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Summary 

A highly multiplexed cytometric imaging approach, termed CO-Detection by indEXing (CODEX), 

is used here to create multiplexed datasets of normal and lupus (MRL/lpr) murine spleens. CODEX 

iteratively visualizes antibody binding events using DNA barcodes, fluorescent dNTP analogs, and an in-

situ polymerization-based indexing procedure. An algorithmic pipeline for single-cell antigen 

quantification in tightly packed tissues was developed and used to overlay well-known morphological 

features with de novo characterization of lymphoid tissue architecture at a single-cell and cellular 

neighborhood levels. We observed an unexpected, profound impact of the cellular neighborhood on 

the expression of protein receptors on immune cells. By comparing normal murine spleen to spleens 

from animals with systemic autoimmune disease (MRL/lpr), extensive and previously uncharacterized 

splenic cell interaction dynamics in the healthy versus diseased state was observed. The fidelity of 

multiplexed spatial cytometry demonstrated here allows for quantitative systemic characterization of 

tissue architecture in normal and clinically aberrant samples. 

Introduction 

Dramatic immune tissue re-organization has been seen in lupus erythematosus, where a variety 

of organs (from skin, to kidney, and other body organs) can be targeted in relapsing-remitting flares. 

One example of such reorganization is pronounced lymphadenopathy and splenomegaly observed in 

lupus models (Lieberum and Hartmann, 1988, Jacobson et al., 1995). Using mice with MRL/lpr 

genotype (Kanauchi et al., 1991) we sought to systematically characterizes microenvironment and cell 

interactions associated with changes in immune organ architecture and the progression of 

autoimmune disease. To this end we devised a multiplexed microscopy technique that allows a precise 

mapping of cell types in tissues. Significant overlap in excitation and emission spectra makes it hard to 

image more than 4-5 fluorophores with conventional fluorescent microscopy. Yet considerably more 

surface markers are needed for precise identification of cellular subsets and their activation state 

(Chattopadhyay and Roederer, 2012). Approaches have been developed to overcome such limitations 

(Schubert et al., 2006, Gerdes et al., 2013), but these protocols have required multiple stain/strip/wash 

cycles of the antibodies that can be time consuming or lead to sample degradation over the iterations. 

The technique described here (CODEX, for CO-Detection by indEXing) extends deep 

phenotyping capabilities of flow and mass cytometry (Spitzer et al., 2015, Bendall et al., 2011) to most 

standard three-color fluorescence microscope platforms for imaging of solid tissues. Accurate highly 

multiplexed single-cell quantification of membrane protein expression in densely packed lymphoid 

tissue images, (which was once deemed impossible (Gerner et al., 2012)) was achieved using 

polymerase driven incorporation of dye-labeled nucleotides into the DNA tag of oligonucleotide-

conjugated antibodies, combined with an image-based expression estimation algorithm. Automatic 

delineation of cell types from multidimensional marker expression and positional data generated by 

CODEX enabled deep characterization of cellular niches and their dynamics during autoimmune disease 
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both for major and rare cell types populating mouse spleen.  A rich source of multivariate data has 

been generated and provided for the community to further efforts in developing approaches for image 

analysis, tissue architecture mapping and rare cell type detection. 
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Results 

Single base primer extension enables multiplexed antigen staining 

DNA provides an ideal substrate for designing molecular tags due to its combinatorial polymer 

nature. An indexable tagging system whereby tags are iteratively revealed in situ by a stepwise 

enumeration procedure was designed. Antibodies (or other affinity-based probes) are labeled with 

uniquely designed oligonucleotide duplexes with 5’ overhangs that enable iterative stepwise 

visualization (Figure 1A, Supplementary Movie 1, part 1). Cells are stained with a mixture of all tagged 

antibodies at once. At each rendering cycle the cells are exposed to a nucleotide mix that contains one 

of two non-fluorescent “index” nucleotides and two fluorescent labeling nucleotides. The index 

nucleotides fills in the first index position across all antibodies bound to the cells.  However, the DNA 

tags are designed such that only the first two antibodies are capable of being labelled with one of the 

two fluorescent dNTPs – and only if the index nucleotide was previously incorporated. Those two 

antibodies are then imaged by standard fluorescence microscopy. Then the fluorophores are cleaved 

and washed away, and the sample is ready for the next cycle where a different indexing nucleotide is 

used.  At the end of the multicycle rendering protocol each pair of antibodies is visualized at a known, 

pre-defined cycle of the indexing protocol, and the multiparameter image can be reconstructed. The 

polymerase is paused at the indexing position by omitting one of the indexing (walking) bases from the 

labeling mix (as done in this study) or potentially by use of reversible terminators (Supplementary 

Movie 1, part 2). Importantly, the system enables multiplexed tissue imaging analysis by means of a 

standard fluorescence microscope. 

To test the premise of the system, isolated mouse spleen cells were incubated with a CD4 

antibody conjugated to an indexing oligonucleotide duplex (as represented by Ab1 in Figure 1A). In this 

trial experiment TCRβ-Alexa 488 was used as a counterstain. A single round of primer extension was 

done with a mix of unlabeled dGTP and dUTP-ss-Cy5. A cell population positive for both CD4 and TCRβ 

was observed by flow cytometry. Observation of this population was dependent on the addition of 

Klenow DNA polymerase to the reaction mixture (Figure 1B, C) indicating specific antibody rendering 

by primer extension. Similarly, in tissue sections, CODEX tag-conjugated antibodies produced lineage-

specific staining comparable to regular fluorescent antibodies (compare staining patterns of B220-

CODEX and B220-APC in mouse spleen, Figure 1D-F). 

A simulated multicellular mix was produced by combining 30 aliquots of mouse splenocytes 

barcoded with pan-leukocytic CD45 antibody labeled with one of 30 distinct CODEX tags (Figure S1A). 

The visualization of the CODEX 15-cycle staining pattern showed even cycle-specific signals, with low 

background (average signal to noise ~ 85:1), efficient (~98%) release of fluorophore by inter-cycle TCEP 

cleavage and no signal carryover between cycles (Figure S1B-D,F). Linear regression analysis revealed 

low signal deterioration (at ~0.79% per cycle) and acceptable background (starting at ~1.1% and 

increasing at 0.06% per cycle Figure S1E,F).  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 18, 2018. ; https://doi.org/10.1101/203166doi: bioRxiv preprint 

https://doi.org/10.1101/203166


To further reduce the signal loss associated with accumulation of polymerization errors and to 

allow larger panels without increasing the length of tagging oligonucleotides, an approach based on 

primer-dependent subpanels was devised (Figure S6A). The feasibility of this design expansion was 

tested by staining mouse splenocytes with a 22-plex set of antibodies. Each of the antibodies was 

conjugated to the three versions of the CODEX duplex tag – with same terminated top oligonucleotide 

and three kinds of the tagging oligo (Figure S6B). Thus, every antigen was detected thrice (bringing the 

overall number of detections to 66) and only after annealing of a panel-specific activator 

oligonucleotide. We found that the signal for same antibody was consistent across the three primer-

dependent batches (Figure S6C). Thus panel-activator design extends CODEX to a theoretically 

unlimited multiplexing capacity, bounded only by the speed and resolution of the imaging process itself 

and the time required for each imaging cycle. 

Benchmarking CODEX 

To validate the quantitative performance of CODEX, cells freshly isolated from mouse spleens 

were co-analyzed by mass-cytometry (CyTOF) and CODEX using identical 24-antibody panels (Table S1). 

Use of the same antibody clones and the same splenocyte preparation ensured the validity of 

comparisons. Antigen co-expression signals from CODEX, obtained from image segmentation (see STAR 

Methods), were consistently similar to CyTOF (Figure 2B - for direct comparability, both CODEX and 

CyTOF data are plotted on a linear scale).  

Consecutively, CODEX was applied to tissue sections. In contrast to dissociated cells spreads, 

(Figure 2A), cells in tissue sections are adjacent to each other—with large fractions of membranes in 

direct contact (Figure 2C). Therefore, neighboring cells can contaminate each other’s signals during the 

quantification phase (Figure 2D). To address this latter challenge, a novel linear algorithm for 3D 

positional spillover compensation was created. This algorithm is based on the same principles used in 

fluorescent spillover compensation in traditional flow cytometry, except that our algorithm performs 

compensation between physically adjacent cell based on their surface contact ratios (Figure 2). Indeed, 

use of this compensation method resulted in a considerable (approximately two-fold) reduction of 

spillover signal (especially pronounced for CD4/CD8a co-distribution – Figure 2E, Figure 1SL).  

A 30-antibody panel was therefore designed to identify splenic-resident cell types (lymphocytes, 

macrophages, microvessels, conduit system, splenic stroma; Figure 3A, Table S1) and applied to the 

cryo-sections of spleens from wild-type (3 spleens) and MRL/lpr mice (6 spleens) (Figure S4).  Four 

major classic splenic compartments: red pulp, B-cell follicle, PALS and marginal zone (MZ) (Figure 3B) 

could be easily discerned in CODEX imaging data (Figure 3A). A total of 734101 segmented cells were 

identified, and by means of X-shift clustering (see STAR methods) their expression profiles were 

grouped into 27 broadly defined phenotypic groups (Figure 3C-F, Table S2) most of them matching to 

known cell types. Compared to CyTOF data on splenocytes isolated from non-enzymatically 

homogenized spleen, CODEX in situ analysis produced a similar distribution of cell counts for major cell 

type. Yet being a non-disruptive technique CODEX identified larger numbers of resident and stromal 
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cell types such as erythroblasts and F4/80 macrophages than CyTOF did (Figure 3E). Notably even rare 

computationally derived cellular phenotypes (e.g. CD4
hi

/CD3
-
/MHCII

hi
 cells and CD11c

+
 B cells) closely 

matched the cell types previously observed in murine spleen (LTi cells (Robinette et al., 2015) Figure 

S3A-C, Figure S2C,F,I and age-associated B cells (ABCs), Figure S3D,E and Figure S2B,E,H). 

Pairwise and combinatorial (i-niches) statistics of cell to cell contacts in mouse spleen 

To provide a high-level view of the cell type interaction landscape, the total counts of contacts 

between every pair of cell types in the Delaunay neighborhood graph (Gabriel and Sokal, 1969) (Figure 

4A and associated Mendeley dataset) for each condition was determined. The specificity of cell-to-cell 

interaction was estimated from the “log odds ratio” metric (log-ratio of observed and expected 

probabilities of contacts between 2 cell types) (Table S3). When visualized as heatmaps, this metric 

revealed a significant non-random distribution of cells in the spleen. In the majority of cases cell types 

were either selectively associating or avoiding each other (red or blue on the heatmap) pointing to 

prevalence of specific cell-to-cell interactions in shaping the spleen architecture. The major splenic 

anatomic compartments were reflected in two large mutually exclusive clusters of positive associations, 

which appeared to correspond to red pulp and the white pulp, respectively (indicated with black 

rectangular outlines on Figure 3G). For example, a significant positive association was observed 

between F4/80
+
 macrophages and erythroid cells, as these cell types are both found in the red pulp 

and are closely associated in so-called erythroblast islands (Socolovsky et al., 2007). An avoidance of 

interaction was observed between T and B cells, reflecting concentration of these cell types in B cell 

follicles and PALS, respectively (Figure 3G).  

Unexpectedly, a consistently high degree of association was observed between the cells of the 

same phenotypic class (Figure 3G, red diagonal), suggesting that homotypic adhesion constitutes a 

major force driving the architecture of immune tissue. This observation held true both for the major 

constituents of white pulp, T and B cells, as well as for rare cell types such as NK cells. Interestingly, 

even though CD8 and CD4 T cells tended to mix in the PALS, their mutual distribution was nonrandom 

and consisted of intertwined threads of homotypic cells (Figure S3H). Interestingly, as an aside, similar 

structures could be reproduced in vitro by incubating heterotypic mixtures of sorted splenic cell 

populations (Figure S3 I,J). These data suggest that homotypic cell association might be an important 

driver of the white pulp substructure and is worth further investigation. 

The precision in situ cytometry analysis of CODEX data allowed enumeration of cellular contexts 

in a manner not possible previously. We define here an indexed “niche” (i-niche) as a ring of cells 

(excluding the central, or here defined as “index” cell) in no specific circumferential order that are 

Delaunay neighbors of the index cell (Figure 4A and STAR methods). We identified 100 of the major i-

niches (by K-means clustering) according to the relative frequency of the identified cell types present in 

the ring of cells surrounding the index cell (Figure 4A,B and F). Most i-niches could be readily mapped 

into one of major anatomical compartments of the spleen (B cell follicle, PALS, marginal zone, or red 

pulp – per Figure 4G). In most cases, any given i-niche resided within a single anatomical compartment 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 18, 2018. ; https://doi.org/10.1101/203166doi: bioRxiv preprint 

https://doi.org/10.1101/203166


(although several i-niches were observed in more than one compartment), and every splenic 

compartment was populated by many i-niches (Figure 4G).   

In our definition the index cell in the center can be any cell.  Thus i-niches enabled subsetting 

the common cell types based on cellular context (microenvironment). For example, B-cells surrounded 

by only B-cells (red arrow Figure 4B, i-niche #96) can be seen primarily in the follicular zone B cell 

region (Figure 4C, left panel) while presence of CD169 positive marginal zone macrophages mapped 

the B cells in such i-niches to the marginal zone (red arrow Figure 4B, i-niche #33, Figure 4C, right 

panel).  In the case of T cells, CODEX data enabled precise selection of an important migratory subset 

of T-cells known to be residing in ERTR7 enriched niches (Burrell et al., 2015) (in Figure 4B,E see the 

purple rectangle indicating a family of niches where index T cells contact ERTR7 stroma; as well as 

Figure S5A,B). Taken together, we see that surface marker expression alone is insufficient to associate 

many cell subsets with a given tissue subcompartment (e.g. CD4
+
 T cells can be found both in the PALS 

and in the red pulp). However i-niche designation does provide such mapping data (most of i-niches 

were enriched within a specific splenic subdivision Figure 4G) and as such T cells associated with ERTR7 

positive stroma in fact localize primarily to the red pulp (Figure S5A,B). This raises interesting 

questions— can new cell types, or functional subsets, be discerned by this approach? What is the 

frequency of a repeated i-niche structure that must be observed to suggest a function?  And what 

would constitute a proof that a given i-niche corresponds to a new cell type or functionality? 

Cell surface marker expression depends on local neighborhood   

One approach to address these latter questions is to consider the phenotypes of the index cell 

in various i-niches. We observed that for several index cell types (e.g. for B and T cells) there was 

significant biasing of the surface marker expression depending on the i-niche in which the index cell 

resides (e.g. see selected cases marked with colored rectangles above the heatmaps in Figure 4D and 

E). To assure that it was not a quantitation artifact we mapped back to the image the index B-cells 

where the levels of CD79b (a co-activator chain of the B cell receptor complex) and B220 (a splice 

isoform of CD45 membrane phosphatase) would be niche-dependent. We found that the index B cells 

that were B220
int

, CD79b
lo 

(i-niche “59”) resided on the boundary between the PALS and the follicles 

(Figure 4H image montage on the bottom). Index B cells that were B220
lo

, CD79b
int

 (i-niche “91”) were 

mostly found in the red pulp.  And, B cells that were B220
int/hi

, CD79b
hi 

(i-niche “76”) were yet different 

again and were found at the boundary of the red pulp and the follicles. When measured in cell 

suspensions, CD79b is co-expressed with B220 at various ratios (see CyTOF plot single cell splenocytes 

Figure 4H, top right panel).  Such a distribution of expression is sometimes attributed to staining 

variability, measurement noise, or a simple lack of understanding of the underlying biology. However, 

as seen on Figure 4H, upper left panel, there is a non-random pattern of CD79b and B220 expression 

across the central cell of the corresponding i-niches and, depending on the B220/CD79b levels, the i-

niches (the central cells) map to specific regions in the splenic architecture (Figure 4H, lower panel). 

These observations suggest that the spread of the CD79b-B220 levels as well as of other marker levels 
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on splenic B-cells could be, to a large degree, accounted for by the niche composition around those B-

cells – and that the expression levels on these cells might be influenced by (or influences) the cells in 

their immediate surrounding. 

The overall utility of the i-niche in determining any given surface marker expression value for an 

index cell was evaluated by constructing a linear regression model of marker expression using both the 

cell type identity and the i-niche constituency in a two-featured variable model (the other variable 

being the cell type identity). Notably, adding the i-niche information as a dependent variable 

significantly improved the fitness of the model for all markers (Table S4) with highest improvement F-

values for CD90, B220, CD21/35, and ERTR7 and the lowest prediction rates for Ly6G, CD5, CD11b, CD5, 

and TCRβ. Thus, the high variability in B220 expression levels are highly related to the i-niche in which 

the B cell resides. In other words, B220 expression levels can be location-specific, and are dependent 

on the i-niche partners. As a counter point, the data also shows that i-niche does not reliably predict 

expression of other proteins, such as CD5 or TCRβ, the expression levels of these receptors is relatively 

constant across the i-niches (Figure 4E).  This result quantitatively demonstrates that the i-niche 

(neighbors) determines a significant proportion of variance in the expression of certain markers. 

Overall, we observed that that many splenic cell types populate a wide variety of i-niches (Figure S3K,L), 

suggestive of a multiplicity of functional state for any given immune cell type.  Further, tissue locale (i-

niches) is a powerful indicator of potential differential function (to the extent tissue locale drives 

function) and these deterministic changes in surface marker protein expression are surrogate 

indicators of this locale or function. 

 

Changes in splenic composition associated with disease progression 

A comparable region of spleen was visualized by CODEX for 3 normal BALBc spleens, and 6 

spleens from MRL/lpr mice.  Image segmentation revealed strong variation in cell counts between the 

norm and the disease (Figure 5B) for most (19 out of 27) of the cell types identified by X-shift clustering. 

Examples include a dramatic increase in CD71
+
 erythroblasts (green cells on Figure 5A maps), a 

reduction in numbers of B cells and FDC, and increases in so-called B220
+ 

DN T cells (CD4/CD8 double-

negative B220
+ 

T cells), which have been previously characterized as a hallmark of the MRL/lpr 

progression (Koh et al., 1995) which could also be identified by FACS (Figure S1F,G), thus ruling out the 

possibility that this unusual cell type being a result of image segmentation errors. These and other 

changes were used to broadly classify the MRL/lpr spleens into early, intermediate, and late disease 

stages (Figure S4). 

Despite consistent presence of “homotypic interactions” diagonal and larger cell-adjacency 

clusters corresponding to red and white pulp in odds ratio heatmaps across disease (Figure S4), a 

deeper statistical analysis revealed many disease-associated changes in frequency of contacts between 

cell types (see Table S3). Among the changes we observed an increase in interaction between B cells 
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and CD4
-
/CD8

+
 cDC in the early MRL/lpr spleen compared to normal, (Figure 5C left panel) suggesting 

an increase in B-cell activation. We also observed a higher interaction frequency of granulocytes with T 

cells (Figure S5C), dendritic cells (Figure S5D) and erythroblasts (Figure S5E), and a higher number of 

contacts between erythroblasts and various kinds of stromal cells, as well as B220
+
 DN T cells (Table S3, 

Figure S5F,G). In the intermediate and late stage MRL/lpr spleens, there was a significant increase in 

interaction of B220
+ 

DN T cells with CD4
+
 T cells (Figure 5C right panel), CD8

+
 T cells, erythroblasts, and 

a variety of other cell types compared with numbers of these interactions in the early MRL/lpr stage 

(Table S3 and Figure S5G-I, see online resource, STAR methods, for more examples).  So, while there 

was no obvious gross rearrangement of the tissues, many homotypic and heterotypic cell-cell 

associations were altered, prompting a key question: what are the main factors driving this disruption? 

Disease driven change in cell counts determines the frequency of specific cell–to–cell contacts 

What could be the drivers of changes in frequency of pairwise cell-cell contacts? If the kinetics 

of pairwise cell contacts, follows a rate law — one possibility would be that modulation of specific cell–

to-cell interaction potential—or “attraction” (for which the odds ratio score was used as an estimate 

across this study) is the main driver. In other words, it would be expected that when the affinity of 

such an interaction goes up, the fraction of interacting cells of a given cell pair would increase. At the 

same time, even in the absence of change in cell-to-cell affinity, the absolute number of the cell-cell 

pairs (defined here as cell pair aggregates, or CPAs) and the number of interacting cell pairs should 

correlate with the frequencies of interacting cell types (analogous to concentrations in the rate law 

equation).  Importantly, the latter scenario could be as biologically significant as the former. Finally, 

some of the cell type contacts may be observed due to low cellular motility of randomly meeting cells. 

Such interactions would not produce spatially defined sub-splenic CPAs and would have and odds ratio 

close to 1. 

The perturbation introduced to normal splenic composition with MRL/lpr genotype allowed us 

to examine the mechanisms implicated in transition from normal to diseased spleen. In short, we 

found that, for most cell-cell pairs observed, the mutual attraction (as quantified by the interaction log 

odds ratio), was not the primary determinant driving the change in counts of interacting cell pairs 

between the MRL/lpr and the norm.  In Figure 5D we plot the change in counts of interactions of two 

cell types (e.g. A:B) between the MRL/lpr and the normal BALBc spleens. Each dot represents a pair of 

cell types. The value on the Y axis is the difference in the total number of observed interactions 

between BALBc and MRL/lpr. The X axis shows the difference between log odds ratios of interactions 

between the same conditions.  There was no overall correlation observed (R
2
 = 0.058). In contrast, we 

observed a correlation (R
2
 = 0.288) between the cell count changes and the interaction changes (Figure 

5E). In agreement with those observations, we saw that out of the 26 top scoring (FDR < 0.05 and 

change in absolute interaction counts > 150) cell type pairs of this cross comparison only 2 showed 

corresponding significant (FDR < 0.05) change in odds ratio score. Curiously these two interactions with 

a modest 1.5 times increase in interaction count and, concomitantly, a ~0.8 increase in log odds ratio 
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score were the ones between the CD4 or CD8 T cells and ERTR7
+
 stroma (see Table S3, rows 6 and 7, 

and Figure S5A,B ). Visually they appeared as persistent co-clustering of T cells with ERTR7
+
 stroma 

despite the overall drop of T cell numbers in the “early” MRL/lpr samples. Curiously, ERTR7 positive 

fibers of splenic stroma as well as ERTR7 protein itself were recently shown to be critically involved in T 

cell trafficking (Burrell et al., 2015), suggesting that this increase in the spatial association could be 

reflective of the T cell activation.  

For the rest 24 of the 26 changing interactions mentioned above at least one of the cells of the 

pair was scored as significantly (FDR<0.05) changing the frequency across scored conditions (Table S3 

last column of the “EarlyMRL vs BALBc control” spreadsheet).  We therefore conclude that—at least in 

the diseased state of early stage MRL/lpr—most of the change in counts of cell-cell interactions are 

driven simply by increases or decreases in cell type frequencies.   

As an additional evidence, χ
2
 statistics were used to compare the total magnitude of changes in 

pairwise cell type interaction matrices (total interaction count) versus changes in log-odds ratio 

matrices (propensity for non-random interaction). The χ
2
 deviation (sum of squares of z-score-

normalized values) was computed for each disease matrix compared to the control. In every case, the 

χ
2 

values of cell interaction matrices were larger than of the respective log odds ratio matrices of the 

same biological sample (Figure 5F). This suggests that as the cell type frequencies change due to 

disease progression, the absolute numbers of interactions change dramatically whereas the frequency-

normalized likelihoods of cell interactions change to a much smaller extent indicating a great degree of 

robustness of the ‘design principles’ of the splenic tissue and that many of the more dramatic disease-

associated variations occur primarily through the shift in cell numbers.  

This analysis implies that the degeneration of the tissue integrity in the MRL disease largely 

follows dramatic changes in cell type frequencies. At the same time, there were notable exceptions 

from this trend, where the changes in observed cell type pairing frequencies could be largely explained 

by shifts in the cell type interaction likelihoods (log-odds ratios). While further work is required to 

determine which of these changes are instrumental to the MRL disease state, our findings suggest that 

such differential analysis can be applicable in other diseases, and possibly, could be used to discover 

cell type interactions that are targetable from a therapeutic standpoint. 

Reorganization of cells in disease-associated tissue substructures 

We catalogued the cell-cell interaction “connectivity” in a circular correlation diagram. Rarely, if 

ever, there was any cell type found adjacent to only one other type of cell. The highest degree of 

connectivity was observed for the most abundant cell types such as B cells in normal spleen and 

erythroblasts (Figure 6A) in early MRL/lpr. This high connectivity in turn led to large effect on i-niches 

caused by changes in cell numbers associated with progression of disease from normal to 

autoimmunity. Most dramatic changes in cell frequencies were the increase in erythroblasts in the 

early MRL/lpr and the emergence of B220
+
 DN T cells in late MRL/lpr – which were associated with 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 18, 2018. ; https://doi.org/10.1101/203166doi: bioRxiv preprint 

https://doi.org/10.1101/203166


appearance of novel i-niches relative to the normal spleen (spatial localizations of B220
+
DN T cell 

dominated i-niche 18, erythroblast driven i-niche 29 and B-cells rich i-niche 96 are shown on Figure 6B 

and their cell type composition is shown on heatmap on Figure 6C). A corollary to this is the question 

of whether the presence of these cells, and new i-niches dependent on these cells, somehow changed 

the observable biology of the cells they contact? We found some examples supporting that, whereby 

the proximity of CD4 T cells to B220
+ 

DN T leads to CD4 T cell activation in spleens of MRL/lpr mice: 

Figure 6C shows increased levels of CD27 expression in CD4 T cells present in i-niches dominated by 

B220
+ 

DN T cells (Figure 6C red circle). 

Other cell types noticeably changed their characteristic distribution and their propensity to 

engage, or evade, specific cell-to-cell contacts (as estimated by odds ratio score) during disease 

progression. For example, cells of CD106
+
CD16/32

-
Ly6C

+
CD31

+
 phenotype were randomly distributed 

in the red pulp of normal spleens, but were found to aggregate in the areas proximal to the marginal 

zone of the MRL/lpr white pulp (Figure S2D,G,J). This re-distribution correlated with erythroid 

proliferation and reduced odds ratio score for the interaction of CD106
+
CD16/32

-
Ly6C

+
CD31

+
 and 

erythroblasts in lupus spleens (Table S3).  

Automatic definition of disease-associated areas in tissue architecture  

As noted, the analysis reveals that the development of the autoimmune disease in mice (as 

exemplified by MRL/lpr lupus) is associated with vast rearrangement of normal spleen architecture, 

which is likely to cause loss of cell-cell contexts normally hosting the cells crucial for proper splenic 

function, as well as the observed emergence of novel i-niches that are not found in the normal BALBc 

spleen. Additionally, certain i-niches were sequestered to specific anatomic compartments of the 

spleen, which allowed us to use such i-niches as reference points to quantitatively monitor high-order 

morphological changes. The i-niches that in normal spleen were localized to one distinct compartment 

(more than 90% of central cells reside within a particular splenic compartment) were used to evaluate 

the dynamics of splenic cells associated with progression of autoimmune disease (Figure 7A, middle 

heatmap). This analysis confirmed the dissipation of the marginal zone starting from early stages of 

MRL/lpr and revealed a progressive distortion of PALS. Curiously, depending on whether a i-niche was 

based on F4/80 macrophages or primarily contained erythroblasts, the red pulp appeared to 

reorganize in the diseased tissue (Figure 7A, right heatmap), pointing to the fact that more than one 

compartment-specific niche is required to reliably trace the fate of specific anatomic compartments. In 

many cases the definition of subsets/morphological units constituting the tissue is subjective, yet this 

study employed niches that were algorithmically defined. Therefore, using niches as markers of 

morphology can quantitatively monitor the changes of high-order anatomic architecture. 

To automatically isolate the specific local combinations of expression patterns characteristic of 

the disease state, a fully convolutional neural network was trained to distinguish image patches from 

normal and MRL/lpr mice. The neural network operated by identifying, in each training image patch, 

the specific areas that corresponded to the disease state.   
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The neural network highlighted the regions in each multiparameter spleen image that 

corresponded to the disease state (Figure 7B), despite having seen no images from these spleens 

during training.  To investigate the specific features learned by the neural network, the cell-type 

compositions of the regions identified as diseased versus those regions identified as normal were 

compared. There was significant enrichment of several cell types in these regions (Figure 7C). Although 

some cell types enriched in diseased regions, for example B220
+
 DN T cells, were present only in the 

diseased tissue, the most highly enriched cell type (CD4
+
/CD8

-
 cDCs) were present in both the disease 

state and the healthy state.  

To assess the specific contextual changes recognized by the neural network, the local 

neighborhoods of the CD4
+
/CD8

-
 cDCs that the neural network found to be enriched in MRL/lpr regions 

were analyzed. In these neighborhoods we observed a significant enrichment of other CD4
+
/CD8

-
 cDCs, 

as well as significant depletion of CD106
+
/CD16/32

+
/Ly6C

-
/CD31

-
 stromal cells (FDR < 10

-7
). This 

suggests that the neural network had identified an altered context for CD4
+
/CD8

-
 cDCs (distant from 

stromal regions) as a key descriptor for the disease. Thus, the neural network approach described here 

enabled both automatic classification of samples according to disease state and an automatic 

identification of high-dimensional regions of interest and corresponding cellular niches. 

 

Discussion 

Here the feasibility of polymerase-driven highly multiplexed visualization of antibody binding 

events to dissociated single cells as well as tissue sections (CODEX) was demonstrated and 

benchmarked. Critically, CODEX enables co-staining of all antigens simultaneously with the staining 

iteratively revealed by primer extension cycles wherein no diminution of epitope signal detection was 

observed. A consistent performance of CODEX in co-detecting up to 66 antigens was demonstrated, 

and the “activation primer” - based extension of the system could enable a potentially vast expansion 

of CODEX multiplexing capacity. For the current method fresh-frozen tissue was used yet at a cost of 

testing an extensively broader collection of clones we have recently succeeded in adapting the 

procedure to FFPE archival tissue (manuscript in preparation). We believe this will open the large 

retrospective collection of FFPE samples from clinical cohorts to multidimensional cytometric analysis.  

The CODEX platform can be performed on any three-color fluorescence microscope enabling 

conversion of regular fluorescence microscope into a tool for multidimensional tissue rendering and 

cell cytometry. CODEX completes a 30-antibody visualization in approximately 3.5 hours. Modifications 

to the technology that increase the measurements per cycle, reduce the cycling time, faster imaging 

methods such as light sheet microscopy, or an increased size of the imaging the field of view offer 

potential opportunities for increasing the depth and speed of the visualization process. Given the low 

cost of converting a scope to this platform (enabled by a simple fluidics device for automated sample 
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washes in a customized microscope stage) CODEX technique could enable deep studies of various 

tissue models even with limited resources and instrumentation.  

The unique set of algorithms described here successfully identified individual cells in the 

crowded environment of lymphoid tissue by relying both on the information from nuclear and the 

membrane staining. An accurate quantification of single-cell expression data was obtained directly 

from the images by creating a special algorithm for positional spill compensation. As of today, this 

algorithm is only applicable to uniformly distributed surface markers. Future changes might be 

required to accommodate markers that follow a different distribution, i.e. localized to lipid rafts or 

immune synapses. Nevertheless, the use of this algorithm enabled us to extract FACS-like data from 

tissue imaging and leveraged the automated phenotype mapping framework previously developed for 

CyTOF and multicolor FACS. 

Performance of CODEX on tissue sections was validated in analysis of spleen sections of normal 

and lupus afflicted mice (MRL/lpr). Much like with conventional flow cytometry, CODEX discerned all 

major cell types commonly observed in mouse spleen. Moreover, application of X-shift phenotype-

mapping algorithm (Samusik et al., 2016) tailored to parsing the multidimensional single-cell data 

enabled the detection of rare cells types (such as CD4
hi

 MHCII
hi

 (Lti) cells, CD11c(+) B cells (ABC cells)) 

and simultaneously placement of those cells in the tissue architecture. Cell interaction analysis with 

CODEX recapitulated known features of splenic tissue architecture and revealed that most splenic cell 

types were frequently in homotypic interactions—which might underscore a novel driving principle of 

lymphoid tissue architecture. Further, an important principle was derived from the data-driven i-niche 

analysis, i.e. we have established that certain markers, such as B220, CD79b or CD27 exhibited 

significant changes in expression levels depending on the tissue context in which the cells reside. As 

clearly observed in experiments that drove Figures 4 and 6, cell populations that would otherwise be 

thought of as ‘broadly’-expressing a given marker set (Figure 4H), in fact were composed of multiple 

subphenotypes that correlated with the i-niche identity.  In other words, what immunologists 

previously thought of as a single cell type could be subdivided into more subtle cell subsets that are 

defined by the neighborhood in which they reside.  We leave open the question of whether the cells 

with different properties are attracted to a set of neighbor cells, or a given expression level of markers 

attracts the neighbors, or some dialectics thereof. What is clear, however, is that there are more subtle 

phenotypes in tissues than previously assumed, and that future developments future of the technology 

and the algorithms will shed more light on these phenomena. 

CODEX enabled a quantitative description of autoimmune-related changes in the splenic tissue 

architecture. Among hallmarks of MRL/lpr progression were dissipation of marginal zone, 

disintegration of PALS, invasion of red pulp with erythroblasts and the infiltration of mixed-identity 

B220
+
 DN T cells, which, interestingly, localize in a niche in between PALS and the B cell zone and in the 

marginal zone. A contact-dependent effect of B220
+
 DN T cell on CD4 T cells reflected in increased 

levels of activation marker CD27 was observed. An account of statistically significant differences in 
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frequency and strength of pairwise cell type contacts was created. From these observations and their 

quantitative analysis, we concluded that it is largely the change in cell numbers rather than in cellular 

interaction strength (estimated from ratio of observed to expected probability of interaction) that is 

involved in reorganization of spleen during transition from norm to autoimmunity. We show how i-

niche statistics can be used to account for the list of disease driven changes in sub-splenic anatomy. 

We also show that disease-associated areas of the tissue can be identified independently of the image 

segmentation, by applying a convolutional neural network to the multidimensional image data, even 

after training on just one sample. 

Recent advances in genomics suggest that despite the vastness of a genetic repertoire—there 

exist only a limited number of cellular states with a concomitantly limited gene expression pattern. 

These countable, limited, patterns are reflected in expression of surface marker phenotypes 

recognizable as cell types. It is therefore reasonable to suggest that cell-to-cell interactions should be 

limited as well and falling into repeated patterns. By this token, the data collected in this study lays the 

foundation for a pan-cellular reference database defining cellular types not only by identities of 

proteins expressed but also by definitions for specific cell-to-cell interactions. We performed deep 

characterization here for normal and diseased tissue from such a perspective of cell-cell arrangements 

and present here, for the research community, a large (~700,000 cells) public dataset encompassing 

segmentation, quantification, and, most uniquely, spatial data from normal and disease-afflicted 

spleens (http://welikesharingdata.blob.core.windows.net/forshare/index.html). Further analysis of 

data could enable advances in understanding of clinically relevant cell interactions in immune tissues 

as well as development of computational algorithms for tissue cytometry and digital pathology. 
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Main Figure Legends. 

Figure 1 – Sequential primer extension on samples stained with DNA barcoded antibodies enables 

unlimited level of multiplexing. 

(A) CODEX schematic diagram. 

 (B, C) Mouse spleen cells were fixed and co-stained with conventional TcRβ Ax488 antibody 

and CD4 antibody conjugated to CODEX oligonucleotide duplex as in first round of (A). After staining 

cells were either incubated in extension buffer with dG and dUTP-Cy5 without (B) or with (C) Klenow 

exo- polymerase. Note that TcRβ-positive T cells in (B) and (C) are indicated by Ax-488 staining. 

Dependent upon the addition of Klenow, TcRβ-positive CD4 positive T cells are seen as a Cy5 positive 

subset of TcRβ-positive T cells in (C).  
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(D) Spleen cryo-section stained with B cell specific B220-APC (red) and T cell specific TCR-FITC 

(green) show mutually exclusive staining pattern in the marginal area between B cell follicle and the 

white pulp.  

(E) Spleen cryo-section stained with CODEX DNA tagged B220 (red) and CODEX DNA tagged 

TCR- (green) shows staining similar to the one observed with regular antibodies in (D).  

(F) Spleen sections were co-stained with regular B220-FITC and two antibodies (ERTR7 and 

CD169) tagged with cycel1 CODEX DNA duplexes. Localization of marginal zone CD169 positive 

macrophages in the area between the ERTR7 positive splenic conduit of the white pulp and the B220 

positive follicular B cells (D) as reported previously has been observed. 

See also Figure S1, Supplementary Movie 1 Part1 

 

  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 18, 2018. ; https://doi.org/10.1101/203166doi: bioRxiv preprint 

https://doi.org/10.1101/203166


Figure 2 – Accuracy of surface marker quantitation by CODEX. 

(A) Microscopic image of mouse splenocytes stained with a 24-color antibody panel, showing one 

cycle of CODEX antibody rendering. Cell contours show the outlines produced by the cell 

segmentation algorithm  

(B) Comparison of single-cell expression data derived from dissociated mouse splenocytes on an 

identical 24-color panel using CODEX and CyTOF.  

(C) Example segmentation in a mouse spleen section based on combining nuclear and membrane 

(CD45) channel. 

(D) Graphical explanation of the algorithm for compensating the spillover between neighboring cells 

using a cell-by-cell compensation matrix. 

(E) Biaxial plots of segmented CODEX data acquired in mouse (BALBc) spleen sections. The presence 

of double positive cells in the upper quadrant is used as an estimate of lateral signal bleeding 

explained schematically in (D). Three combinations of mutually exclusive lineage markers are 

shown to demonstrate the range of effect of the compensation algorithm on reduction of lateral 

signal bleed. 

See also Figure S2, Figure S3 
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Figure 3 – CODEX analysis of mouse spleen cryosections co-stained for 28 antigens. 

(A) Three collated images on the left correspond to: the legend of antibody renderings per cycle; 

gross morphology photograph of MRL/lpr (left) and normal (right) spleen embedded in O.C.T. 

block prior to sectioning. Green color corresponds to antibodies rendered by extension with 

dUTP-Cy5, red – dCTP-Cy3 On the right collage of the CODEX multicycle data for normal spleen 

(BALBc-2) and early MRL/lpr spleen (MRL/lpr -4). All images are derived from a single scan with a 

40x oil objective of an area covered by 63 tiled fields. 

(B) Schematic diagram of major known splenic anatomical subdivisions drawn based on cell 

distribution in BALBc-1 replicate.  

(C) An exemplary profile of Vortex cluster (B-cells) used for manual matching of clusters to known cell 

types. 

 (D) Minimal spanning tree (MSP) built for all clusters identified by Vortex analysis. On the left middle 

and right panels the MSPs are colored by expression levels of B220, TCR and CD71 accordingly to 

indicate location of B-cells T-cells and erythroblasts on the tree.  

(E) Vienne diagram showing for several major cell types their fraction of total cells as identified by 

CODEX analysis of splenic tissue and CYTOF analysis of isolated BALBc splenocytes  

(F) Post-segmentation derived diagram of identified objects (cells) colored according to cell types in 

BALBc-1 replicate.  Full size diagrams are available for every tissue analyzed in this study are 

available online (see STAR methods) 

(G) Average cell type to cell type interaction strength heatmap for BALBc samples. Color from blue 

(<0) to white (around 0) to red (>0) indicates log of odds ratio of interaction (ratio of observed 

frequency versus expected frequency of interaction). The rows and columns are in the same 

order (annotation on the right). Black outlines indicate two largely exclusive mega-clusters of 

cross-interacting cell types loosely matching the cell types populating the red and the white pulp.  

See also Figure S2, Supplementary Movie 2 

 

  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 18, 2018. ; https://doi.org/10.1101/203166doi: bioRxiv preprint 

https://doi.org/10.1101/203166


Figure 4 – Unbiased identification of i-niches in multidimensional CODEX data. 

(A) On the left – diagram explaining the terminology used for defining i-niche (a ring of first tier 

neighbors for central cell). On the right – Delaunay triangulation graph used for identification of first 

tier of neighbors for every cell.  

(B) Heatmap depicting frequency of cell types in 100 types of i-niches identified by K-means 

(K=100) clustering of all index cells in the dataset (each cell is an index cell for its i-niche) based on 

frequency of different cell types in the first tier of neighbors. The color indicates the average fraction of 

corresponding cell type in the the i-niche. 

(C) An example of marginal zone and follicular (B-zone) B cells defined by residence in distinct i-

niches (e.g. marginal zone i-niche includes a marginal zone macrophage marked by letter H and green 

color). Positions of B-cells in each i-niche is marked with red circles over the schematic of BALBc spleen.  

(D and E) Two heatmaps from top to bottom show average expression of selected surface 

markers measured in a central cell across 100 i-niches (same left to right order as in B) when central 

cell is B-cells or CD4 T-cell accordingly. The color indicates the relative level of surface marker 

expression as measured across dataset. Grey columns indicate absence of cells in corresponding niches. 

Two orange rectangles over top heatmap indicates position of i-niches with high CD35 (containing FDCs 

and marginal zone macrophages). Cyan rectangle shows location of family of i-niches with high content 

of F4/80 macrophages and low B220 and CD19 in central B – cell. Purple rectangle indicates family of i-

niches enriched with ERTR-7 positive stroma. Below top heatmap location of selected i-niches shown in 

(E) are indicated. Over bottom heatmap yellow rectangle indicated family of i-niches with dominating 

presence of B-cells. Two green rectangles indicate family of niches with high levels of CD90 and CD27 in 

the index CD4 T cells. (F) Abundance of 100 i-niches in normal spleen (top bar graph) and (G) relative 

distribution of i-niches between splenic histological subdivisions (PALS, red pulp, marginal zone and B-

zone) shown as a heatmap. To illustrate a variety of tissue distribution pattern by i-niches an overlay of 

selected i-niches over a schematic of normal spleen (BALBc-1) is shown. Heatmap color indicates 

fraction of corresponding i-niche per splenic anatomic subdivision. 

(H) Top right shows a biaxial plot of flow data for CD79b and B220 measured in isolated 

splenocytes. Top left shows levels of CD79b and B220 in central B-cells as measured across all 100 i-

niches. To illustrate i-niche dependent variability of surface marker expression – images of central cells 

(marked with red cross) with levels of surface marker indicated in pseudocolor palette are shown for 

selected exemplary i-niches in the bottom panels. 

See also Figure S3 K,L 
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Figure 5 – Autoimmune disease drives changes in splenic composition and cell–to-cell interactions. 

(A) Post-segmentation diagrams of all objects (cells) colored according to cell types (see color map in 

Figure 3F) for all normal and MRL/lpr tissue sections imaged in the study. Full size diagrams are 

available for every tissue analyzed in this study are available online (see STAR methods) 

(B) Stacked bar graphs show dynamics of cell counts across dataset for manually annotated Vortex 

clusters (cell types - on the left ) across progression from normal to afflicted spleen. Colored bar 

sections indicate fraction of the total cells as detected at a particular stage/samples (1-9 

annotation on the top). Cell types were split into four types according to the dynamics of counts 

across dataset as represented by average relative (normalized to 1) count – see line graphs on the 

right, x axis corresponds to stage/sample id.  

(C) Two examples of change in cell-to-cell interaction frequency during disease progression –

between the B cells and dendritic cells in normal and early MRL/lpr spleen and between B220+ 

DN T cells and CD4 T cells during progression from early MRL/lpr to intermediate.  

(D) Co-distribution of odds ratio log-fold [log(odds ratio in early MRL/lpr)- log(odds ratio in BALBc)] 

on X axis and change in counts of interactions for early MRL/lpr versus control (BALBc) 

comparisons (on Y axis).  

(E) Co-distribution of cumulative cell frequency change [celltype1 freq. change + celltype2 freq. 

change] on X axis and change in counts of interactions for early MRL/lpr versus control (BALBc) 

comparisons (on Y axis).  

(F) Bar graph showing Chi square values across conditions computed for odds ratio and direct 

interaction counts. 

See also Supplementary Movie 2, Figure S5 
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Figure 6 – Differential effect of disease over i-niche presence across dataset. 

(A) Cell interaction networks built for BALBc early MRL/lpr and late MRL/lpr based on number of 

contacts observed between two cell types (only connections with more then 150 interactions per 

sample are shown on the diagrams). Thickness of connection correlates with number of contacts 

size of the node indicates number of cells per condition.  

(B) Evolution of i-niche abundance across dataset. Selected three i-niches (marked above heatmap in 

(C) depicting i-niche composition) differentially represented across dataset (changing between 

norm and disease) are shown. Yellow circles overlaid over blank rectangle corresponding to 

imaged area indicate location of i-niche.  

(C) Top heatmap shows frequencies of B220
+
 DN T cells, erythroblasts and B-cells in the i-niche rings. 

Line above top heatmap indicates the composition of i-niches 18, 29, and 96 described in (B). 

Color scheme is the same Middle heatmap indicates expression of selected markers when the i-

niche central cell is an erythroblast – primarily to show that CD27 is not expressed on 

erythroblasts in the vicinity of B220
+
 DN T cells. Bottom heatmap indicates expression of selected 

markers when the i-niche central cell is a CD4 T cell. The color schemes in these three heatmaps 

is the same as in heatmaps on Figure 4B,D,E. Red oval outline pinpoints i-niches with elevated 

CD27. Note that these i-niches as indicated by top heatmap have B220
+
 DN T cells as a prevailing 

component. Lower panels show examples of central cells in i-niches marked under the lower 

heatmap. i-niche 50 is an example of i-niche without B220
+
 DN T cells. Central cell does not 

express high CD27. i-niches 42 and 44 have high frequency of B220
+
 DN T cells and accordingly 

central cells express high CD27. 

See also Figure S3 K,L  
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Figure 7 – i-niches and neural nets provide unbiased way for disease monitoring. 

(A) Selected i-niches (green heatmap shows i-niche composition, color scheme same as in Figure 4B) 

were chosen based on high (>90%) presence per single histological subdivision (blue heatmap 

color scheme same as in Figure 4G). Abundance of these i-niches (brown heatmap, color indicates 

relative abundance of corresponding i-niche as measured across full dataset) was used to judge 

the preservation or decay of a histological splenic subdivision corresponding to selected i-niches.  

(B) Red color over blue rectangle indicates regions of interest (MRL/lpr-specific regions) predicted by 

neural network in entire spleen images. From top left, clockwise: BALBc #3, MRL/lpr #5, MRL/lpr 

#7, MRL/lpr #8.  

(C) Cell types enriched (FDR < 0.1) in MRL/lpr-specific regions (in red in B) predicted by neural 

network. 

See also STAR Methods “Neural network training” 
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Supplementary Figures and Legends 

 

Figure S1. Benchmarking CODEX. Related to Figure 1 and Figure 2. (A) Experimental scheme for 

mimicking the tissue with 30 distinct cell types (B) Montage of a fragment of imaging field of the 15 

cycles of CODEX used to render the mix of 30 barcoded spleens – first cycle top left last cycle bottom 

right. (C) Heatmap (cycles in columns, cells in rows) showing mean fluorescence per cell membrane for 

each cell per in each of the 15 CODEX cycles performed on cells of 30 barcoded spleens. Odd columns 

correspond to imaging after labeled base incorporation. Even columns correspond to imaging after 

inactivation of staining by TCEP. (D) Time-lapse profile of median intensity per cell membrane for 

individual cells marked by white arrows on (B). (E) Average intensity of CD45 antigen expression in 

“positive” (blue columns) and “negative” (red columns) cells in 15 CODEX cycles of the experiment. 

(Similar results were obtained for Cy3-positive populations – data not shown). Linear regression was 

performed to indicate trends in accumulation of background and signal decline associated with cycle 

number. (F) Table summarizing CODEX performance stats. Average signal to noise ratio was estimated 

from ratio of average signal of all positive cells across all cycles to the signal of all “negative” cells 

across all cycles. Efficiency of fluorophore removal was estimated from average ratio of  ([signal after 

TCEP in cycle N]- [signal after TCEP in cycle (N-1)])/[signal in cycle N] for cells positive in cycle N across 

all cycles. Average expected signal deterioration was estimated using the trendline equation from (E). 

Average background accumulation was estimated by fitting linear trendline into the per cycle ratio of 

average background to average signal (not shown). (G) Image quantification approach used on CODEX 

data from (A):  best focal planes of CODEX stacks were segmented by Cell Profiler. To account for local 

background the value corresponding to difference between the mean intensity value inside “cell 

membrane” object (left panel) and the mean intensity inside the external ring object (right panel) was 

chosen as a representation of the intensity of the antibody signal. In all other experiments custom (see 

STARS methods) segmantation developed in this study was used (H) Sample 500x500 px regions from 

two samples (BALBc-3 and MRL-4) showing hand-labelled cell centers (yellow crosshairs) and cell 

outlines detected by the segmentation algorithm (randomly colored). (I) Comparison between the 

hand-labelled cell identification and algorithm-based algorithm identification, expressed in 3 

measures: %Nuclei found (how many of the hand-labelled nuclei centers ended up inside the 

segmented regions), % Singlets (how many of the cell regions with at least one hand-labelled nuclei 

center contained exactly one cell center) and %Unlabelled regions (how many segmented regions did 

not contain a hand-labelled cell center) (J) Summary statistics comparing the segmentation quality 

between BALBc and MRL/lpr samples. (K) Three step cleanup gating strategy based on 1) stain density 

(nuclear signal divided by cell size) and profile homogeneity (relative variance of signal from cycle to 

cycle), 2) removing objects with high background by gating on the signal accrued in “blank”(no stain) 

cycles 3) constraining the cell size. (L) Percentage of artefactual double-positive cells in CODEX data 

from sample BALBc-2 (as seen in the upper right quadrant biaxial flow style plots of mutually exclusive 

lineage markers IgD and CD5) depending on gating and spill compensation.  

 

Figure S2. “Cell passports” of selected cell types identified in normal and MRL spleens, Related to 

Figure 3F and Figure 5B. (A) Diagram of per cycle markers for CODEX cycle montages in B,C and D. 

(B,E,H) High resolution montage of CODEX cycles with cells of interest (CD11c(+) B cells ) marked with 
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yellow crosses is shown in (B). Low resolution montage of distribution of cells of interest (marked with 

white circles) in all imaged samples is shown in (E). Average expression profile of all markers in the cells 

of the selected cell type is shown in (H). (C,F,I) Same for CD4(+)MHCII(+) cells. (D,G,J) Same for 

CD106(+)CD16/32(-)Ly6C(+)CD31(+) cells. More examples of “cell passports” can be found in associated 

online repository (see STAR methods). 

  

 

Figure S3. CODEX pinpoints splenic location of unique cell types. Related to Figure 3, Figure 4, Figure 

5. (A) Distribution of CD4(+)MHCII(+) cells (marked with white circles) in BALBc #2 spleen stained with 

IgD (green) and CD90 (red) to indicate positions of B and T cells accordingly. (B) CD4 and MHCII 

expression in isolated mouse splenocytes gated negative for all CODEX panel markers and in addition 

120g8 (lineage depletion with BD 558451 and dump channel for FITC conjugated or biotinilated 

antibodies corresponding to the antigens stained with CODEX panel were used for negative gating) 

except CD4, MHCII, CD45 and CD44. (C) CD4(+)MHCII(+) cells within the gate shown in (B) were sorted 

out and subjected to microarray analysis. CD4 T cells, CD8 T cells, bulk B cells and Conventional CD11c 

positive dendritic cells were co–sorted as a control. Expression of Lti signature genes (two individual 

signature sets as inferred in  (Robinette et al., 2015) ) in sorted cells. (D and E) CD11c+ B cells (age 

associated B cells (ABCs) in normal nd M/lpr spleens. ABCs have been shown to be a key participant in 

the triggering of certain autoimmune responses (Rubtsova et al., 2017, Rubtsov et al., 2011)) their 

splenic location has not been previously described in the literature. We observed ABCs to tightly 

associate with conventional dendritic cells (cDC) and occupy a distinct peri-follicular space in the 

boundary between PALS and B-zone. Interestingly, these cells diminished in numbers and redistributed 

towards intra-follicular space in the MRL/lpr spleens. (F and G) Co-distribution of B220 and TCRb in 

isolated splenocytes of normal (BALBc) and autoimmune (MRL/lpr) mice. Gate in (G) points to 

significant (~13%) presence of B220+ DN T cells in MRL spleen. (H) Thread like arrangement of CD8 T 

cells (purple, annotated with V-letter) has been noticed in PALS of splenic samples across dataset. To 

examine potential mechanisms driving these structures CD8 Tells and B220 positive B cells were sorted 

individually from BALBc spleen (see I) and later combined in flat bottom microwell plates and mixed at 

37C in culture medium. After mixing cells were stained for B220 (green) and CD8a (red) and imaged 

(see J). Thread like structures similar to what was observed in spleen were detected.  (K) Heat map 

showing average frequencies of cell types (rows of heatmap) in the ring of index cell neighbors (see 

schematics on the right) for all niche clusters (0-99 in columns). (L) Heat map shows how different cell 

types (in rows) are distributed between niches (in columns).  

 

 

Figure S4.  Types of samples in MRL/lpr dataset. Related to Figure 5. 
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MRL/lpr dataset has 9 samples: 3 control wild type BALBc spleens (BALBc -1,-2,-3 and 6 MRL 

spleens MRL -4,-5,-6,-7,-8,-9). Based on disintegration of marginal zone as measured by frequency of 

marginal zone macrophages (MZM’s, – see black asterisk on Figure 5B and yellow arrow in this figure 

pointing to the area where CD169 positive (red) rim of MZMs is expected to be observed) and 

accumulation of double negative T-cells expressing B220 B cell marker (B220 DN T cells – see red 

asterisk on Figure 5B) MRL spleens were grouped into early (MRL -4,-5,-6), intermediate (MRL -7,-8), 

and late (MRL -9) types. Early stage was represented by 3 MZM positive DN T cell-low spleens. Two 

spleens represented the intermediate stage: MZM low DN T cell-low spleen (Int1) and MZM positive 

DN T cell-positive spleen (Int2). Late stage was represented by single MZM positive DN T cell-positive 

spleen. A single representative spleen is shown for each stage together with interaction matrix. Color 

represents odd ratios (observed frequency of interaction/ expected frequency of interaction). 
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Figure S5. Cross tissue and cross samples distribution of interacting cell pairs for selected types of 

cell-to-cell interactions, Related to Figure 5C 

Interacting cell pairs are marked with white and cyan circles on the montage of IgD CD90 (B cell 

and T cell markers) staining of every sample of the dataset. Due to cell proximity in most cases cyan 

circles practically completely overlay white. (A,B) Interaction of CD4 and CD8 T-cells with ERTR stroma 

(change in odds ratio score correlates with change in interaction count). (C-E) Interaction of 

granulocytes with CD4 T cells, dendritic cells and erythroblasts. (F,G) Interaction of erythroblasts with 

stromal and B220(+) DN T cells. Interactions in (C-G) scored as increased in early MRL/lpr (-4,-5,-6) as 

compared to BALBc spleens (FDR of T-test on normalized interaction counts between conditions <0.05, 

difference in interaction counts>0). (H,I) Interactions of B220(+) DN T cells with CD8 T cells and stromal 

cells. These interactions scored as increased in intermediate and late MRL/lpr (-7,-8,-9) as compared to 

early MRL/lpr spleens (FDR of T-test on normalized interaction counts between conditions <0.05, 

difference in interaction counts>0). More examples of cell type pairs with change in interactions across 

dataset can be found in associated online repository (see STAR methods). 

 

Figure S6. Expanding the multiplexing limit of CODEX by “panels and activators” design, Related to 

Figure 1A and STAR Methods. 

(A) Diagram of “multipanel”/”activator oligo” CODEX approach. The list of antibodies can be 

divided in sets such that number of antibodies in each individual set does not exceed the capacity of 

the multiplexing protocol to render staining without significant signal loss (e.g.30). Each such set of 

antibodies will be conjugated to “terminated” (the last 3’ base is dideoxy- or propyl- modified) upper 

strand oligonucleotide of the same sequence as in the original version of the “missing base” approach. 

The lower strand oligonucleotides will incorporate an additional set-specific region, which will serve as 

a landing spot for the dedicated primer oligo which is to be on-slide hybridized to the particular subset 

of the total plurality of the antibodies at the time when they are to be rendered. This approach 

prevents extension of reads beyond certain threshold and at the same time have an unlimited 

potential number of antibodies in the sample. (B) Schematics of experiment demonstrating the 

“activator” method and its robustness. Each antigen of a set of 22 surface markers is redundantly 

detected by three CODEX tag conjugates of the same antibody. The first conjugate is detected during 

panel 1 rendering, second – during panel 2 etc... Thus the signal for same antigen is detected at 

different cycles (e.g., 1
st

, 13
th

, and 24
th

) (C) Montage of a fragment of imaging field of the 36 cycles of 

CODEX used to render a mixture of 18 barcoded spleens (similar to design in Figure 2A). Cycles N,N+12 

and N+24 all three of which render same pair of antigens are shown per tile for all 11 pairs of antigens 

(see annotation in the black rectangle of each tile) 

Figure S7. The fluidic setup and stage for running CODEX experiments, Related to STAR 

Methods. 
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(A) General diagram of robotic fluidic setup used in this study. CODEX experiments are done in an open 

flow cell, which can be imaged in any inverted microscope. Six solutions have to be programmatically 

delivered and removed from the flow cell, which in the meantime sits in spatially defined position in 

the imaging system. A combination of 6-channel Tecan syringe pump equipped with 250ul syringes and 

USB-relay driven vacuum valve was used for iterative solution delivery and removal. Imaging was 

performed in Keyence BZ-X710 fluorescent microscope configured with 3 fluorescent channels (FITC, 

Cy3, Cy5) and equipped with Nikon PlanFluor 40x NA 1.3 oil immersion lens. Insets show photographs 

of actual microscope stage and fluidics robot. (B) Detailed 3D model of CODEX stage used in 

experiments. A metal insert was machined to be compatible with either ASI (Advanced Scientific 

Instrumentation) or Keyence 3d stages. Disposable (one per experiment) acrylic platform with a 

circular cutout in the middle was custom designed and lasercut such that it could be attached to the 

metal stage insert. Before multicycle run the coverslip with a sample was glued to the acrylic base 

which produced an open flow cell. As opposed to closed, open flow cell design ensures efficient 

(99.9%) and rapid solution exchange that is critical for CODEX protocol. (C) An exemplary photograph 

of full CODEX setup when attached to an inverted confocal microscope. 
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STAR Methods 

 

Contact for reagent and resource sharing 

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Prof. Dr. Garry Nolan (gnolan@stanford.edu). 

Experimental model and subject details 

 9 months old female MRL/lpr (IMSR Cat# JAX:000485, RRID:IMSR_JAX:000485) (chosen to 

represent lupus disease at a pronounced splenomegaly stage) and age/sex matched control BALBc 

mice (IMSR Cat# JAX:000651, RRID:IMSR_JAX:000651) purchased from Jackson Laboratory were used 

for the study. All animal studies were done in compliance with ethical regulations and procedures set 

in the Stanford Administrative Panel on Laboratory Animal Care Protocol 15986. In coherence with the 

primarily technical purpose of the study no animal cohort randomization or investigator blinding to 

group allocation was performed.  

Experimental method details 

Oligonucleotide sequences 

Single base extension during CODEX can be achieved by either a “missing base” approach 

(Figure 1A) or a “reversible terminator” method (see Supplementary Movie 1 part 2). In the case of 

the “missing base” approach, which was chosen for the experiments outlined in this paper, the top 

strand of the double-stranded oligonucleotide is covalently bound to the capture agent (in this case, an 

antibody) and the bottom strand is annealed through hybridization to the top strand. All antibodies 

contain the same top strand (5’-ATAGCAGTCCAGCCGAACGGTAGCATCTTGCAGAA-3’) and different 

bottom strands. 

 The sequence of the bottom strands contains a common region that hybridizes to the top 

strand (…TTCTGCAAGATGCTACCGTTCGGCTGGAddC-3’) as well as a 5’ variable sequence region that 

serves as the indexing region. As shown in Figure 1A, the overhanging 5’ end of the lower strand of the 

double-stranded oligonucleotide tag (which forms the overhang) is of the general formula 5’-

[C/T]5[A/G][5’-C1-4/T1-4-3’]n-TTCTGCAAGATGCTACCGTTCGGCTGGAddC-3’ The first block a short 5-nt 

stretch of random C/T composition designed to increase the polymerase residence on the DNA duplex. 

The second block is a single nucleotide (either G or A) that allows for incorporation of a labelled dNTPs 

(dU-ss-Cy5 or dC-ss-Cy3, respectively). The third block is the “indexing barcode“ that consists of n 

random-length homopolymer stretches (1-4 nucleobases each) of alternating “indexing” nucleobases 

dC and dT that serve as a template for extension of the top oligo with unlabeled nucleotides (dATP and 

dGTP). Here, n specifies the number or extension cycles after which the fluorescent nucleobase will be 
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incorporated into the duplex. Examples of CODEX indexing barcodes are CCCTCC for n=3 and 

CCCTCCTTTCTT for n=6.  The purpose of having the homopolymer stretches of variable length (e.g. 

CCCTCCTTTCTT) rather than single base (e.g. CTCTCT) is to increase the polymerase extension 

specificity and prevent misalignment of upper and lower strands of double-stranded oligonucleotide 

tags. All oligonucleotide sequences used in this study can be found in Table S1.  

Primer dependent panels to extend the multiplexing capacity of CODEX 

CODEX operates using an indexed polymerization step that enables precise incorporation of 

fluorophores into oligonucleotide-Ab conjugates at predetermined cycles. Although consistent 

performance of a model antigen (CD45) was observed across 15 cycles of CODEX (Figure S1A-F), a 

gradual accumulation of polymerization errors during each cycle could potentially result in non-

cognate rendering, and thus diminished and/or non-specific signals at later index cycles. In addition, 

the use of long single-stranded oligonucleotides that would enable indexing beyond 15 rounds might 

be problematic due to non-specific binding events to tissues under study. 

For the polymerization event to initiate, a 3’ hydroxyl is required. Thus, we reasoned that 

dedicated primers (each containing a distinct initiating sequence with a 3’ hydroxyl) could be used to 

activate distinct subpanels of antibodies (Figure S6A). This would allow design of antibody panels 

exceeding 30 markers into subpanels, each with a subpanel-specific activation sequence designed 5’ to 

the indexing region. In this design, the antibody attachment linker is terminated with ddC, such that 

the extension is only possible after a hybridization of a hydroxyl-containing panel-specific activation 

primer.  

The feasibility of such multipanel CODEX design and the robustness of CODEX protocol after many 

cycles and its independence of staining from the cycle number were tested in a model experiment. A 

22-color panel of antibodies (11 cycles) conjugated to a terminated top oligonucleotide, was hybridized 

with lower oligonucleotides of 1
st

 ,2
nd

, and 3
rd

 panels (Figure S6B). Thus, every antigen is detected 

thrice by the same antibody conjugated to oligonucleotides of 3 different panels. Each panel can only 

be rendered after annealing of a panel-specific activator oligonucleotide. The staining was rendered in 

36 cycles (11 detection cycles + 1 blank no-antibody cycle per activator oligo) of CODEX with additional 

activator oligonucleotide hybridization step between each of the 3 panels. The signal for same 

antibody detected at different cycles (e.g., 1
st

, 13
th

, and 24
th

) was consistent across the three panels 

(Figure S6C). This panel-activator design extends CODEX to a theoretically unlimited multiplexing 

capacity, bounded only by the speed and resolution of the imaging process itself and the time required 

for each imaging cycle. 

CyTOF CODEX comparison 

Cell preparation and staining by metal tagged antibody for CyTOF analysis was performed as 

described before (Spitzer et al., 2017). Mass cytometry was performed on a CyTOF
TM

 2 mass 
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cytometer (Fluidigm) equilibrated with ddH2O. For CODEX analysis, isolated spleen cells were stained 

a panel of antibodies conjugated to indexing oligonucleotides. Samples were fixed to a coverslip 

(Figure 2A) and imaged over 12 cycles of CODEX protocol. Images were segmented using the in situ 

cytometry software toolkit developed for this study (see Figure 2A for exemplary segmentation of the 

cell spread), and the staining of individual cells across the indexing cycles was quantified. 

Segmentation data was converted into flow cytometry standard (FCS) format and analyzed using the 

conventional flow cytometry analysis software Cytobank. 

Antibody conjugation, staining and CODEX rendering  

Detailed step-wise CODEX protocols can be found online (see Key Resource Table and Data and 

Software availability section below). For full list of antibody clones and vendors see Table S1. Custom 

manufactured microfluidic setup (Figure S7 A-C) was used to automate CODEX solution exchange and 

image acquisition. Instrument and blueprints and control software are available upon request. 

Primer dependent panels 

Rendering of antibodies with spacers followed the same procedure as the standard CODEX 

protocol with the exception of the following differences. Before proceeding to rendering next spacer 

dependent panel, the stained cells were incubated with a spacer oligonucleotide (1μM final 

concentration in buffer 405) at room temperature for 10 minutes. Cells were washed 4X with buffer 4 

and rendering proceeded as usual. To initiate each additional spacer set, the spacer incubation step 

was repeated using corresponding spacer samples.  

Imaging  

Images were collected using a Keyence BZ-X710 fluorescent microscope configured with 3 

fluorescent channels (FITC, Cy3, Cy5) and equipped with Nikon PlanFluor 40x NA 1.3 oil immersion lens. 

Imaging and washes were iteratively performed automatically using a specially developed fluidics setup 

(Figure S7 A-C). Images were subject to deconvolution using Microvolution software 

(www.microvolution.com). The staining patterns of 28 DNA-conjugated antibodies were acquired over 

14 cycles of CODEX imaging and overlaid with 2 additional fluorescent antibodies, CD45-FITC and 

NKp46-Pacific Blue and a DRAQ5 nuclear stain (Figure 3A and low-resolution views in Supplementary 

Movie 2 ). Each tissue was imaged with a 40x oil immersion objective in a 7x9 tiled acquisition at 

1386x1008 pixels per tile and 188 nm/pixel resolution and 11 z-planes per tile (axial resolution 900 nm). 

Images were subjected to deconvolution to remove out-of-focus light. After drift-compensation and 

stitching, we obtained a total of 9 images (one per tissue) with x=9702 y=9072 z=11 dimensions, each 

consisting of 31 channels (30 antibodies and 1 nuclear stain). 
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QUANTIFICATION AND STATISTICAL ANALYSIS  

Initial image analysis and segmentation 

For each imaging field analyzed by CODEX multidimensional staining multi-color z-stacks 

collected during individual cycles were aligned against reference channel (CD45) by 3D drift 

compensation (Parslow et al., 2014). If necessary individual fields covering large tiled areas were 

“stitched” using dedicated ImageJ plugin (Preibisch et al., 2009). For the 22-channel experiment on 

dissociated cells attached to coverslip (Figure 2) images corresponding to the best focal plane of 

vertical image stacks collected at each acquisition step of CODEX were chosen for quantification. For 

the 31-channel main experiments on mouse spleen sections, the segmentation was performed on the 

whole image stack using a volumetric segmentation algorithm described below. For this study, we 

purposefully developed a 3D image segmentation that combines information from the nuclear staining 

and a ubiquitous membrane marker (in this case CD45) to define single-cell boundaries in crowded 

images such as lymphoid tissues. This algorithm inverts the membrane image and multiplies it with the 

nuclear image, creating a synthetic image with enhanced contrast between neighboring nuclei. This 

image is subject to  low-pass FFT filtering and an then individual cell objects (collections of voxels) are 

identified using a gradient-tracing watershed algorithm. Per-cell intensities were quantified by 

integrating the intensity of each channel within a given cell object and divided by the region size in 

voxels. 

We benchmarked the segmentation algorithm against a dataset of BALBc mouse spleen images 

with expert hand-labelled nuclei in and we found the algorithm was able to correctly identify 

87.25%±2.89% cells, of which 89.88%±1.12% were singlets (one-to-one correspondence between a 

hand-labelled cell and a segmented object) (Figure S1 H-J). For each segmented object (i.e., cell) a 

marker expression profile, as well as the identities of the nearby neighbors were recorded using 

Delaunay triangulation (http://dx.doi.org/10.17632/zjnpwh8m5b.1). 

 

Spatial spillover compensation 

Accurate segmentation per se is not sufficient to obtain high-quality estimate of single-cell 

expression from images. The reason for that is that in lymphoid tissue the cells are so tightly adjacent 

that their membrane signals can partially overlap, resulting in blending of signals between neighboring 

cells, the phenomenon termed spatial spillover. In order to compensate for that, we estimated the cell-

to-cell signal spill coefficients based on the fraction of shared boundary between each pair of cell 

objects, resulting in a banded matrix (most cells don’t have any shared boundaries). To compensate 

the cell-to-cell spill, the raw intensity vector was multiplied by the inverse spill matrix (Figure 2D). 
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Besides the spatial signal spillover, there are other factors that add to artefactual cell-like 

objects: debris misidentified as cells, doublets (two adjacent cells merged together) as well as 

autofluorescent objects, both of which can lead to spurious as double-positive signals on the biaxial 

scatterplots. By analogy to how debris and doublets are eliminated from FACS data by applying special 

‘Singlet’ gates to SSC-FSC parameters, we devised a ‘cleanup’ gating strategy based on several quality 

control parameters: nuclear stain density (nuclear signal divided by cell size), profile homogeneity 

(relative variance of signal from cycle to cycle), background staining on blank cycles and, finally, nuclear 

signal and cell size (Figure S1K). We found that applying those filtering gates had a synergetic effect 

with the compensation, reducing the frequency of spurious double-positive cell signals by 

approximately an additional factor of 2 (Figure S1L e.g. compare fraction of CD5/IgD double positive 

cells in Ungated-Compensated and Post Cleanup gated – Compensated in (L)). 

 

Cell type definition 

 The 9-spleen dataset was subject segmentation, quantification, compensation and cleanup gating, as 

described above, yielding a total of 734101 30-dimensional single-cell protein marker expression 

profiles (Figure 3C, http://dx.doi.org/10.17632/zjnpwh8m5b.1). The segmented CODEX data was 

subject to automated phenotype mapping algorithm X-shift that was previously developed and 

validated on CyTOF data (Samusik et al., 2016) (Figure 3C). 58 phenotypic clusters inferred by X-shift 

clustering were manually annotated (Figure 3C, D and Table S2) based on the 30-color marker 

expression profile and thorough visual inspection of the representative image samples (Figure S2A-J, 

more examples of “cell passports” can be found in associated online repository - see STAR methods). 

Some clusters were found to originate from imaging artifacts such as dust and tissue sectioning defects. 

That reduced the overall number of cell-like objects to 707466. Each cluster was assigned to one of 27 

broadly defined single-cell phenotypic groups (cell types), which in some cases could be clearly 

matched to major immune cell types and in others were named according to expression of 

distinguishing surface markers (see cluster annotation and cell counts in Table S2). 

 

 

 

Cell interaction analysis 

To define for each cell the neighbors of the first (immediate) tier of proximity Delaunay graph 

was computed for the dataset (http://dx.doi.org/10.17632/zjnpwh8m5b.1). The odds ratio of co-

occurrence of cell type A and cell type B was estimated as the observed frequency of co-occurrence 

(mean of the beta-distribution, with parameter alpha = number of edges connecting cell types A and B 
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and parameter beta = total number of edges minus number of edges connecting A-B) divided by the 

theoretical frequency of co-occurrence (total frequency of edges incident to type A multiplied by the 

total frequency of edges incident to type B) see Table S3. The odds ratios are represented in heatmaps 

on Figure 3G , with a range of values from less than 1 to more than 1 meaning that two cell types are, 

respectively, less or more likely to co-occur than expected by chance. The significance of the difference 

from zero was tested using binomial distribution (probability of getting an observed number of 

interactions between A and B (successes) amongst the total number of registered interactions (number 

of trials) given the theoretical probability of A-B interaction (probability of success)).  

The significance of change of interaction frequencies or log-odds ratios were computed 

between BALB/c and Stage 1 (early) MRL using pairwise T-test. However, the same procedure could 

not be applied to testing BALB/c versus MRL/lpr Stages 2 and 3 because of high sample-specific 

variation in those more advanced disease stages. Therefore we scored computed the deviation of 

those Stage2/3 values from BALB/c using χ
2
 statistics because it does not require Stage 2/3 samples to 

have a common mean.  

The P-values were subject to FDR correction using Benjamini–Hochberg procedure.  

Interactions that were considered significant for FDR q-value < 0.05 or > 0.95 (Table S3). 

In order to estimate the overall deviation of either interaction frequency matrices or log-odds 

ratio matrices, the matrices were subject to z-transformation based on the mean and the SDs of the 

BALB/c samples, and then χ
  

statistics was computed as square root of the sum of squares of all 

elements of the z-score transformed matrices (Figure 5F).  

i-niche analysis 

The i-niche analysis was performed based on 2-dimensional Delaunay triangulation of the cell 

center coordinates. Delaunay triangulation and the related concepts of Voronoi Tesselation and 

Gabriel graphs were previously applied in eco-geographical analysis of species distribution (Gabriel and 

Sokal, 1969) and therefore were deemed as equally applicable to the analysis of tissue organization on 

the single-cell level.  The i-niche is defined as a set of first-order Delaunay neighbors of the given ‘index 

cell’, i.e. the i-niche cells are the ones that are directly connected to the i-cell with edges in the 

Delaunay triangulation of cell centers. We distinguish i-niche from the more formal understanding of 

“niche”, which is often used in stem cell literature and where numbers of cells in the niche and their 

placement within the niche is undefined.  In our definition, we allow the central cell to be of any type 

and are counting the cell types present in the ring.  This flexible definition allows for multi-cellular 

interactions around a central cell to define the biology of that cell (and vice versa).  Computationally, 

the i-niche window slides from cell to cell, considering each set of adjoining cells—and therefore allows 

consideration of the constituencies of different central cell types that might populate a given i-niche.  

We understand that our current definition is arbitrary and could be extended to include other specific 

cell arrangements—including, though beyond the scope of the current work, a 3D sphere of cells 

contacting the index cell. 
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Neural network training and data analysis 

Preprocessing 

Image stacks were maximum-intensity projected following deconvolution. Data was quantile 

normalized to 4 levels (0, 0.25, 0.5 and 0.75 quantiles). A baseline model was able to distinguish 

models without this discretization and normalization, suggesting strain-specific differences in antibody 

staining intensity. 

  

Training and cross validation split 

Four spleen samples (two BALB/c and two MRL/lpr) were chosen as training samples. The 

remaining five spleens tissue samples (one BALB/c and four MRL/lpr) were used for testing the trained 

model. For cross-validation, different combinations of spleens were allocated to training and test sets. 

During training, 224x224 images were randomly extracted from the training tissue samples, at 1x, 0.5x 

and 2x zoom.  At 1x zoom, there would be 6804 non-overlapping image patches in the training dataset. 

The trained models were tested on 4500 patches, at 1x zoom. Hyperparameters were manually tuned 

on 500 randomly selected images from the testing spleens. The Adam optimizer was used for training 

with an initial learning rate of 0.0001. 

  

Baseline model 

A logistic regression model was trained by averaging marker intensities across the image. L2 

regularization was used for weights. 

  

Neural network architecture 

To avoid the learning of trivial sample-specific staining variation, data were quantile normalized 

sample-wise and each marker was discretized to four levels. Since disease-specific hallmarks could 

potentially be present at multiple scales, the training data for our neural network was extracted at 

multiple levels of magnification. A simple regularized logistic regression model that considered only 

average marker expression and did not incorporate spatial information was unable to successfully 

distinguish patches normal and MRL/lpr spleens, whereas the trained neural network model 

consistently achieved a 90% precision of classification of image patches during cross-validation. 

 

A fully convolutional network architecture was used, with the following layers. To generate a 

prediction for an entire image patch, a global max-pooling layer was used.  
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1.     Conv3 60 

2.     Conv3 120 

3.     Conv3 64 

4.     Batch Norm 

5.     Conv3, 64 

6.     Max pooling 2x2 

7.     Conv3, 128 

8.     Conv3, 128 

9.     Max pooling 2x2 

10.  Conv3, 256, 

11.  Conv3,256 

12.  Conv3,256 

13.  Max pooling 2x2 

14.  Conv3,512 

15.  Conv3,512 

16.  Conv3,512 

17.  Conv1,256 

18.  Conv1,64 

19.  Conv1,1 

20.  Global max pooling 

21.  Sigmoid 

 

Weights for layers 5-16 were initialized from the VGG-16 pretrained model. The model was 

trained with cross-entropy loss. 

  

Regularization 

L2 regularization (0.1) was used for network weights. L1 regularization was applied to the 

feature map output after layer 19 to encourage sparse activations 

  

  

Whole sample activations for test set 

Since the network was fully convolutional, it could be applied to images of any dimension. The 

network was applied to entire fields of view individually. The activation maps were obtained as the 

output after layer 21. 

  

Aligning cell type information 

Each cell was assigned the MRL/lpr score of the corresponding pixel in the image. 
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Enrichment and neighborhood analysis 

FDR controlled chi-squared tests of proportions were carried out to determine enrichment of 

specific cell types in the top 10% of cells by MRL/lpr score. For neighborhood analysis of dendritic cells, 

the composition of the neighborhoods (cell centers within 30 pixels) of the top 300 cells (by MRL/lpr 

score) were compared to the composition of the neighborhoods of the bottom 300 cells. Only cells 

with positive neural network assigned MRL/lpr score, in MRL/lpr regions, were considered for this 

analysis. 

 

Data and software availability 

Software used in the paper for parsing image data can be obtained at:  

https://github.com/nolanlab/CODEX 

Data tables can be downloaded from Mendeley: 

http://dx.doi.org/10.17632/zjnpwh8m5b.1 

All primary image data, high resolution focused montages, complete single cell data tables and various 

additional information can be obtained at: 

http://welikesharingdata.blob.core.windows.net/forshare/index.html 

Flow formatted segmented data can obtained from online repository page (link above) or from 

Cytobank: 

CODEX on spreads of isolated mouse splenocytes (Figure 2B): 

 https://community.cytobank.org/cytobank/experiments/69534 

https://flowrepository.org/experiments/1686 

CyTOF on isolated splenocytes (Figure 2B): 

https://community.cytobank.org/cytobank/experiments/69533 

https://flowrepository.org/experiments/1687 

CODEX on BALBc spleen tissue sections (Figure 2E): 

https://community.cytobank.org/cytobank/experiments/69889 

https://flowrepository.org/experiments/1688 
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Supplementary Table Legends 

Table S1. List of CODEX antibodies and oligonucleotides, Related to Figure 2 and Figure 3. 

Excel file with four spreadsheets corresponding to multidimensional staining experiments 

performed in the study (CODEX panel for cell spreads) List of 24 antibodies (23 DNA conjugated + 

CD45 FITC for counterstain), upper and lower nucleotides used for CODEX staining of isolated 

splenocytes. (CODEX panel for spleen tissue) List of 30 antibodies (28 DNA conjugated + CD45 FITC and 

NKp46 PacBlue), upper and lower nucleotides used for comparative CODEX staining of normal BALBc 

and lupus afflicted MRL/lpr spleen sections. (CYTOF panel for spleen cells) List of 23 metal conjugated 

antibodies antibodies used in CyTOF analysis of isolated splenocytes. (Activator driven CODEX panels) 

List of 22 antibodies (22 DNA conjugated + CD45 FITC for counterstain), upper, lower and activator 

nucleotides used for activator driven CODEX staining of isolated splenocytes (see exp. Schematics in 

Figure S12). 

 

Table S2. X-shift cluster annotations and cell counts, Related to Figure 3 

Excel file with 58 clusters identified by X-shift analysis, their annotations and resulting across 

dataset counts for 27 imaging phenotypes identified in this study 

 

Table S3. Dynamics of average cell type to cell type interaction frequency and strength across 

dataset, Related to Figure 3G. 

Excel table with three spread sheets. Full data contains odds ratios; direct counts of 

interactions as well as various differential metrics for comparisons off frequency and strength of cell 

type to cell type interactions between early MRL and control (BALBc) and intermediate-late MRL and 

early MRL. Early vs control shows top candidate cell type pairs selected based on the change in 

strength (odds ratios) or frequency of interactions between early MRL spleen and control spleens. Late 

vs early shows top candidate cell type pairs selected based on the change in strength (odds ratios) or 

frequency of interactions between combined intermediate and late MRL spleens and early MRL 

spleens. 

Table S4. Linear regression model for marker expression level based on niche and cell type shows 

importance of niche, Related to Figure 4D,E. 

The overall role of the niche in defining marker expression was evaluated by constructing a 

linear regression model of marker expression with cell type identity and niche as two feature variables. 

This Excel file shows F and P values for the contribution of niche to the model. The F value is the ratio 
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of the mean regression sum of squares for the model including just cell type to the full model including 

both niche and the cell type. Its value ranges zero to an arbitrarily large number. A larger F value 

suggests that the niche has a larger contribution in explaining the variance observed in the expression 

levels of each marker. The value of Pr(>F) is the p-value against the null hypothesis that including the 

niche in the model does not improve the fit.  
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