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Abstract 

A previous study of exome-sequenced schizophrenia cases and controls reported an excess 
of singleton, gene-disruptive variants among cases, concentrated in particular gene sets. 
The dataset included a number of subjects with a substantial Finnish contribution to 
ancestry. We have reanalysed the same dataset after removal of these subjects and we 
have also included non-singleton variants of all types using a weighted burden test which 
assigns higher weights to variants predicted to have a greater effect on protein function. We 
investigated the same 31 gene sets as previously and also 1454 GO gene sets. The reduced 
dataset consisted of 4225 cases and 5834 controls. No individual variants or genes were 
significantly enriched in cases but 13 out of the 31 gene sets were significant after 
Bonferroni correction and the “FMRP targets” set produced a signed log p value (SLP) of 
7.1. The gene within this set with the highest SLP, equal to 3.4, was FYN, which codes for a 
tyrosine kinase which phosphorylates glutamate metabotropic receptors and ionotropic 
NMDA receptors, thus modulating their trafficking, subcellular distribution and function. In the 
most recent GWAS of schizophrenia it was identified as a "prioritized candidate gene". Two 
of the subunits of the NMDA receptor which are substrates of FYN are coded for by GRIN1 
(SLP=1.7) and GRIN2B (SLP=2.1). Of note, for some sets there was a substantial 
enrichment of non-singleton variants. Of 1454 GO gene sets, 3 were significant after 
Bonferroni correction. Identifying specific genes and variants will depend on genotyping 
them in larger samples and/or demonstrating that they cosegregate with illness within 
pedigrees. 

 

Introduction 

Schizophrenia is a severe and disabling mental illness with onset typically in early adult life. 
It is associated with low fecundity but nevertheless remains fairly common with a lifetime 
prevalence of around 1% (Power et al., 2013). A variety of types of genetic variation 
contribute to risk. Many common variants demonstrate association with small effect sizes 
whereas extremely rare variants can have very large effect sizes. 108 SNPs have been 
reported to be genome-wide significant with odds ratio (OR) of 1.1-1.2 and it is likely that 
many other variants will achieve statistical significance when larger samples are genotyped 
(Schizophrenia Working Group of the Psychiatric Genomics Consortium, 2014). Weak 
effects from common variants may arise from a number of mechanisms. The variant itself 
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may exert a direct effect at some point in the pathogenic process, it may pick a up a more 
indirect effect through involvement in gene regulatory networks or it may be in linkage 
disequilibrium with other variants have a larger, direct effect (Boyle et al., 2017). A recent 
example of the last case is provided by SNPs in the HLA region which tag variant haplotypes 
of C4, the gene for complement component 4, the different haplotypes producing different 
levels of C4A expression associated with OR for schizophrenia risk of 1.3 (Sekar et al., 
2016). Variants associated with small effect sizes will be subject to relatively little selection 
pressure and hence can remain common. By contrast, extremely rare variants such as some 
copy number variants (CNVs) or loss of function (LOF) variants of SETD1A may lead to a 
very high risk of developing schizophrenia (Deciphering Developmental Disorders Study, 
2017; Rees et al., 2014; Singh et al., 2016). A proportion of cases of schizophrenia seem to 
be due to such variants with large effect size arising as de novo mutations (DNMs) (Fromer 
et al., 2014; Singh et al., 2017). Such variants are likely to be subject to strong selection 
pressure and may only persist for a small number of generations. Theoretically, variants 
acting recessively might persist in the population and still have reasonably large effect size 
but attempts to identify these have to date been unsuccessful (Curtis, 2015; Rees et al., 
2015; Ruderfer et al., 2014). 

In order to focus attention on only new or recent variants, the Swedish schizophrenia study 
of whole exome sequence data focussed on what were termed ultra-rare variants (URVs), 
that is variants which only occurred in a single subject and which were absent from ExAC. 
The effects of some of these variants on gene function were annotated as damaging or 
disruptive and these variants, termed dURVs, were found to be commoner in cases than 
controls across all genes, with the effect concentrated in particular sets of genes including 
FMRP targets, synaptically localised genes and genes which were LOF intolerant 
(Genovese et al., 2016). The present study seeks to analyse this dataset further in order to 
consider whether rare non-singleton sequence variants, as well as singleton variants, 
contribute to schizophrenia risk.  

The dataset used in this study overlaps with a number of previously reported analyses. The 
full exome-sequenced dataset consists of 4968 cases with schizophrenia and 6245 controls. 
Although recruited in Sweden, it should be noted that some subjects have a substantial 
Finnish component to their ancestry (Genovese et al., 2016). The earlier phase of this 
dataset consisted of 2045 cases and 2045 controls and the primary analysis of these 
revealed subjects an excess among cases of very rare, disruptive mutations spread over a 
number of different genes though concentrated in particular gene sets (Purcell et al., 2014). 
This first phase of the dataset was also used for analyses which attempted to detect 
recessive effects and to identify Gene Ontology (GO) pathways with an excess of rare, 
functional variants among cases but which did not produce statistically significant results 
(Curtis, 2016, 2013). A subset of the full dataset with cases with Finnish ancestry removed 
was used to demonstrate a method for deriving an exome-wide risk score and to 
demonstrate an association of schizophrenia with variants in mir134 binding sites (Curtis, 
2017; Curtis and Emmett, 2017). A genetically homogeneous subset of the full Swedish 
dataset was combined with a UK case-control association sample and nonsynonymous 
variants with Minor Allele Frequency (MAF)<0.001 which were present on the Illumina 
HumanExome and HumanOmniExpressExome arrays were analysed (Leonenko et al., 
2017). This revealed an enrichment of these variant alleles in LOF intolerant genes and 
FMRP targets. 
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The present study uses a subset of the Swedish dataset after removal of subjects with a 
high Finnish ancestry component in order to avoid artefactual results produced by population 
stratification. It also utilises all rare (MAF<0.01) variants analysed using a weighted burden 
test to identify genes and sets of genes associated with schizophrenia risk. 

 

Methods 

The data analysed consisted of whole exome sequence variants downloaded from dbGaP 
from the Swedish schizophrenia association study containing 4968 cases and 6245 controls 
(Genovese et al., 2016). The dataset was managed and annotated using the 
GENEVARASSOC program which accompanies SCOREASSOC 
(https://github.com/davenomiddlenamecurtis/geneVarAssoc). Version hg19 of the reference 
human genome sequence and RefSeq genes were used to select variants on a gene-wise 
basis. Members of the protocadherin gamma gene cluster, whose transcripts overlap each 
other but which are entered separately in RefSeq, were treated as a single gene which was 
labelled PCDHG. 

A number of QC processes were applied. Variants were excluded if they did not have a 
PASS in the Variant Call Format (VCF) information field and individual genotype calls were 
excluded if they had a quality score less than 30. Sites were also excluded if there were 
more than 10% of genotypes missing or of low quality in either cases or controls or if the 
heterozygote count was smaller than both homozygote counts in both cohorts. As previously 
reported (Curtis, 2017), preliminary gene-wise weighted burden tests revealed that several 
genes had an apparent excess of rare, protein-altering variants in cases but that these 
results were driven by variants which were reported in ExAC to be commoner in Finnish as 
opposed to non-Finnish Europeans (Lek et al., 2016). Accordingly, subjects with an excess 
of alleles more frequent in Finns were identified and removed from the dataset, comprising 
743 cases and 411 controls. Once this had been done, leaving a sample of 4225 cases and 
5834 controls, the gene-wise weighted burden test results conformed well to what would be 
expected under the null hypothesis with no evidence for inflation of the test statistic across 
the majority of genes not thought to be implicated in disease.  

The tests previously carried out for an excess of dURVs among cases (Genovese et al., 
2016) were performed on both the full and reduced datasets, with and without including 
covariates consisting of the total URV count and the first 20 principal components from the 
SNP and indel genotypes. 

Weighted burden analysis of genes and gene sets as described below was carried out using 
SCOREASSOC, which analyses all variants simultaneously and can accord each variant a 
different weight according to its MAF and its predicted function (Curtis, 2016, 2012). Each 
variant was annotated using VEP, PolyPhen and SIFT (Adzhubei et al., 2013; Kumar et al., 
2009; McLaren et al., 2016). GENEVARASSOC was used to generate the input files for 
SCOREASSOC and the default weights were used, for example consisting of 5 for a 
synonymous variant and 20 for a stop gained variant, except that 10 was added to the 
weight if the PolyPhen annotation was possibly or probably damaging and also if the SIFT 
annotation was deleterious. The full set of weights is shown in supplementary Table S1. 
SCOREASSOC also weights variants more highly than common ones but because it is well-
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established that no common variants have a large effect on the risk of schizophrenia we 
excluded variants with MAF>0.01 in the cases and in the controls, so in practice weighting 
by rarity had negligible effect. For each subject a gene-wise risk score was derived as the 
sum of the variant-wise weights, each multiplied by the number of alleles of the variant which 
the given subject possessed. These scores were then compared between cases and 
controls using a t test. To indicate the strength of evidence in favour of an excess of rare, 
functional variants in cases we took the logarithm base 10 of the p value from this t test and 
then gave it a positive sign if the average weighted sum was higher in cases and a negative 
sign if the average was higher in controls, to produce a signed log p (SLP). 

In order to explore the contribution of singleton variants, for the analyses of gene sets three 
sets of variants were used: singleton variants which were only observed in a single subject 
and not in ExAC; non-singleton variants, observed in more than one subject (though still with 
MAF<0.01 in cases and/or controls); all variants, consisting of these singleton and non-
singleton combined.  

Weighted burden analysis within sets of genes was carried out using PATHWAYASSOC, 
which for each subject sums up the gene-wise scores to produce an overall score for the 
gene set. These set-wise scores can then be compared between cases and controls using a 
t-test. This approach has been demonstrated to produce appropriate p values through 
application to real data, supported by permutation testing (Curtis, 2016). This analysis was 
applied to the 31 gene sets used in the Swedish study separately using singleton, non-
singleton and all variants. The analysis was also applied using all variants to the 1454 "all 
GO gene sets, gene symbols" pathways downloaded from the Molecular Signatures 
Database at http://www.broadinstitute.org/gsea/msigdb/collections.jsp (Subramanian, 
Tamayo et al. 2005).  

Logistic regression analyses of dURVs were carried out using R (R Core Team, 2014). 
Weighted burden tests for genes and gene sets were carried out using SCOREASSOC and 
PATHWAYASSOC. Results from these programs are expressed as a Signed Log P (SLP) 
which is positive if there is an excess of variants among cases and negative if there is an 
excess among controls. Thus, a SLP of 3 would indicate that there was an excess of 
variants among cases with two-tailed significance P<10-3. 

Results 

Preliminary analysis of the whole dataset, (i.e. all individuals before excluding those with 
Finnish ancestry), using a logistic regression analysis to test for an excess of dURVs among 
cases was significant (P=8.7*10-10) when the total URV count and principal components 
were included as covariates. However without covariates this analysis was only marginally 
significant (P=0.031). Further investigation showed that subjects with a substantial Finnish 
component to their ancestry had a larger number of URVs than those who did not. Cases 
tended to have a larger number of dURVs than controls, but only relative to the total number 
of URVs, and more cases had a substantial Finnish ancestry component than controls. 
Thus, in the whole sample the relative excess of dURVs among cases was almost 
completely masked by the fact that more cases had Finnish ancestry and that these cases 
had a smaller absolute number of URVs, meaning that overall there was only a small excess 
in the absolute number of dURVs among cases. Including the total URV count or the 
principal components or both as covariates allowed the relative excess among cases to 
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become apparent. The analysis was then repeated on the reduced dataset without those 
subjects with a substantial Finnish ancestry component. Once this had been done, there was 
a significant absolute excess of dURVs among cases (P=2.7*10-5), without needing to 
include either total URV count or principal components as covariates. 

The weighted burden tests evaluated 1,042,483 valid variants in 22,023 genes. As described 
in the Methods section, in preliminary analyses using the full dataset a number of genes 
yielded high SLPs. An example was COMT, with SLP=7.4. On inspection, it seemed that this 
gene-wise result was largely driven by SNP rs6267, which was heterozygous in 51/6242 
controls and 94/4962 cases (OR=2.3, p=8*10-7). However this variant is noted in ExAC to 
have MAF=0.002 in non-Finnish Europeans but MAF=0.05 in Finns. Hence, its increased 
frequency among cases appeared to be due to the excess of cases with Finnish ancestry. 
Once all subjects with a substantial Finnish ancestry component were excluded, the SLP for 
COMT fell to 1.7 and for rs6267 there were 36/5831 heterozygous controls s and 36/4221 
cases (OR=1.4, p=0.2). A similar effect was observed for other genes with excessively high 
SLPs in the full dataset but not in the reduced dataset, suggesting that removing subjects 
with substantial Finnish ancestry seemed to produce a satisfactorily homogeneous dataset.  
QQ-plots for the gene-wise analyses using the reduced dataset are shown in Figure 1. All of 
the plots are symmetrical, indicating that the test is unbiased. When only singleton variants 
are used the gene-wise tests are somewhat underpowered and the gradient is less than 1. 
However for the tests using non-singleton variants or all variants the SLPs almost exactly 
follow the distribution expected under the null hypothesis. One outlier is apparent. This is 
caused by the gene CDCA8 which produces an SLP of -5.49 with all variants. Further 
inspection showed that this result was mainly driven by 22 highly weighted variant alleles 
among controls but only 5 among cases. For a gene-wise test to be exome-wide significant 
with 22,023 genes the absolute value of the SLP would need to exceed 5.64, so this result is 
still within chance expectation. 

The results for the 31 gene sets which had previously been used in the Swedish study are 
shown in Table 1. Using the weighted burden test many, though not all, of the sets show an 
excess of variants among cases. For neurons, pLI09, fmrp and mir137 the non-singleton 
variants make a substantial contribution but for psd, rbfox13 and rbfox2 the bulk of the effect 
comes from only the singleton variants. Given that there are 31 sets, a simple Bonferroni 
correction would mean that a set could be declared statistically significant if the SLP using all 
variants exceeded -log(31/0.05)=2.8 although this threshold should be regarded as 
conservative because the sets overlap each other. For the 13 sets where SLP>2.8 using all 
variants, the genes with the highest gene-wise SLPs are shown in Table 2. As expected, 
there is some overlap between the sets with several genes making contributions to more 
than one set. The gene with the highest gene-wise SLP in the fmrp set is FYN (SLP=3.4) 
and it is also a member of 6 other sets. FYN codes for a tyrosine kinase which 
phosphorylates glutamate metabotropic receptors and ionotropic NMDA receptors, which 
modulates their trafficking, subcellular distribution and function (Mao and Wang, 2016a) In 
the most recent GWAS of schizophrenia FYN was identified as a "prioritized candidate gene" 
and an intronic marker, rs7757969, was significant at p=4.8*10-8 (Li et al., 2017). The activity 
of FYN is regulated by dopamine DRD2 receptors (Mao and Wang, 2016b). FYN is involved 
in neuronal apoptosis, brain development and synaptic transmission and lower expression 
has been observed in the platelets of schizophrenic patients compared with controls (Ali and 
Salter, 2001; Du et al., 2012; Hattori et al., 2009). Two of the subunits of the NMDA receptor 
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which are substrates of FYN are coded for by GRIN1 (SLP=1.7) and GRIN2B (SLP=2.1). In 
all three of these genes, the signal seems to be produced from a number of highly weighted 
variants which are individually commoner in cases but all are very rare, with MAF<0.001 
even among cases, so it is not possible to identify any obvious candidate variants. 

Figure 2 shows the QQ plot for the set-wise analyses using the GO gene sets. Given that 
there is overlap of genes between sets, the SLPs are non-independent and it is expected 
that the gradient of the QQ plot will be less than 1. For those sets with a negative SLP this is 
indeed the case and these results are in accordance with the expectation under the null 
hypoethesis. However the gradient becomes steeper for sets with positive SLPs and this can 
be interpreted as showing that some sets have an excess of variants among cases above 
that which would be expected by chance. Given that 1454 GO gene sets were tested, a 
simple Bonferroni correction would mean that a test could be declared "exome-wide 
significant" if it achieved an SLP exceeding -log(1454/0.05)=4.5. Three sets did achieve this 
threshold. However, given the fact that the set-wise SLPs are not independent a Bonferroni 
correction might be viewed as conservative and Table 3 shows all sets achieving SLP>3. 
The full results are presented in supplementary Table S2. The most significant set, 
INTRACELLULAR_SIGNALING_CASCADE with SLP=5.4, contains FYN and two other 
genes with gene-wise SLP>3, S1PR4 (SLP=3.7) and RTKN (SLP=3.2). S1PR4 codes for the 
type 4 receptor for sphingosine-1-phosphate and the mouse strain carrying the mutation with 
genotype S1pr4tm1Dgen/S1pr4+ has decreased prepulse inhibition as a phenotype 
(http://www.informatics.jax.org/allele/genoview/MGI:3606610) (Blake et al., 2017; The 
Jackson Laboratory, n.d.). RTKN codes for rhotekin, a scaffold protein that interacts with 
GTP-bound Rho proteins. Again, inspecting results for individual variants within these genes 
did not reveal any obvious candidates. The full results for all genes and all gene sets can be 
downloaded at: 
http:/www.davecurtis.net/downloads/SSS2WeightedBurdenAnalysisResults.zip. 

 

Discussion 

This analysis identifies a number of sets of genes that meet Bonferroni-corrected criteria for 
statistical significance. It differs from previous analyses in a number of ways.  

In contrast to the original analysis of the Swedish dataset (Genovese et al., 2016) it uses 
non-singleton as well as singleton variants and it clearly demonstrates that there is a 
contribution to risk from these non-singleton variants. This is extremely important in terms of 
the prospects for identifying rare risk variants for schizophrenia. If only unique variants 
conferred risk, that is only variants which occur independently as de novo mutations and 
then disappear after a small number of generations, then it would not be possible to identify 
any single variant as definitively affecting risk. One could at best identify perhaps classes of 
variant occurring in particular genes. Without being able to conclude that any particular 
variant affected risk, one could not carry out functional studies in model systems with the 
confidence that one was indeed studying a true risk variant. Additionally, if only unique 
variants contributed to risk then strategies that might use linkage disequilibrium to implicate 
untyped variants could not succeed. If, on the other hand, there are risk variants which 
survive and spread in the population then potentially these could be tagged by haplotypes of 
common SNPs and imputed from GWAS data, in a way similar to that used to impute C4 risk 
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variants (Sekar et al., 2016). Alternatively population sequencing may soon become cheap 
and accurate enough to identify these rare variants directly. 

This study differs from both the Swedish study (Genovese et al., 2016) and the Swedish-UK 
study (Leonenko et al., 2017) in that it uses a homogeneous dataset. The original study did 
not exclude the subjects with a substantial Finnish ancestry component whereas the 
Swedish-UK study did use a homogeneous subset of the Swedish subjects but then 
combined them with a UK sample. This meant that both studies needed to incorporate 
principal components to control for population stratification and this to some extent 
complicates the interpretation of their results. For example, the highly significant enrichment 
for dURVs reported in the first study only becomes apparent when covariates are included. 
In the Swedish-UK study, the most highly significant variant (p=3.4*10-7), which occurs in the 
MCPH gene, has MAF of 0.0046 in cases and of 0.0012 in controls, meaning that the 
unadjusted risk ratio is approximately 3.8. However after multivariate analysis including 
covariates the OR is reported as being only 1.2. By contrast, the reduced dataset we have 
used appears to be sufficiently homogeneous that the test statistic performs as expected 
without requiring any adjustment for population stratification. This allows for a simple, 
straightforward interpretation of the results obtained.  

Another way our analysis differs is that it includes all variants in a single analysis. Variants 
are assigned different weights according to an arbitrary pre-specified set of weights 
designed to emphasise those variants more likely to affect gene function. This meant that we 
carried out only a single analysis for each gene or set of genes, reducing any correction for 
multiple-testing. Our analyses utilised 1,042,483 variants, compared with the 112,950 used 
in the Swedish-UK study. Using our method, 14 of the 32 candidate gene sets and 3 of the 
1454 GO sets meet formal standards for statistical significance using a conservative 
Bonferroni correction. 

As in the other studies, none of the results for individual genes reach formal standards for 
statistical significance, although the results obtained for FYN are possibly of interest. It 
seems likely that our results are detecting a real signal originating from rare variants 
concentrated within some of the genes that are members of the gene sets with high SLPs. 
These sets overlap each other to a considerable extent and it is difficult to tease out which 
ones best define a group of schizophrenia risk genes. An attempt to do this formally using 
exome-wide risk scores did not produce definitive results (Curtis, 2017). It should be noted 
that different sets might be implicated for different reasons. For example, it may be that the 
high SLP for targets of miR-137 occurs because disruption of the regulation of these genes 
by miR-137 can lead to increased risk of schizophrenia, as supported by the association of 
schizophrenia with markers for miR-137 and with variants in its binding sites (Curtis and 
Emmett, 2017; Olde Loohuis et al., 2017). On the other hand, there is no reported 
association of FMRP itself with schizophrenia and the high SLP for its targets may simply 
reflect that this identifies a group of genes whose mRNA is localised to the synapse. In any 
event, it is clear that with samples currently available we are only able to identify very broad 
gene sets but not yet specific genes.  

With increased sample sizes it will become possible to identify specific genes and variants 
which have a moderate or large effect on risk. However such variants, although not 
singletons, will still be very rare and serious attention should be focussed on complementary 
approaches to confirm them. One such approach would be to use exome sequence data 
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from affected subjects to provide reference haplotypes for imputation into large GWAS 
datasets, analogously to the way C4 variants implicating risk were identified (Sekar et al., 
2016). Another would be to search for affected relatives of subjects with candidate variants 
in order to see if the variants cosegregate with disease, a strategy which was successful in 
implicating RBM12 in the aetiology of psychosis (Curtis, 2011; Steinberg et al., 2017). If and 
when specific variants are identified as having substantial effects on risk then they can be 
incorporated into model systems in order to gain insight into the mechanisms affecting the 
development of schizophrenia. 
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Table 1 

Results showing SLPs obtained for the gene sets used in in the original analysis Swedish 
schizophrenia study (Genovese et al., 2016).  The lists of genes were obtained directly from 
the first author. The symbol used is the same as that used for the name of the file containing 
the list. 

Gene set Symbol 
(Number of 
genes in set) 

Singleton 
variants 

Non-
singleton 
variants 

Both 

OMIM intellectual disability 
(Hamosh et al., 2005) 

alid 
(107) 

0.2 1.0 1.1 

Expression specific  to brain 
(Fagerberg et al., 2014) 

brain 
(2660) 

4.0 1.3 3.1 

Bound by CELF4 (Wagnon et al., 
2012) 

celf4 
(2675) 

3.1 1.7 3.7 

Missense-constrained (Samocha 
et al., 2014) 

constrained 
(1005) 

3.8 2.0 4.8 

Involved in developmental 
disorder (Deciphering 
Developmental Disorders Study, 
2017) 

dd 
(93) 

2.2 2.4 3.7 

De novo variants in autism 
(Fromer et al., 2014) 

denovo.aut 
(2927) 

2.5 2.9 4.8 

De novo variants in coronary 
heart disease (Fromer et al., 
2014) 

denovo.chd 
(249) 

0.8 1.7 2.7 

De novo variants in epilepsy 
(Fromer et al., 2014) 

denovo.epi 
(322) 

1.2 0.7 1.6 

De novo duplications in ASD 
(Kirov et al., 2012) 

denovo.gain.asd 
(1365) 

0.9 1.2 1.8 

De novo duplications in bipolar 
disorder (Kirov et al., 2012) 

denovo.gain.bd 
(180) 

0.8 0.5 1.2 

De novo duplications in 
schizophrenia (Kirov et al., 2012) 

denovo.gain.scz 
(200) 

0.2 -0.1 0.1 

De novo variants in intellectual 
disability (Fromer et al., 2014) 

denovo.id 
(251) 

0.5 1.8 2.8 

De novo deletions in ASD (Kirov 
et al., 2012) 

denovo.loss.asd 
(1179) 

3.1 0.2 1.3 

De novo deletions in bipolar 
disorder (Kirov et al., 2012) 

denovo.loss.bd 
(130) 

1.4 -0.3 0.2 

De novo deletions in 
schizophrenia (Kirov et al., 2012) 

denovo.loss.scz 
(246) 

0.6 0.1 0.5 

De novo variants in schizophrenia  
(Fromer et al., 2014) 

denovo.scz 
(770) 

1.7 1.3 2.3 

Bound by FMRP (Darnell et al., 
2011) 

fmrp 
(1244) 

7.0 3.3 7.2 

Implicated by GWAS 
(Schizophrenia Working Group of 
the Psychiatric Genomics 
Consortium, 2014) 

gwas 
(91) 

1.2 0.8 1.7 

Targets of microRNA-137 
(Robinson et al., 2015) 

mir137 
(3260) 

2.5 4.1 5.3 
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Expression specific to neurons 
(Cahoy et al., 2008) 

neurons 
(4747) 

3.4 4.3 6.9 

NMDAR and ARC complexes 
(Kirov et al., 2012) 

nmdarc 
(80) 

1.8 -0.4 0.1 

Loss-of-function intolerant (Lek et 
al., 2016) 

pLI09 
(3488) 

4.2 3.3 6.2 

PSD-95 (Bayés et al., 2011) psd95 
(120) 

2.7 -0.2 0.5 

Bound by RBFOX 1 or 3 (Weyn-
Vanhentenryck et al., 2014) 

rbfox13 
(3445) 

5.7 1.3 4.2 

Bound by RBFOX 2 (Weyn-
Vanhentenryck et al., 2014) 

rbfox2 
(3068) 

6.4 1.0 4.1 

Synaptic (Pirooznia et al., 2012) synaptome 
(1887) 

3.9 2.2 5.4 

Escape X-inactivation (Cotton et 
al., 2013) 

x.escape 
(213) 

0.5 0.9 1.6 

X-linked intellectual disability, 
Genetic Services Laboratories of 
the University of Chicago (Gécz 
et al., 2009; Moeschler, 2008; 
Moeschler et al., 2006; Rauch et 
al., 2006) 

xlid.chicago 
(77) 

-0.1 1.8 1.4 

X-linked intellectual disability, 
Greenwood Genetic Centre 
(Moeschler et al., 2006) 

xlid.gcc 
(114) 

-0.2 1.8 1.3 

X-linked intellectual disability, 
OMIM (Hamosh et al., 2005) 

xlid.omim 
(57) 

-0.7 0.6 0.2 

X-linked intellectual disability 
(combined) 

xlid 
(122) 

-0.3 1.8 1.2 

 

 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted November 24, 2017. ; https://doi.org/10.1101/203521doi: bioRxiv preprint 

https://doi.org/10.1101/203521


Table 2 

Gene-wise results for the genes with highest gene-wise SLPs in all sets with set-wise SLP>2.8. The top ten genes are shown, providing that 
the gene-wise SLP was at least 1.3, equivalent to p<0.05. 

brain  celf4  constrained  dd  denovo.aut  denovo.id  fmrp  
DGKI 3.3 ADAMTSL1 4.3 KLHL11 3.7 GRIN2B 2.1 ADAMTSL1 4.3 ARFGEF2 2.5 FYN 3.4 
SLC6A17 3.1 HPRT1 4.0 TMEM102 2.3 PACS1 2.0 TMC4 4.0 CDC42BPB 2.2 SLC6A17 3.1 
AAK1 2.9 KLHL11 3.7 TIGD5 2.3 KCNQ3 1.8 OR10Z1 3.2 EPHB1 2.2 AAK1 2.9 
EFNB3 2.8 PLK4 3.4 HERC1 2.3 ANKRD11 1.7 VAMP2 2.4 GRIN2B 2.1 AFF3 2.8 
NDST3 2.7 DGKI 3.3 AGO3 2.2 KIF1A 1.6 FOCAD 2.4 TMPRSS12 1.8 PTK2 2.7 
GLT6D1 2.6 GMCL1 3.3 DGKZ 2.2 KCNH1 1.5 C20orf96 2.3 KCNQ3 1.8 PREX2 2.5 
TMEM174 2.5 CCDC112 3.1 SLIT1 2.2 DYNC1H1 1.3 HERC1 2.3 MBD5 1.7 ARFGEF2 2.5 
HCRTR2 2.4 SLC6A17 3.1 DNMT3A 2.1 KAT6A 1.3 AGO3 2.2 TNK2 1.7 VAMP2 2.4 
EPHA5 2.4 AAK1 2.9 KDM5C 2.1   RNF25 2.2 SETDB2 1.6 HERC1 2.3 
PACSIN1 2.3 AFF3 2.8 TFAP2A 2.1   CDC42BPB 2.2 KCNH1 1.5 PACSIN1 2.3 

 
(continued)              
mir137  neurons  pLI09  rbfox13  rbfox2  synaptome  
ADAMTSL1 4.3 ADAMTSL1 4.3 HPRT1 4.0 HPRT1 4.0 HPRT1 4.0 GLIPR2 3.6 
HPRT1 4.0 HPRT1 4.0 FYN 3.4 KLHL11 3.7 KLHL11 3.7 FYN 3.4 
GLIPR2 3.6 GMCL1 3.3 PITPNA 3.2 FYN 3.4 FYN 3.4 PITPNA 3.2 
FYN 3.4 PITPNA 3.2 SLC6A17 3.1 DGKI 3.3 DGKI 3.3 SLC6A17 3.1 
DGKI 3.3 CCDC112 3.1 CSRNP2 2.9 GMCL1 3.3 PITPNA 3.2 AAK1 2.9 
PITPNA 3.2 SLC6A17 3.1 AAK1 2.9 PITPNA 3.2 SLC6A17 3.1 PTK2 2.7 
CD302 2.9 AAK1 2.9 AFF3 2.8 SLC6A17 3.1 RABEP2 3.0 HCK 2.7 
ALG6 2.9 AFF3 2.8 PSME3 2.8 AAK1 2.9 AAK1 2.9 RPS15A 2.5 
AFF3 2.8 PSME3 2.8 PTK2 2.7 AFF3 2.8 AFF3 2.8 BLNK 2.5 
CXCL11 2.8 EFNB3 2.8 BCL6 2.7 PSME3 2.8 PSME3 2.8 ARFGEF2 2.5 
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Table 3 

Table showing all of the 1454 GO gene sets which produced set-wise SLP>3. 

GO gene set SLP 
INTRACELLULAR_SIGNALING_CASCADE 5.39 
CHROMOSOME_ORGANIZATION_AND_BIOGENESIS 4.70 
ORGAN_DEVELOPMENT 4.64 
SIGNAL_TRANSDUCTION 4.37 
ION_BINDING 4.34 
POSITIVE_REGULATION_OF_CELLULAR_PROCESS 4.22 
REGULATION_OF_CELLULAR_METABOLIC_PROCESS 4.11 
RHO_GUANYL_NUCLEOTIDE_EXCHANGE_FACTOR_ACTIVITY 4.11 
CELL_DEVELOPMENT 4.09 
CYTOPLASM 4.00 
REGULATION_OF_METABOLIC_PROCESS 3.99 
POSITIVE_REGULATION_OF_BIOLOGICAL_PROCESS 3.86 
STRUCTURE_SPECIFIC_DNA_BINDING 3.69 
PROTEIN_METABOLIC_PROCESS 3.38 
TRANSMEMBRANE_RECEPTOR_ACTIVITY 3.37 
SEXUAL_REPRODUCTION 3.34 
FEEDING_BEHAVIOR 3.22 
REGULATION_OF_PROTEIN_AMINO_ACID_PHOSPHORYLATION 3.22 
NEGATIVE_REGULATION_OF_BIOLOGICAL_PROCESS 3.22 
CELL_ACTIVATION 3.15 
INTEGRAL_TO_MEMBRANE 3.15 
REGULATION_OF_PHOSPHORYLATION 3.13 
INTRINSIC_TO_MEMBRANE 3.10 
GAMETE_GENERATION 3.10 
REGULATION_OF_DEVELOPMENTAL_PROCESS 3.09 
ESTABLISHMENT_AND_OR_MAINTENANCE_OF_CHROMATIN_ARCHITECT
URE 3.09 
MEMBRANE 3.06 
BIOPOLYMER_METABOLIC_PROCESS 3.02 
NEGATIVE_REGULATION_OF_CELLULAR_PROCESS 3.01 
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Figure 1 

QQ plots of observed versus expected gene-wise SLP using (a) only singleton variants, (b) 
non-singleton variants and (c) both. 

(a) 
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(b) 
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(c) 
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Figure 2 

QQ plot for set-wise SLPs for GO sets against the expected SLP if all sets were non-
overlapping and independent. 
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