a	terminated	top	oligonucleotide,	
was	hybridized	with	bottom	oligonucleotides	of	 	1st	 ,2nd	,	and	3rd	 	panels	(Supplementary	Figure	9B).	
Thus,	 every	 antigen	 is	 detected	 thrice	 by	 the	 same	 antibody	 conjugated	 to	 oligonucleotides	 of	 3	
different	 panels.	 Each	 panel	 can	 only	 be	 rendered	 after	 annealing	 of	 a	 panel-specific	 activator	
oligonucleotide.	 The	 staining	 was	 rendered	 in	 36	 cycles	 (11	 detection	 cycles	 +	 1	 blank	 no-antibody	
cycle	 per	 activator	 oligo)	 of	 CODEX	 with	 additional	 activator	 oligonucleotide	 hybridization	 step	
between	each	of	the	3	panels.	The	signal	for	same	antibody	detected	at	different	cycles	(e.g.,	1st,	13th,	
and	 24th)	 was	 consistent	 across	 the	 three	 panels	 (Supplementary	 Figure	 9C).	 This	 panel-activator	
design	extends	CODEX	to	a	theoretically	unlimited	multiplexing	capacity,	bounded	only	by	the	speed	
and	resolution	of	the	imaging	process	itself	and	the	time	required	for	each	imaging	cycle.	

	

Discussion	

Here	 the	 feasibility	 of	 polymerase-driven	highly	multiplexed	 visualization	of	 antibody	binding	
events	to	dissociated	single	cells	as	well	as	tissue	sections	was	demonstrated.	Critically,	CODEX	enables	
co-staining	 of	 all	 antigens	 simultaneously	with	 the	 staining	 iteratively	 revealed	 by	 primer	 extension	
cycles	wherein	no	diminution	of	epitope	signal	detection	was	observed.	CODEX	results	were	validated	
by	 comparison	 with	 CyTOF	 analysis	 demonstrating	 that	 CODEX	 data	 qualitatively	 matches	 the	 data	
generated	 by	 conventional	 flow	 cytometry	 while	 vastly	 exceeding	 it	 in	 dimensionality.	 A	 consistent	
lossless	performance	of	CODEX	 for	co-detection	of	up	 to	66	antigens	was	observed,	and	the	primer-
based	 extension	 of	 the	 system	 could	 enable,	 theoretically	 visualization	 of	 additional	 antigens	 per	
sample.	The	CODEX	platform	can	be	performed	on	any	three-color	fluorescence	microscope	enabling	
conversion	of	 regular	 fluorescence	microscope	 into	a	 tool	 for	multidimensional	 tissue	 rendering	and	
cell	 cytometry.	 Given	 the	 low	 cost	 of	 converting	 a	 scope	 to	 this	 platform	 (a	 simple	 custom	 fluidics	
device	 for	 liquid	 handling	 in	 a	 customized	 stage	 is	 all	 that	 is	 required)	 this	would	 enable	 studies	 in	
complex	tissues	where	the	availability	of	the	complex	 instrumentation	 is	 limited	by	 logistics	and	cost	
factors.		

The	 unique	 set	 of	 algorithms	 described	 here	 successfully	 identified	 individual	 cells	 in	 the	
crowded	 environment	 of	 lymphoid	 tissue	 by	 relying	 both	 on	 the	 information	 from	 nuclear	 and	 the	
membrane	 staining.	 An	 accurate	 quantification	 of	 single-cell	 expression	 data	 was	 obtained	 directly	
from	 the	 images	 by	 creating	 a	 special	 algorithm	 for	 positional	 spill	 compensation.	 This	 allowed	
extraction	 of	 FACS-like	 data	 from	 tissue	 imaging	 and	 leveraged	 the	 automated	 phenotype	mapping	
framework	previously	developed	for	CyTOF	and	multicolor	FACS.	

Other	 groups	 have	 reported	 successful	multiplexed	 detection	 of	 up	 to	 100	 proteins	 in	 tissue	
sections	by	cyclic	re-staining	of	a	sample	coupled	to	photo	or	chemical	inactivation	of	fluorophores	1-3.	
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These	approaches	require	time-intensive	re-staining	(days	to	weeks)	of	the	sample	for	each	round	of	
antigen	 rendering.	Moreover,	 since	each	 round	of	 staining	and	bleaching	or	 fluorophore	 inactivation	
leads	to	epitope	degradation,	there	 is	an	upper	 limit	on	co-detected	antigens	3	 .	CODEX	completes	a	
30-antibody	visualization	in	approximately	3.5	hours.	Modifications	to	the	technology	that	increase	the	
measurements	 per	 cycle,	 reduce	 the	 cycling	 time,	 faster	 imaging	 methods	 such	 as	 light	 sheet	
microscopy,	 or	 an	 increased	 size	 of	 the	 imaging	 the	 field	 of	 view	 offer	 potential	 opportunities	 for	
increasing	the	depth	and	speed	of	the	visualization	process.	

Performance	of	CODEX	on	tissue	sections	was	validated	in	analysis	of	spleen	sections	of	normal	
and	 lupus	afflicted	mice	(MRL/lpr).	Much	like	with	conventional	flow	cytometry,	CODEX	discerned	all	
major	cell	types	commonly	observed	in	mouse	spleen.	Moreover,	application	of	a	phenotype-mapping	
algorithm	recently	developed	in	our	lab	16	and	tailored	to	parsing	the	multidimensional	single-cell	data	
enabled	 detection	 of	 rare	 cells	 types	 (examples	 are	 CD4hi	 MHCIIhi	 (Lti)	 cells,	 CD11c(+)	 B	 cells)	 and	
simultaneously	placement	 in	the	tissue	architecture.	By	mapping	the	cell	 type	 identity	back	onto	the	
tissue	 and	 counting	 the	 cell	 interactions,	 the	 known	 tissue	 architecture	 of	 the	 normal	 spleen	 was	
recapitulated	 using	 CODEX.	 The	 analysis	 revealed	 that	 most	 splenic	 cell	 types	 were	 involved	 in	
homotypic	 interactions—which	 might	 underscore	 a	 novel	 driving	 principle	 of	 lymphoid	 tissue	
architecture.	Further,	the	effect	of	the	local	niche	on	marker	expression	in	multiple	splenic	cell	types	
was	evaluated	demonstrating	the	significant	impact	of	niche	on	expression	and	revealing	unexpected	
correlations	between	levels	of	surface	markers	detected	when	cell	types	are	measured	across	niches.	

Using	 CODEX,	 the	 changes	 in	 tissue	 architecture	 that	 occurred	 in	 spleen	 in	 the	 wake	 of	
autoimmune	 disease	 were	 quantitatively	 probed.	 Among	 hallmarks	 of	 MRL/lpr	 progression	 were	
dissipation	of	marginal	 zone,	disintegration	of	PALS,	 invasion	of	 red	pulp	with	erythroblasts	 and	 the	
infiltration	of	mixed-identity	B220+	DN	T	cells,	which,	interestingly,	localize	in	a	niche	in	between	PALS	
and	the	B	cell	zone	and	in	the	marginal	zone.	A	contact-dependent	effect	of	B220+	DN	T	cell	on	CD4	T	
cells	reflected	in	 increased	levels	of	activation	marker	CD27	was	observed.	An	account	of	statistically	
significant	differences	in	frequency	and	strength	of	pairwise	cell	type	contacts	was	created.	From	these	
observations	and	their	quantitative	analysis,	we	concluded	that	cellular	interaction	strength	estimated	
from	ratio	of	observed	to	expected	probability	of	interaction	and	frequency	of	pairwise	cell	contacts	do	
not	correlate.	Largely	we	found	cell	interaction	frequency	to	be	related	to	cell	counts--	therefore	while	
cell	 intrinsic	adhesion	properties	and	cell	abundancy	are	both	 implicated	 in	 shaping	 the	core	 splenic	
architecture,	it	is	largely	the	change	in	cell	numbers	that	is	involved	in	reorganization	of	spleen	during	
transition	 from	 norm	 to	 autoimmunity.	 This	 comprehensive,	 high-parameter	 description	 of	 changes	
that	 occur	 in	 the	 splenic	 architecture	 of	 MRL/lpr	 mice	 demonstrates	 the	 power	 of	 neighborhood	
analysis	 approaches.	 Previous	 analyses	 had	 relied	 on	 two-color	 immunohistochemical	 analyses	 of	
sequential	 sections	 to	 achieve	 multicolor	 single-cell	 resolution	 31	 32	 28	 27,	 and	 as	 such	 would	 not	
correctly	capture	true	cell-cell	adjacencies.	
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An	important	principle	was	observed	that	is	wholly	unique	to	the	quality	and	depth	of	the	data	
presented	herein—that	being	the	context-dependent	changes	in	expression	of	surface	markers	on	cells.		
As	clearly	observed	in	experiments	that	drove	Figures	4	&	6,	cell	populations	that	would	otherwise	be	
thought	of	as	 ‘broadly’-expressing	a	given	marker	set	 (Figure	4D),	 in	fact	were	composed	of	multiple	
cell	phenotypes—said	phenotypes	being	determined	by	the	cells	participating	in	their	i-niche.		In	other	
words,	what	immunologists	previously	thought	of	as	a	single	cell	type	could	be	subdivided	into	more	
subtle	 cell	 subsets	 that	 are	 defined	 by	 the	 neighborhood	 in	which	 they	 reside.	 	We	 leave	 open	 the	
question	of	whether	 the	 cells	with	different	properties	 are	 attracted	 to	 a	 set	of	 neighbor	 cells,	 or	 a	
given	 expression	 level	 of	markers	 attracts	 the	 neighbors,	 or	 some	dialectics	 thereof.	 	What	 is	 clear,	
however,	 is	 that	 there	are	more	 subtle	phenotypes	 in	 tissues	 that	previously	assumed,	and	 that	 the	
kinds	of	deep	cellular	imaging	phenotyping	presented	here	is	only	the	beginning	of	what	is	possible	in	
the	future	as	the	technology	develops.	

Recent	 advances	 in	 genomics	 suggest	 that	 despite	 vastness	 of	 a	 genetic	 repertoire	 a	 limited	
number	 of	 cellular	 states	 have	 unique	 gene	 expression	 patterns.	 These	 countable	 patterns	 are	
reflected	 in	 existence	 of	 surface	 marker	 phenotypes	 recognizable	 as	 cell	 types.	 It	 is	 therefore	
reasonable	to	suggest	that	cell-to-cell	 interactions	should	be	countable	as	well.	The	data	collected	 in	
this	study	lay	the	foundation	for	a	pan-cellular	reference	database	defining	cellular	types	not	only	by	
identities	of	proteins	expressed	but	also	by	capacities	for	specific	cell-to-cell	interactions.	Such	a	deep	
characterization	 was	 performed	 here	 for	 normal	 and	 diseased	 tissue	 from	 a	 perspective	 of	 cellular	
arrangements.	CODEX	thus	opens	new	horizons	for	application	of	multidimensional	cytometry	in	tissue	
diagnostics	 currently	 performed	 in	 a	 very	 low-dimensional	 space	 (1-3	 markers).	 Further,	 disease	
classification	was	 accurately	 performed	 by	 a	 neural	 network	 operating	 on	multidimensional	marker	
expression	data,	even	after	training	on	just	one	sample.	We	present	here,	for	the	research	community,	
a	 large	 (~700,000	 cells)	 dataset	 encompassing	 segmentation,	 quantification,	 and,	 most	 uniquely,	
spatial	 data	 from	 normal	 and	 disease-afflicted	 spleens	
(http://welikesharingdata.blob.core.windows.net/forshare/index.html	 and	 Supplementary	 Tables	 2	
and	3 available	online38)	for	further	development	of	computational	algorithms	for	tissue	cytometry	and	
digital	pathology.	

Automated	 identification	 and	 deep	 phenotypic	 profiling	 of	 cellular	 microenvironments	 in	
tissues	 is	 an	 unmet	 and	 important	 need.	 Results	 from	 high	 parameter	 mass	 cytometry	 have	
demonstrated	 the	potential	 for	biologic	and	clinical	 insights	when	such	parameterization	 is	matched	
with	a	focused	computational	capability	8,33,34.	Approaches	such	as	CODEX	should	facilitate	acceleration	
of	multidimensional	imaging	of	numerous	tissues,	could	provide	data	necessary	to	infer	biological	and	
clinical	 correlates	 of	 tissue	 micro-architecture,	 and	 will	 be	 important	 for	 supporting	 biomedical	
inquiries	into	pathologies	such	as	cancer	immunotherapy	and	inflammatory	disease	states	of	tissues.	
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Materials	and	Methods	

Animals	

9	 months	 old	 female	 MRL/lpr	 (chosen	 to	 represent	 lupus	 disease	 at	 a	 pronounced	
splenomegaly	 stage)	 and	 age/sex	 matched	 control	 BALBc	 mice	 purchased	 from	 Jackson	 Laboratory	
were	 used	 for	 the	 study.	 All	 animal	 studies	 were	 done	 in	 compliance	 with	 ethical	 regulations	 and	
procedures	 set	 in	 the	 Stanford	 Administrative	 Panel	 on	 Laboratory	 Animal	 Care	 Protocol	 15986.	 In	
coherence	 with	 the	 primarily	 technical	 purpose	 of	 the	 study	 no	 animal	 cohort	 randomization	 or	
investigator	blinding	to	group	allocation	was	performed.		

Antibodies	

CD27(LG.3A10),	 CD11c(N418),	 CD106(429),	 CD19(1D3),	 Ly6G(1A8),	 CD169(MOMA-1),	
CD16/32(2.4g2),	 CD3(17A2),	 CD90(Thy-1/G7),	 CD8a(53-6.7),	 Ly6c(HK1.4),	 F4/80(T45-2342),	
CD11b(m1/70),	 Ter119(ter119),	 TCR(h57-597),	 IgD(11-26c.2a),	 CD79b(HM79-12),	 CD5(53-7.3),	
CD31(mec13.3),	 CD71(C2F2),	 IgM(R6-60.2),	 CD4(rm4-5),	 ERTR7(ER-TR7),	 B220(RA3-6B2),	 CD35(8C12),	
MHCII(M5/114.15.2),	CD44(im7),	CD21/35(8D9),	cd43(S7),	cd8(53-6.7),	CD45(30-F11)	

	

Oligonucleotide	sequences	

Single	 base	 extension	 during	 CODEX	 can	 be	 achieved	 by	 either	 a	 “missing	 base”	 approach	
(Figure	1A)	 or	 a	 “reversible	 terminator”	method	 (see	 Supplementary	 Figure	10).	 In	 the	 case	 of	 the	
“missing	base”	approach,	which	was	chosen	for	the	experiments	outlined	in	this	paper,	the	top	strand	
of	 the	 double-stranded	 oligonucleotide	 is	 covalently	 bound	 to	 the	 capture	 agent	 (antibody	 or	 RNA	
probe)	and	the	bottom	strand	is	annealed	through	hybridization	to	the	top	strand.	All	capture	agents	
contain	 the	 same	 top	 strand	 and	 different	 bottom	 strands.	 The	 sequence	 of	 the	 bottom	 strands	
contains	a	common	region	that	hybridizes	to	the	top	strand	as	well	as	a	variable	sequence	region	that	
serves	as	the	indexing	region.	As	shown	in	Figure	1	A,	the	overhanging	5’	end	of	the	lower	strand	of	the	
double-stranded	oligonucleotide	tag	(which	forms	the	overhang)	is	of	the	general	formula	3’-YN1/N2-5’	
followed	by	a	short	stretch	of	random	composition	on	the	5’	end	to	 increase	the	overall	polymerase	
residence	on	the	DNA	duplex.	N1,	N2,	are	nucleotides	(A	and	G	in	our	case)	allow	for	incorporation	of	
labelled	dNTPs	 (dU-ss-Cy5	and	dC-ss-Cy3).	Y	 is	a	nucleotide	sequence	of	 length	n	 (n	 is	0,	1	or	more)	
composed	 of	 alternating	 random-length	 stretches	 of	 “indexing”	 bases	 N3	 (dC)	 and	 N4	 (dT)	 that	 are	
complementary	to	unlabeled	nucleotides.	Stretches	of	random	length	(e.g.	CCCTCCTTTCTT)	rather	than	
single	 base	 design	 (e.g.	 CTCTCTCTCT)	were	 introduced	 to	 prevent	misalignment	 of	 upper	 and	 lower	
strands	 of	 double-stranded	 oligonucleotide	 tags.	 All	 oligonucleotide	 sequences	 can	 be	 found	 in	
Supplementary	Table	3.		
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Antibody	conjugation	protocol	

For	full	list	of	antibody	clones	and	vendors	see	Supplementary	Table	1.	100ug	of	each	antibody	
was	partially	reduced	by	30min	incubation	at	room	temperature	with	TCEP	(final	concentration	5mM)	
in	 PBS.	 Antibodies	 were	 purified	 by	 buffer	 exchange	 on	 BioGel	 P-30	 spin-columns	 saturated	 with	
conjugation	buffer	 (2mMTris,	150mM	NaCl,	1mM	EDTA,	pH	7.2).	Oligonucleotides	bearing	protected	
maleimide	group	were	ordered	from	Trilink	 Inc.	The	maleimide	group	was	de-protected/activated	by	
Adler	 reaction	 (4h	 at	 90C	 in	 toluene).	 After	 activation	 traces	 of	 toluene	 were	 removed	 from	
oligonucleotides	by	 five	washes	 in	absolute	ethanol.	Activated	oligonucleotides	were	resuspended	 in	
conjugation	 buffer	 and	mixed	with	 reduced	 antibodies	 at	 a	molar	 ratio	 of	 25:1.	 NaCl	was	 added	 to	
conjugation	reaction	to	final	concentration	of	1M.	The	conjugation	reaction	proceeded	for	1h	or	longer.	
To	 remove	 unbound	 oligonucleotide	 with	 unquenched	 maleimide	 group	 the	 conjugated	 antibodies	
were	filtered	4	times	on	molecular	weight	cutoff	filters	(Amicon	50	KDa).	Final	wash	and	storage	were	
performed	in	phosphate	buffer	with	0.5M	sodium	chloride	and	0.1%	Tween-20.	We	found	that	about	
half	of	starting	amount	of	the	antibody	was	lost	during	conjugation	with	remaining	half	bearing	with	2	
to	12	oligos	per	150kDa	antibody	molecular	dimer.		

To	 assemble	 DNA	 duplex	 tag	 0.2ug	 of	 conjugated	 antibody	 was	 mixed	 with	 100pmoles	 of	
bottom	 strand	 oligonucleotide	 in	 phosphate	 buffer	 with	 0.6M	 Sodium	 Chloride	 and	 incubated	 for	
30min	at	40C.		

CODEX	staining	protocol	

Mouse	spleen	and	bone	marrow	cells	were	prepared	according	to	standard	procedure	and	fixed	
in	 2%	 formaldehyde	 for	 10min	 at	 room	 temperature.	 Following	 fixation,	 cells	were	 spun	 and	 either	
stored	frozen	at	-80	in	PBS	with	5%	DMSO	or	permeabilized	by	incubation	in	ice-cold	methanol	for	10	
min.	and	further	stored	at	-80	°C	in	methanol.	

Before	 staining	 stored	 cells	 were	 washed	 with	 SME	 (0.5%BSA	 in	 PBS,	 5mMEDTA)	 once	 and	
blocked	 for	 30min	 at	 room	 temperature	 in	 staining	 buffer	 (0.6M	 NaCl,	 0.5%BSA,	 50ug/ml	 rat	 IgG,	
200ug/ml	 ssDNA,	 5mMEDTA,	 3nmoles	 per	ml	 of	 blocking	 oligonucleotide	 TTTTccctctcctcttcctttCcTCT	
ddC	in	phosphate	buffer	pH	7.4).		

In	 case	 cryo-sections	 were	 used	 –	 tissue	 sections	 were	 picked	 by	 warm	 coverslips	 and	
immediately	 placed	 into	 dry	 ice	 without	 allowing	 the	 section	 to	 dry.	Coverslips	 with	 sections	 were	
dipped	 for	 30	 sec	 into	 acetone	 pre-chilled	 to	 dry-ice	 temperature,	 fully	 dried	 for	 10	min	 at	 RT	 and	
transferred	to	SME	with	1.6%	formaldehyde	for	20min.	After	that	the	fixed	sections	were	washed	twice	
in	 SME	 and	 further	 blocked	 in	 staining	 buffer	 for	 30min.	 Suspension	 cells	 or	 frozen	 sections	 were	
stained	in	staining	buffer	for	2-3h	at	room	temperature	with	a	mixture	of	conjugated	antibodies	taken	
at	0.2ug	of	each	antibody	per	100ul	of	solution.	After	staining	cells	were	washed	twice	with	SME05	(SM	
supplemented	with	NaCl	up	 to	0.65M	 final	 concentration).	 If	methanol	 stored	 suspension	cells	were	
used	 –	washed	 cells	 were	 allowed	 to	 adhere	 to	 poly-L-lysine	 coated	 coverslips	 and	 further	 fixed	 to	
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coverslip	surface	by	20min	 incubation	with	5mM	BS3	cross	 linker	 in	PBS.	 If	DMSO	stored	suspension	
cells	were	used	–	following	last	wash,	cells	were	spun	and	further	fixed	in	ice	cold	methanol	fro	10min.	
Following	methanol	fixation/permeabilization	cells	were	washed	once	with	SM05,	allowed	to	adhere	to	
coverslip	surface	and	further	fixed	to	coverslip	surface	by	20min	incubation	with	5mM	BS3	cross	linker	
in	PBS.	If	frozen	sections	were	used	–	following	staining	sections	were	washed	twice	by	SM05,	dipped	
into	ice	cold	acetone	for	30sec,	dried	at	RT	for	10min,	and	further	postfixed	by	20min	incubation	with	
5mM	BS3	cross	linker	in	PBS.	Following	staining	procedure	and	converting	into	planar	form	(in	case	of	
suspension	cells)	all	kinds	of	samples	were	subjected	to	similar	CODEX	rendering	protocol.	

CODEX	rendering	protocol	

Following	 fixation	 coverslips	 with	 cells	 or	 frozen	 sections	 were	 washed	 twice	 with	 buffer	
405(10mM	Tris	7.5,	650mM	NaCl,	0.1%	Triton	x100).	Cells	or	sections	were	treated	with	50mM	TCEP	in	
buffer	405	for	4min,	washed	3	times	with	buffer	405	and	further	blocked	with	100mM	iodoacetamide	
for	1h	in	buffer	405	adjusted	to	pH8	with	NaOH.	Following	blocking	if	necessary	cells	were	stained	for	
40min	with	phalloidin	2ug/ml	in	buffer	4(10mM	Tris	7.5,	10mM	MgCl2,	150mM	NaCl,	0.1%	Triton	x100).	

Staining	was	rendered	by	cycles.	In	odd	cycles	(1,3,5…)	-	cells	were	incubated	for	2min	in	G-mix	
(150nM	dG,	 150nM	dUssCy5,	 150nM	dCssCy3,	 25ul	NEB	 exo-	 Klenow,	 3ug	 phalloidin-FITC	 per	ml	 in	
buffer	4);	washed	3	 times	with	405	 (buffet	4	without	MgCl	and	 supplemented	with	NaCl	up	 to	 final	
0.65M);	 photographed;	 incubated	 2min	 in	 50mM	 TCEP	 in	 buffer	 405;	 washed	 twice	 with	 405;	
photographed;	incubated	for	1min	in	freshly	made	100mM	iodoacetamide	in	buffer	405;	washed	three	
times	with	buffer	4.	 In	even	cycles	 (2,4,6…)	 -	 cells	were	 incubated	 for	2min	 in	A-	mix	 (150nM	dATP,	
150nM	dUTPssCy5,	150nM	dCTPssCy3,	25ul	NEB	exo-	Klenow,	3ug	phalloidin-FITC	per	ml	in	buffer	4);	
washed	 3times	 with	 405	 (buffet	 4	 without	 MgCl	 and	 supplemented	 with	 NaCl	 up	 to	 final	 0.65M);	
photographed;	 incubated	4min	 in	50mM	TCEP	 in	buffer	405;	washed	twice	with	405;	photographed;	
incubated	 for	 1min	 in	 freshly	made	 100mM	 iodoacetamide	 in	 buffer	 405;	washed	 three	 times	with	
buffer	4.	Fluorescent	nucleotides	dU-ss-Cy5	and	dU-ss-Cy3	were	custom	synthesized	by	Jena	Bioscience.	

Microfluidic	 setup	 custom	 manufactured	 by	 M.H.	 was	 used	 to	 automate	 CODEX	 solution	
exchange	and	image	acquisition.	

Primer	dependent	panels	

Rendering	 of	 antibodies	 with	 spacers	 followed	 the	 same	 procedure	 as	 the	 standard	 CODEX	
protocol	with	the	exception	of	the	following	differences.	Before	proceeding	to	rendering	next	spacer	
dependent	 panel,	 the	 stained	 cells	 were	 incubated	 with	 a	 spacer	 oligonucleotide	 (1μM	 final	
concentration	in	buffer	405)	at	room	temperature	for	10	minutes.	Cells	were	washed	4X	with	buffer	4	
and	 rendering	proceeded	as	usual.	 To	 initiate	each	additional	 spacer	 set,	 the	 spacer	 incubation	 step	
was	repeated	using	corresponding	spacer	samples.		

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 20, 2017. ; https://doi.org/10.1101/203166doi: bioRxiv preprint 

https://doi.org/10.1101/203166


	

	

Imaging		

Images	 were	 collected	 using	 a	 Keyence	 BZ-X710	 fluorescent	 microscope	 configured	 with	 3	
fluorescent	channels	(FITC,	Cy3,	Cy5)	and	equipped	with	Nikon	PlanFluor	40x	NA	1.3	oil	immersion	lens.	
Imaging	and	washes	were	iteratively	performed	automatically	using	a	specially	developed	fluidics	setup.	
Images	were	subject	to	deconvolution	using	Microvolution	software	(www.microvolution.com).		

Data	analysis	

For	 each	 imaging	 field	 analyzed	 by	 CODEX	 multidimensional	 staining	 multi-color	 z-stacks	
collected	 during	 individual	 cycles	 were	 aligned	 against	 reference	 channel	 (CD45)	 by	 3D	 drift	
compensation35.	If	necessary	individual	fields	covering	large	tiled	areas	were	“stitched”	using	dedicated	
ImageJ	plugin36.	For	22	color	experiment	on	dissociated	cells	attached	 to	coverslip	 (Figure	2)	 images	
corresponding	 to	 the	 best	 focal	 plane	 of	 vertical	 image	 stacks	 collected	 at	 each	 acquisition	 step	 of	
CODEX	were	chosen	for	quantification.	

Image	 stacks	 were	 subject	 to	 a	 purposefully	 developed	 image	 segmentation	 algorithm	 that	
creates	3D	voxel	regions	around	nuclei	using	a	combination	of	low-pass	FFT	filtering	and	a	watershed	
algorithm.	 Per-cell	 intensities	 were	 quantified	 by	 integrating	 the	 intensity	 of	 each	 channel	 within	 a	
given	cell	region	and	divided	by	the	region	size	in	voxels.	The	cell-to-cell	signal	spill	coefficients	were	
estimated	based	on	the	fraction	of	shared	boundary	between	each	pair	of	cell	 regions,	resulting	 in	a	
banded	matrix	(most	cells	don’t	have	any	shared	boundaries).	To	compensate	the	cell-to-cell	spill,	the	
raw	intensity	vector	was	multiplied	by	the	inverse	spill	matrix.	

Compensated	intensities	of	cells	from	normal	and	MRL/lpr	spleen	were	pooled	together	for	clustering,	
resulting	in	a	dataset	of	707466	cells	(Supplementary	Table	2).	This	dataset	was	subject	to	clustering	
using	X-shift	16	and	K	was	automatically	set	to	60.	

To	define	for	each	cell	the	neighbors	of	the	first	(immediate)	tier	of	proximity	Delaunay	graph	
was	computed	for	the	dataset	(Supplementary	Table	3).	The	odds	ratio	of	co-occurrence	of	cell	type	A	
and	 cell	 type	 B	 was	 estimated	 as	 the	 observed	 frequency	 of	 co-occurrence	 (mean	 of	 the	 beta-
distribution,	with	parameter	alpha	=	number	of	 edges	 connecting	 cell	 types	A	and	B	and	parameter	
beta	 =	 total	 number	 of	 edges	 minus	 number	 of	 edges	 connecting	 A-B)	 divided	 by	 the	 theoretical	
frequency	 of	 co-occurrence	 (total	 frequency	 of	 edges	 incident	 to	 type	 A	 multiplied	 by	 the	 total	
frequency	of	edges	incident	to	type	B)	see	Supplementary	Table	5.	The	odds	ratios	are	represented	in	
heatmaps	on	Figure	3G	,	with	a	range	of	values	from	less	than	1	to	more	than	1	meaning	that	two	cell	
types	are,	respectively,	less	or	more	likely	to	co-occur	than	expected	by	chance.	The	significance	of	the	
difference	from	zero	was	tested	using	binomial	distribution	(probability	of	getting	an	observed	number	
of	 interactions	 between	 A	 and	 B	 (successes)	 amongst	 the	 total	 number	 of	 registered	 interactions	
(number	of	trials)	given	the	theoretical	probability	of	A-B	interaction	(probability	of	success)).		

The	 significance	 of	 change	 of	 interaction	 frequencies	 or	 log-odds	 ratios	 were	 computed	
between	BALB/c	and	Stage	1	 (early)	MRL	using	pairwise	T-test.	However,	 the	 same	procedure	could	
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not	 be	 applied	 to	 testing	 BALB/c	 versus	 MRL/lpr	 Stages	 2	 and	 3	 because	 of	 high	 sample-specific	
variation	 in	 those	 more	 advanced	 disease	 stages.	 Therefore	 we	 scored	 computed	 the	 deviation	 of	
those	Stage2/3	values	from	BALB/c	using	χ2	statistics	because	it	does	not	require	Stage	2/3	samples	to	
have	a	common	mean.		

The	 P-values	 were	 subject	 to	 FDR	 correction	 using	 Benjamini–Hochberg	 procedure.		
Interactions	that	were	considered	significant	for	FDR	q-value	<	0.05	or	>	0.	(Supplementary	Table	5).	

In	order	to	estimate	the	overall	deviation	of	either	interaction	frequency	matrices	or	log-odds	
ratio	matrices,	the	matrices	were	subject	to	z-transformation	based	on	the	mean	and	the	SDs	of	the	
BALB/c	 samples,	 and	 then	 χ	 	 statistics	 was	 computed	 as	 square	 root	 of	 the	 sum	 of	 squares	 of	 all	
elements	of	the	z-score	transformed	matrices	(Figure	5	F).		

	

Neural	network	training	and	data	analysis37	

Preprocessing:	
Image	stacks	were	maximum-intensity	projected	following	deconvolution.	Data	was	quantile	
normalized	to	4	levels	(0,	0.25,	0.5	and	0.75	quantiles).	A	baseline	model	was	able	to	distinguish	
models	without	this	discretization	and	normalization,	suggesting	strain-specific	differences	in	antibody	
staining	intensity.	
		
Training	and	cross	validation	split:	
Four	spleen	samples	(two	BALB/c	and	two	MRL/lpr)	were	chosen	as	training	samples.	The	remaining	
five	spleens	tissue	samples	(one	BALB/c	and	four	MRL/lpr)	were	used	for	testing	the	trained	model.	For	
cross-validation,	different	combinations	of	spleens	were	allocated	to	training	and	test	sets.	During	
training,	224x224	images	were	randomly	extracted	from	the	training	tissue	samples,	at	1x,	0.5x	and	2x	
zoom.		At	1x	zoom,	there	would	be	6804	non-overlapping	image	patches	in	the	training	dataset.	The	
trained	models	were	tested	on	4500	patches,	at	1x	zoom.	Hyperparameters	were	manually	tuned	on	
500	randomly	selected	images	from	the	testing	spleens.	The	Adam	optimizer	was	used	for	training	with	
an	initial	learning	rate	of	0.0001.	
		
Baseline	model:	
A	logistic	regression	model	was	trained	by	averaging	marker	intensities	across	the	image.	L2	
regularization	was	used	for	weights.	
		
Neural	network	architecture	
A	fully	convolutional	network	architecture	was	used,	with	the	following	layers.	To	generate	a	
prediction	for	an	entire	image	patch,	a	global	max-pooling	layer	was	used.		

1.     Conv3	60	
2.     Conv3	120	
3.     Conv3	64	
4.     Batch	Norm	
5.     Conv3,	64	
6.     Max	pooling	2x2	
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7.     Conv3,	128	
8.     Conv3,	128	
9.     Max	pooling	2x2	
10.  Conv3,	256,	
11.  Conv3,256	
12.  Conv3,256	
13.  Max	pooling	2x2	
14.  Conv3,512	
15.  Conv3,512	
16.  Conv3,512	
17.  Conv1,256	
18.  Conv1,64	
19.  Conv1,1	
20.  Global	max	pooling	
21.  Sigmoid	

Weights	for	layers	5-16	were	initialized	from	the	VGG-16	pretrained	model.	The	model	was	trained	
with	cross-entropy	loss.	
		
Regularization:		
L2	regularisation	(0.1)	was	used	for	network	weights.	L1	regularization	was	applied	to	the	feature	map	
output	after	layer	19	to	encourage	sparse	activations	
		
		
Whole	sample	activations	for	test	set:	
Since	the	network	was	fully	convolutional,	it	could	be	applied	to	images	of	any	dimension.	The	network	
was	applied	to	entire	fields	of	view	individually.	The	activation	maps	were	obtained	as	the	output	after	
layer	21.	
		
Aligning	cell	type	information:	
Each	cells	were	assigned	the	MRL/lpr	score	of	the	corresponding	pixel	in	the	image.	
		
Enrichment		and	neighbourhood	analysis:	
FDR	controlled	chi-squared	tests	of	proportions	were	carried	out	to	determine	enrichment	of	specific	
cell	types	in	the	top	10%	of	cells	by	MRL/lpr	score.	For	neighbourhood	analysis	of	dendritic	cells,	the	
composition	of	the	neighborhoods	(cell	centers	within	30	pixels)	of	the	top	300	cells	(by	MRL/lpr	score)	
were	compared	to	the	composition	of	the	neighborhoods	of	the	bottom	300	cells.	Only	cells	with	
positive	neural	network	assigned	MRL/lpr	score,	in	MRL/lpr	regions,	were	considered	for	this	analysis.	
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Figure	Legends	

Figure	1	–	Sequential	primer	extension	on	samples	stained	with	DNA	barcoded	antibodies	enables	
unlimited	level	of	multiplexing.	

(A)	CODEX	diagram.	Cells	are	first	simultaneously	pre-stained	with	a	mixture	of	all	DNA	tagged	
antibodies.	At	each	rendering	cycle	the	cells	are	exposed	to	a	nucleotide	mix	that	contains	one	of	two	
non-fluorescent	 index	nucleotides	and	 two	 fluorescent	nucleotides.	The	 index	nucleotides	 fills	 in	 the	
first	index	position	across	ALL	antibodies	bound	to	the	cells.		However,	the	DNA	tags	are	designed	such	
that	only	the	first	two	antibodies	are	capable	of	being	labelled	with	one	of	the	two	fluorescent	dNTPs	–	
and	only	if	the	index	nucleotide	was	previously	incorporated.	Those	two	antibodies	are	then	co-imaged	
by	 standard	 fluorescence	microscopy.	 The	 fluorophores,	 which	were	 incorporated	 in	 the	 first	 index	
cycle	are	cleaved	away,	the	cells	are	washed,	and	the	slide	is	ready	for	the	next	cycle.		At	the	end	of	the	
multicycle	rendering	protocol	each	pair	of	antibodies	is	visualized	at	a	known,	pre-defined	cycle	of	the	
sequencing	protocol,	and	the	multiparameter	image	can	be	reconstructed.		

	(B,	 C)	Mouse	spleen	cells	were	 fixed	and	co-stained	with	conventional	TcRβ Ax488	antibody	
and	CD4	antibody	conjugated	to	CODEX	oligonucleotide	duplex	as	 in	first	round	of	(A).	After	staining	
cells	were	either	incubated	in	extension	buffer	with	dG	and	dUTP-Cy5	without	(B)	or	with	(C)	Klenow	
exo-	 polymerase.	 Note	 that	 TcRβ-positive	 T	 cells	 in	 (B)	 and	 (C)	 are	 indicated	 by	 Ax-488	 staining.	
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Dependent	upon	the	addition	of	Klenow,	TcRβ-positive	CD4	positive	T	cells	are	seen	as	a	Cy5	positive	
subset	of	TcRβ-positive	T	cells	in	(C).		

(D)	Spleen	cryo-section	stained	with	B	cell	specific	B220-APC	(red)	and	T	cell	specific	TCR-FITC	
(green)	show	mutually	exclusive	staining	pattern	 in	 the	marginal	area	between	B	cell	 follicle	and	the	
white	pulp.		

(E)	 Spleen	 cryo-section	 stained	with	 CODEX	 DNA	 tagged	 B220	 (red)	 and	 CODEX	 DNA	 tagged	
TCR-	(green)	shows	staining	similar	to	the	one	observed	with	regular	antibodies	in	(D).		

(F)	 Spleen	 sections	 were	 co-stained	 with	 regular	 B220-FITC	 and	 two	 antibodies	 (ERTR7	 and	
CD169)	 tagged	 with	 cycel1	 CODEX	 DNA	 duplexes.	 Localization	 of	 marginal	 zone	 CD169	 positive	
macrophages	in	the	area	between	the	ERTR7	positive	splenic	conduit	of	the	white	pulp	and	the	B220	
positive	follicular	B	cells	(D)	as	reported	previously	has	been	observed.	

	

Figure	2	–	Accuracy	of	surface	marker	quantitation	by	CODEX.	

(A) Microscopic	 image	 of	mouse	 splenocytes	 stained	with	 a	 24-color	 antibody	 panel,	 showing	 one	
cycle	 of	 CODEX	 antibody	 rendering.	 Cell	 contours	 show	 the	 outlines	 produced	 by	 the	 cell	
segmentation	algorithm		

(B) Comparison	 of	 single-cell	 expression	 data	 derived	 from	 dissociated	 mouse	 splenocytes	 on	 an	
identical	24-color	panel	using	CODEX	and	CyTOF.		

(C) Example	 segmentation	 in	 a	mouse	 spleen	 section	 based	 on	 combining	 nuclear	 and	membrane	
(CD45)	channel.	

(D) Graphical	explanation	of	the	algorithm	for	compensating	the	spillover	between	neighboring	cells	
using	a	cell-by-cell	compensation	matrix.	

(E) The	effect	of	the	compensation	algorithm	on	the	estimated	single-cell	 intensity	of	CD8	and	CD4	
markers	in	mouse	spleen.		

	

Figure	3	–	CODEX	analysis	of	mouse	spleen	cryosections	co-stained	for	28	antigens.	

(A)	 Three	 collated	 images	 on	 the	 left	 correspond	 to:	 the	 legend	 of	 antibody	 renderings	 per	 cycle;	
gross	morphology	 photograph	 of	MRL/lpr	 (left)	 and	 normal	 (right)	 spleen	 embedded	 in	 O.C.T.	
block	 prior	 to	 sectioning.	 Green	 color	 corresponds	 to	 antibodies	 rendered	 by	 extension	 with	
dUTP-Cy5,	red	–	dCTP-Cy3	On	the	right	collage	of	the	CODEX	multicycle	data	for	normal	spleen	
(BALBc-2)	and	early	MRL/lpr	spleen	(MRL/lpr	-4).	All	images	are	derived	from	a	single	scan	with	a	
40x	oil	objective	of	an	area	covered	by	63	tiled	fields. 

(B)	 Schematic	 diagram	 of	 major	 known	 splenic	 anatomical	 subdivisions	 drawn	 based	 on	 cell	
distribution	in	BALBc-1	replicate.		
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(C)	An	exemplary	profile	of	Vortex	cluster	(B-cells)	used	for	manual	matching	of	clusters	to	known	cell	
types.	

	(D)	Minimal	spanning	tree	(MSP)	built	for	all	clusters	identified	by	Vortex	analysis.	On	the	left	middle	
and	right	panels	the	MSPs	are	colored	by	expression	levels	of	B220,	TCR	and	CD71	accordingly	to	
indicate	location	of	B-cells	T-cells	and	erythroblasts	on	the	tree.		

(E)	Vienne	diagram	showing	for	several	major	cell	 types	their	 fraction	of	 total	cells	as	 identified	by	
CODEX	analysis	of	splenic	tissue	and	CYTOF	analysis	of	isolated	BALBc	splenocytes		

(F)	Post-segmentation	derived	diagram	of	identified	objects	(cells)	colored	according	to	cell	types	in	
BALBc-1	 replicate.	 	 Full	 size	 diagrams	 are	 available	 for	 every	 tissue	 analyzed	 in	 this	 study	 are	
available	online	at	https://welikesharingdata.blob.core.windows.net/forshare/index.html	

(G)	Average	cell	 type	to	cell	 type	 interaction	strength	heatmap	for	BALBc	samples.	Color	from	blue	
(<0)	to	white	(around	0)	to	red	(>0)	 indicates	 log	of	odds	ratio	of	 interaction	(ratio	of	observed	
frequency	 versus	 expected	 frequency	 of	 interaction).	 The	 rows	 and	 columns	 are	 in	 the	 same	
order	 (annotation	 on	 the	 right).	 Black	 outlines	 indicate	 two	 largely	 exclusive	mega-clusters	 of	
cross-interacting	cell	types	loosely	matching	the	cell	types	populating	the	red	and	the	white	pulp.		

Figure	4	–	Unbiased	identification	of	i-niches	in	multidimensional	CODEX	data.	

(A)	On	the	left	–	diagram	explaining	the	terminology	used	for	defining	i-niche	(a	ring	of	first	tier	
neighbors	for	central	cell).	On	the	right	–	Delaunay	triangulation	graph	used	for	 identification	of	first	
tier	of	neighbors	for	every	cell.		

(B-i)	Heatmap	depicting	frequency	of	cell	 types	 in	100	types	of	 i-niches	 identified	by	K-means	
(K=100)	 clustering	of	all	 index	 cells	 in	 the	dataset	 (each	 cell	 is	 an	 index	 cell	 for	 its	 i-niche)	based	on	
frequency	of	different	cell	types	in	the	first	tier	of	neighbors.	(B-ii	and	-iii)	Two	heatmaps	from	top	to	
bottom	show	average	expression	of	selected	surface	markers	measured	in	a	central	cell	across	100	i-
niches	when	central	cell	is	B-cells	or	CD4	T-cell	accordingly.	Two	orange	rectangles	over	top	heatmap	
indicates	position	of	i-niches	with	high	CD35	(containing	FDCs	and	marginal	zone	macrophages).	Cyan	
rectangle	shows	location	of	family	of	 i-niches	with	high	content	of	F4/80	macrophages	and	low	B220	
and	CD19	in	central	B	–	cell.	Purple	rectangle	indicates	family	of	i-niches	enriched	with	ERTR-7	positive	
stroma.	 Below	 top	 heatmap	 location	 of	 selected	 i-niches	 shown	 in	 (E)	 are	 indicated.	 Over	 bottom	
heatmap	yellow	rectangle	indicated	family	of	i-niches	dominated	with	dominating	presence	of	B-cells.	
Two	green	rectangles	 indicate	family	of	niches	with	high	levels	of	CD90	and	CD27	in	the	index	CD4	T	
cells.	 Grey	 rectangle	 indicates	 family	 of	 i-niches	 enriched	 with	 ERTR-7	 positive	 stroma.	 (B-iv)	
Abundance	of	100	i-niches	in	normal	spleen	(top	bar	graph)	and	(B-v)	relative	distribution	of	 i-niches	
between	 splenic	 histological	 subdivisions	 (PALS,	 red	 pulp,	 marginal	 zone	 and	 B-zone)	 shown	 as	 a	
heatmap.	To	illustrate	a	variety	of	tissue	distribution	pattern	by	i-niches	an	overlay	of	selected	i-niches	
over	a	schematic	of	normal	spleen	(BALBc-1)	is	shown.	
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(C)	An	example	of	marginal	zone	and	follicular	(B-zone)	B	cells	defined	by	residence	in	distinct	i-
niches	(e.g.	marginal	zone	i-niche	includes	a	marginal	zone	macrophage	marked	by	letter	H	and	green	
color).	Positions	of	B-cells	in	each	i-niche	is	marked	with	red	circles	over	the	schematic	of	BALBc	spleen.		

	(D)	 Top	 right	 shows	 a	 biaxial	 plot	 of	 flow	 data	 for	 CD79b	 and	 B220	 measured	 in	 isolated	
splenocytes.	Top	 left	shows	 levels	of	CD79b	and	B220	 in	central	B-cells	as	measured	across	all	100	 i-
niches.	To	illustrate	i-niche	dependent	variability	of	surface	marker	expression	–	images	of	central	cells	
(marked	with	red	cross)	with	levels	of	surface	marker	indicated	in	pseudocolor	palette	are	shown	for	
selected	exemplary	i-niches	in	the	bottom	panels.		

	

Figure	5	–	Differential	effect	of	disease	over	i-niche	presence	across	dataset.	

(A) Post-segmentation	diagrams	of	all	objects	(cells)	colored	according	to	cell	types	(see	color	map	in	
Figure	3F)	for	all	normal	and	MRL/lpr	tissue	sections	imaged	in	the	study.	.		Full	size	diagrams	are	
available	 for	 every	 tissue	 analyzed	 in	 this	 study	 are	 available	 online	 at	
https://welikesharingdata.blob.core.windows.net/forshare/index.html	

(B) Cell	counts	across	dataset	for	manually	annotated	Vortex	clusters	(cell	types)	across	progression	
from	normal	to	afflicted	spleen.	Cell	types	were	split	into	four	types	according	to	the	dynamics	of	
counts	across	dataset	as	represented	by	average	cell	count	line	graphs	on	the	right		

(C) Two	 examples	 of	 change	 in	 cell-to-cell	 interaction	 frequency	 during	 disease	 progression	 –
between	the	B	cells	and	dendritic	cells	 in	normal	and	early	MRL/lpr	spleen	and	between	B220+	
DN	T	cells	and	CD4	T	cells	during	progression	from	early	MRL/lpr	to	intermediate.		

(D) Co-distribution	of	odds	ratio	 log-fold	[log(odds	ratio	 in	early	MRL/lpr)-	 log(odds	ratio	 in	BALBc)]	
on	 X	 axis	 and	 change	 in	 counts	 of	 interactions	 for	 early	 MRL/lpr	 versus	 control	 (BALBc)	
comparisons	(on	Y	axis).		

(E) Co-distribution	 of	 cumulative	 cell	 frequency	 change	 [celltype1	 freq.	 change	 +	 celltype1	 freq.	
change]	on	X	axis	and	change	in	counts	of	 interactions	for	early	MRL/lpr	versus	control	(BALBc)	
comparisons	(on	Y	axis).		

(F) Bar	 graph	 showing	 Chi	 square	 values	 across	 conditions	 computed	 for	 odds	 ratio	 and	 direct	
interaction	counts.	

	

Figure	6	–	Differential	effect	of	disease	over	i-niche	presence	across	dataset.	

(A) Cell	 interaction	 networks	 built	 for	 BALBc	 early	MRL/lpr	 and	 late	MRL/lpr	 based	 on	 number	 of	
contacts	observed	between	two	cell	types	(only	connections	with	more	then	150	interactions	per	
sample	are	shown	on	the	diagrams).	Thickness	of	connection	correlates	with	number	of	contacts	
size	of	the	node	indicates	number	of	cells	per	condition.		
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(B) Evolution	of	i-niche	abundance	across	dataset.	Selected	three	i-niches	(marked	above	heatmap	in	
(C)	 depicting	 i-niche	 composition)	 differentially	 represented	 across	 dataset	 (changing	 between	
norm	 and	 disease)	 are	 shown.	 Yellow	 circles	 overlaid	 over	 blank	 rectangle	 corresponding	 to	
imaged	area	indicate	location	of	i-niche.		

(C) Top	heatmap	shows	frequencies	of	B220+	DN	T	cells,	erythroblasts	and	B-cells	in	the	i-niche	rings.	
Line	 above	 top	 heatmap	 indicates	 the	 composition	 of	 i-niches	 18,	 29,	 and	 96	 described	 in	 (B).	
Middle	 heatmap	 indicates	 expression	 of	 selected	 markers	 when	 the	 i-niche	 central	 cell	 is	 an	
erythroblast	 –	 primarily	 to	 show	 that	 CD27	 is	 not	 expressed	 on	 erythroblasts	 in	 the	 vicinity	 of	
B220+	 DN	 T	 cells.	 Bottom	 heatmap	 indicates	 expression	 of	 selected	markers	 when	 the	 i-niche	
central	cell	is	a	CD4	T	cell.	Red	oval	outline	pinpoints	i-niches	with	elevated	CD27.	Note	that	these	
i-niches	 as	 indicated	by	 top	heatmap	have	B220+	DN	T	 cells	 as	 a	 prevailing	 component.	 Lower	
panels	show	examples	of	central	cells	in	i-niches	marked	under	the	lower	heatmap.	i-niche	50	is	
an	example	of	i-niche	without	B220+	DN	T	cells.	Central	cell	does	not	express	high	CD27.	i-niches	
42	and	44	have	high	frequency	of	B220+	DN	T	cells	and	accordingly	central	cells	express	high	CD27.	

		

Figure	7	–	Differential	effect	of	disease	over	i-niche	presence	across	dataset.	

(A) Selected	i-niches	(green	heatmap	shows	i-niche	composition)	were	chosen	based	on	high	(>90%)	
presence	per	single	histological	subdivision	(blue	heatmap).	Abundance	of	these	i-niches	(brown	
heatmap)	 was	 used	 to	 judge	 the	 preservation	 or	 decay	 of	 a	 histological	 splenic	 subdivision	
corresponding	to	selected	i-niches.		

(B) Red	color	over	blue	rectangle	indicates	neural	network	predicted	regions	of	interest	(MRL	specific	
regions)	 in	 entire	 spleen	 images.	 From	 top	 left,	 clockwise:	 BALBc	 #2,	MRL/lpr	 #5,	MRL/lpr	 #7,	
MRL/lpr	#8.		

(C) Cell	types	enriched	(FDR	<	0.1)	in	neural	network	predicted	regions	in	MRL	spleens	(in	red	in	A).	

	

	

Supplementary	Figure	Legends	
(supplementary	figures	and	tables	not	included	in	the	main	text	can	be	found	at	at		

http://welikesharingdata.blob.core.windows.net/forshare/index.html)	

	

Supplementary	Figure	1.		Robustness	of	CODEX	rendering.	

(A)	Experimental	scheme	for	mimicking	the	tissue	with	30	distinct	cell	types	(B)	Montage	of	a	
fragment	of	imaging	field	of	the	15	cycles	of	CODEX	used	to	render	the	mix	of	30	barcoded	spleens	–
	first	cycle	top	left	last	cycle	bottom	right.	(C).	An	example	of	image	quantification	approach	used	for	
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parsing	 the	 CODEX	 data.	 Images	 corresponding	 to	 the	 best	 focal	 plane	 of	 vertical	 image	 stacks	
collected	at	each	acquisition	step	of	CODEX	were	chosen	for	quantification.	Images	were	segmented	by	
Cell	 Profiler,	 tertiary	 objects	 encompassing	 the	 cell	 membrane	 (left	 panel)	 and	 an	 external	 to	 cell	
region	immediately	bordering	the	cell	membrane	were	chosen	for	further	quantitation.	To	account	for	
local	background	the	value	corresponding	to	difference	between	the	mean	intensity	value	inside	“cell	
membrane”	 object	 and	 the	 mean	 intensity	 inside	 the	 external	 ring	 object	 was	 chosen	 as	 a	
representation	of	 the	 intensity	of	 the	antibody	signal.	 (D)	 Time-lapse	profile	of	median	 intensity	per	
cell	membrane	 for	 individual	 cells	marked	by	white	 arrows	on	 (B).	 	 (E)	Heatmap	 (cycles	 in	 columns,	
cells	in	rows)	showing	mean	fluorescence	per	cell	membrane	for	each	cell	per	in	each	of	the	15	CODEX	
cycles	performed	on	cells	of	30	barcoded	spleens.	Odd	columns	correspond	to	 imaging	after	 labeled	
base	 incorporation.	 Even	 columns	 correspond	 to	 imaging	 after	 inactivation	 of	 staining	 by	 TCEP.	 (F)	
Average	 intensity	 of	 CD45	 antigen	 expression	 in	 15	 distinct	 Cy5-positive	 populations	 sequentially	
rendered	 by	 15	 CODEX	 cycles	 of	 the	 experiment.	 (Similar	 results	 were	 obtained	 for	 Cy3-positive	
populations	–	data	not	shown).	Note	the	overall	lack	of	dependence	of	the	average	signal	intensity	on	
the	 cycle	 number,	 indicating	 the	 robustness	 of	 the	 stained	 tissue	 to	 the	 chemistry	 of	 rendering	 by	
CODEX.	

	

Supplementary	Figure	2	(available	online38).	In	situ	imaging	examples	and	surface	marker	expression	
profiles	of	cell	types	identified	in	normal	and	MRL	spleens.	

First	 panel	 shows	 schematics	 of	 how	 data	 represented	 across	 the	 individual	 pages	 of	 this	
multipage	figure.	Every	panel	shows	per	cell	type	marker	expression	profile;	high	resolution	montage	
of	 images	 acquired	 in	 CODEX	 cycles	 with	 cell	 of	 indicated	 type	 marked	 with	 yellow	 crosses	 and	
distribution	of	the	cell	type	across	normal	and	autoimmune	spleens	of	the	dataset.	

	

Supplementary	Figure	3.	Cross	tissue	and	cross	samples	distribution	of	cell	types	identified	in	normal	
and	MRL	spleens.	(available	online38)	

First	 panel	 shows	 schematics	 of	 how	 data	 represented	 across	 the	 individual	 pages	 of	 this	
multipage	 figure.	 Every	 panel	 shows	 low	 resolution	montage	 of	 tiled	 images	 of	 each	 tissue	 sections	
imaged	in	this	study	and	distribution	of	cells	of	indicated	type	across	these	images	the	cell	are	marked	
with	white	circle.	

	

Supplementary	Figure	4.	CD4(+)MHCII(+)	cells	correspond	to	ILC3	of	Lti	type	

(A)	Distribution	of	CD4(+)MHCII(+)	cells	(marked	with	white	circles)	in	BALBc	#2	spleen	stained	
with	IgD	(green)	and	CD90	(red)	to	indicate	positions	of	B	and	T	cells	accordingly.	(B)	CD4	and	MHCII	
expression	in	isolated	mouse	splenocytes	gated	negative	for	all	CODEX	panel	markers	and	in	addition	
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120g8	 (lineage	 depletion	 with	 BD	 558451 and	 dump	 channel	 for	 FITC	 conjugated	 or	 biotinilated	
antibodies	 corresponding	 to	 the	 antigens	 stained	with	 CODEX	 panel	were	 used	 for	 negative	 gating)	
except	CD4,	MHCII,	CD45	and	CD44.	(C)	CD4(+)MHCII(+)	cells	within	the	gate	shown	in	(B)	were	sorted	
out	and	subjected	to	microarray	analysis.	CD4	T	cells,	CD8	T	cells,	bulk	B	cells	and	Conventional	CD11c	
positive	dendritic	cells	were	co–sorted	as	a	control.	Expression	of	Lti	 signature	genes	 (two	 individual	
signature	sets	as	inferred	in		{Robinette,	2015	#1194}	)	were	analyzed	in	all	sorted	cells 

	

	

Supplementary	Figure	5.		Homotypic	adhesion	drives	thread-like	arrangement	of	CD8	cells.	

(A)	Thread	like	arrangement	of	CD8	T	cells	(purple,	annotated	with	V-letter)	has	been	noticed	in	
PALS	of	splenic	samples	across	dataset.	To	examine	potential	mechanisms	driving	these	structures	CD8	
Tells	and	B220	positive	B	cells	were	sorted	 individually	 from	BALBc	spleen	 (B)	and	 later	combined	 in	
flat	bottom	microwell	plates	and	mixed	at	37C	in	culture	medium	C.	After	of	mixing	cells	were	stained	
for	B220	 (green)	and	CD8a	 (red)	and	 imaged.	Thread	 like	structures	similar	 to	what	was	observed	 in	
spleen	were	detected.	

	

Supplementary	Figure	6.		Index	cell	types	distribution	between	niches		

(A).	Heat	map	showing	average	frequencies	of	cell	types	(rows	of	heatmap)	in	the	ring	of	index	
cell	neighbors	(see	schematics	on	the	left)	for	all	niche	clusters	(0-99	in	columns)	(B)	Heat	map	shows	
how	different	cell	types	(in	rows)	are	distributed	between	niches	(in	columns).	

	

Supplementary	Figure	7.		Types	of	samples	in	MRL/lpr	dataset.	

MRL/lpr	dataset	had	9	samples:	3	control	wild	 type	BALBc	spleens	 (BALBc	 -1,-2,-3	and	6	MRL	
spleens	MRL	-4,-5,-6,-7,-8,-9).	Based	on	disintegration	of	marginal	zone	as	measured	by	frequency	of	
marginal	zone	macrophages	(MZMPhs)	and	accumulation	of	double	negative	T-cells	expressing	B220	B	
cell	marker	(B220	DN	T	cells)	MRL	spleens	were	grouped	into	early	(MRL	-4,-5,-6),	intermediate	(MRL	-
7,-8),	and	late	types.	Early	stage	was	represented	by	3	MZM	positive	DN	T	cell-low	spleens.	Int1	stage	
was	represented	by	single	MZM	low	DN	T	cell-low	spleen.	Int2	stage	was	represented	by	single	MZM	
positive	DN	T	cell-positive	spleen.	Late	stage	was	represented	by	single	MZM	positive	DN	T	cell-positive	
spleen.	A	single	representative	spleen	is	shown	for	each	stage	together	with	interaction	matrix.	Color	
represents	odd	ratios	(observed	frequency	of	interaction/	expected	frequency	of	interaction).	

	

Supplementary	 Figure	 8.	 Cross	 tissue	 and	 cross	 samples	 distribution	 of	 interacting	 cell	 pairs	 for	
selected	types	of	cell-to-cell	interactions.	(available	online38)	
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First	 panel	 shows	 schematics	 of	 how	 data	 represented	 across	 the	 individual	 pages	 of	 this	
multipage	 figure.	 Every	next	page	 shows	 schematics	of	dataset	 tissue	 types	and	 low	 resolution	 tiled	
view	of	 interacting	cell	pairs	across	 imaged	sections	of	normal	and	MRL	LPR	spleen.	One	cell	 type	 is	
marked	with	white	 circle	 and	 the	 other	with	 cyan.	 Due	 to	 cell	 proximity	 in	most	 cases	 cyan	 circles	
practically	completely	overlay	white.	

Supplementary	 Figure	 9.	 Expanding	 the	 multiplexing	 limit	 of	 CODEX	 by	 “panels	 and	 activators”	
design.	

(A)	 Diagram	of	 “multipanel”/”activator	 oligo”	 CODEX	 approach.	 The	 list	 of	 antibodies	 can	 be	
divided	in	sets	such	that	number	of	antibodies	in	each	individual	set	does	not	exceed	the	capacity	of	
the	multiplexing	 protocol	 to	 render	 staining	without	 significant	 signal	 loss	 (e.g.30).	 Each	 such	 set	 of	
antibodies	will	be	conjugated	to	“terminated”	(the	last	3’	base	is	dideoxy-	or	propyl-	modified)	upper	
strand	oligonucleotide	of	the	same	sequence	as	in	the	original	version	of	the	“missing	base”	approach.	
The	lower	strand	oligonucleotides	will	incorporate	an	additional	set-specific	region,	which	will	serve	as	
a	landing	spot	for	the	dedicated	primer	oligo	which	is	to	be	on-slide	hybridized	to	the	particular	subset	
of	 the	 total	 plurality	 of	 the	 antibodies	 at	 the	 time	 when	 they	 are	 to	 be	 rendered.	 This	 approach	
prevents	 extension	 of	 reads	 beyond	 certain	 threshold	 and	 at	 the	 same	 time	 have	 an	 unlimited	
potential	 number	 of	 antibodies	 in	 the	 sample.	 (B)	 Schematics	 of	 experiment	 demonstrating	 the	
“activator”	 method	 and	 its	 robustness.	 Each	 antigen	 of	 a	 set	 of	 22	 surface	markers	 is	 redundantly	
detected	by	three	CODEX	tag	conjugates	of	the	same	antibody.	The	first	conjugate	is	detected	during	
panel	 1	 rendering,	 second	 –	 during	 panel	 2	 etc...	 Thus	 the	 signal	 for	 same	 antigen	 is	 detected	 at	
different	cycles	(e.g.,	1st,	13th,	and	24th)	(C)	Montage	of	a	fragment	of	imaging	field	of	the	36	cycles	of	
CODEX	used	to	render	a	mixture	of	18	barcoded	spleens	(similar	to	design	in	Figure	2A).	Cycles	N,N+12	
and	N+24	all	three	of	which	render	same	pair	of	antigens	are	shown	per	tile	for	all	11	pairs	of	antigens	
(see	annotation	in	the	black	rectangle	of	each	tile)	

	

Supplementary	Figure	10.	The	“reversible	terminator	method”	variation	of	the	CODEX.		

This	 implementation	 of	 the	 CODEX	 relies	 on	 reversible	 terminators,	 i.e.,	 chain	 terminator	
nucleotides	 that	can	be	de-protected	after	 incorporation,	 thereby	allowing	 further	nucleotides	 to	be	
added	to	that	nucleotide.	Similar	to	approach	in	Fig.1	the	planar	sample	is	co-stained	simultaneously	
using	a	panel	of	capture	agents,	each	 labeled	with	one	oligonucleotide	duplex	designed	according	to	
the	strategy	outlined	on	the	diagram.	The	duplexes	are	designed	in	such	a	way	that	each	antibody	has	
the	same	upper	strand	sequence	linked,	covalently	or	through	streptavidin,	to	an	antibody	through	the	
5’	 end.	 The	 lower	 strand	 changes	 from	 antibody	 to	 antibody.	 In	 this	 implementation,	 the	 general	
formula	 for	 the	 lower	 strand	 is	 3’-dideoxydC	 -sequence-complimentary-to-upper-strand	GnA/T/C-5’	 .	
One	type	of	lower	strand	base	(nucleotide	C	in	this	example)	is	reserved	for	step-wise	progression	and	
its	complementary	pair	on	the	upper	strand	is	never	used	in	 labeled	form.	The	other	three	bases	(as	
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opposed	to	“missing	base”	approach	see	Fig.1)	are	complementary	to	labeled	nucleotides	and	can	be	
used	 to	 identify	 three	 capture	agents	per	 cycle.	 Each	 cycle	 includes:	 (a)	 a	 labeling	 step	 in	which	 the	
three	capture	agents	are	labeled	and	duplexes	on	the	rest	are	extended	with	an	unlabeled	nucleotide	
one	 base	 at	 a	 time,	 (b)	 an	 imaging	 step	 and	 (c)	 a	 destaining/deprotection	 step.	 During	
destaining/deprotection	 step	 of	 the	 cycle	 to	 cycle	 transition	 the	 added	 fluorescent	 labels	 from	 the	
previous	cycle	are	inactivated	by	any	of	the	suitable	methods,	including	cleavage	of	fluorophore	off	the	
nucleotide	(if	the	labeled	nucleotide	is	linked	to	the	fluorophore	through	a	cleavable	linker);	peroxide	
based	 bleaching;	 photobleaching;	 chemically-assisted	 photobleaching;	 After	 or	 simultaneously	 with	
inactivation	of	the	fluorophores	added	in	the	previous	reaction,	the	unlabeled	“extension”	nucleotide	
that	has	been	added	to	the	remainder	of	the	capture	agents	is	activated	by	cleavage	of	the	protective	
group	off	its	3’	end.	Cleavage	of	the	protective	group,	in	turn,	allows	that	nucleotide	to	be	extended	in	
the	next	cycle.		

		

Supplementary	Table	Legends	
(supplementary	figures	and	tables	not	included	in	the	main	text	can	be	found	at	at		

http://welikesharingdata.blob.core.windows.net/forshare/index.html)	

Supplementary	Table	1.	List	of	CODEX	antibodies	and	oligonucleotides.	

Excel	 file	 with	 four	 spreadsheets	 corresponding	 to	 multidimensional	 staining	 experiments	
performed	 in	 the	 study	 (CODEX	 panel	 for	 cell	 spreads)	 List	 of	 24	 antibodies	 (23	DNA	 conjugated	 +	
CD45	 FITC	 for	 counterstain),	 upper	 and	 lower	 nucleotides	 used	 for	 CODEX	 staining	 of	 isolated	
splenocytes.	(CODEX	panel	for	spleen	tissue)	List	of	30	antibodies	(28	DNA	conjugated	+	CD45	FITC	and	
NKp46	PacBlue),	upper	and	lower	nucleotides	used	for	comparative	CODEX	staining	of	normal	BALBc	
and	lupus	afflicted	MRL/lpr	spleen	sections.	(CYTOF	panel	for	spleen	cells)	List	of	23	metal	conjugated	
antibodies	antibodies	used	in	CyTOF	analysis	of	isolated	splenocytes.	(Activator	driven	CODEX	panels)	
List	 of	 22	 antibodies	 (22	DNA	 conjugated	 +	 CD45	 FITC	 for	 counterstain),	 upper,	 lower	 and	 activator	
nucleotides	used	 for	activator	driven	CODEX	staining	of	 isolated	 splenocytes	 (see	exp.	 Schematics	 in	
Supplementary	Figure	9).	

	

Supplementary	 Table	 2.	 Segmentation	 and	 quantification	 of	 surface	marker	 expression	 in	 cells	 of	
normal	and	MRL/lpr	spleen.	

Excel	 file	 with	 cell	 types	 annotation,	 expression	 profiles	 and	 coordinates	 of	 all	 segmented	
objected	identified	in	spleen	sections	analyzed	in	this	study	
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Supplementary	Table	3.	Delaunay	neighborhood	graph.		

Excel	 file	 with	 annotation	 and	 coordinates	 of	 all	 pairwise	 cell	 to	 cell	 contacts	 (interactions)	
mapped	across	samples	imaged	in	this	study	

Supplementary	Table	4.	X-shift	cluster	annotations	and	cell	counts	

Excel	 file	with	58	clusters	 identified	by	X-shift	analysis,	 their	annotations	and	 resulting	across	
dataset	counts	for	27	imaging	phenotypes	identified	in	this	study	

	

Supplementary	Table	5.	Dynamics	of	average	cell	type	to	cell	type	interaction	frequency	and	strength	
across	dataset.	

Excel	 table	 with	 three	 spread	 sheets.	 Full	 data	 contains	 odds	 ratios;	 direct	 counts	 of	
interactions	as	well	as	various	differential	metrics	 for	comparisons	off	 frequency	and	strength	of	cell	
type	to	cell	type	interactions	between	early	MRL	and	control	(BALBc)	and	intermediate-late	MRL	and	
early	 MRL.	 Early	 vs	 control	 shows	 top	 candidate	 cell	 type	 pairs	 selected	 based	 on	 the	 change	 in	
strength	(odds	ratios)	or	frequency	of	interactions	between	early	MRL	spleen	and	control	spleens.	Late	
vs	early	shows	top	candidate	cell	type	pairs	selected	based	on	the	change	in	strength	(odds	ratios)	or	
frequency	 of	 interactions	 between	 combined	 intermediate	 and	 late	 MRL	 spleens	 and	 early	 MRL	
spleens.	

Supplementary	Table	6.		

Linear	regression	model	for	marker	expression	level	based	on	niche	and	cell	type	shows	importance	
of	niche.	

The	 overall	 role	 of	 the	 niche	 in	 defining	marker	 expression	was	 evaluated	 by	 constructing	 a	
linear	regression	model	of	marker	expression	with	cell	type	identity	and	niche	as	two	feature	variables.	
This	Excel	file	shows	F	and	P	values	for	the	contribution	of	niche	to	the	model	.	The	F	value	is	the	ratio	
of	the	mean	regression	sum	of	squares	for	the	model	including	just	cell	type	to	the	full	model	including	
both	 niche	 and	 the	 cell	 type.	 Its	 value	 ranges	 zero	 to	 an	 arbitrarily	 large	 number.	 A	 larger	 F	 value	
suggests	that	the	niche	has	a	larger	contribution	in	explaining	the	variance	observed	in	the	expression	
levels	of	each	marker.	The	value	of	Pr(>F)	is	the	p-value	against	the	null	hypothesis	that	including	the	
niche	in	the	model	does	not	improve	the	fit.		
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