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Abstract 

With the increase in next generation sequencing generating large amounts of genomic 

data, gene expression signatures are becoming critically important tools, poised to make a 

large impact on the diagnosis, management and prognosis for a number of diseases. 

Increasingly, it is becoming necessary to determine whether a gene expression signature 

may apply to a dataset, but no standard quality control methodology exists.  In this work, 

we introduce the first protocol, implemented in an R package sigQC, enabling a 

streamlined methodological and standardised approach for the quality control validation 

of gene signatures on independent data sets.  The emphasis in this work is in showing the 

critical quality control steps involved in the generation of a clinically and biologically 

useful, transportable gene signature, including ensuring sufficient expression, variability, 

and autocorrelation of a signature. We demonstrate the application of the protocol in this 

work, showing how the outputs created from sigQC may be used for the evaluation of 

gene signatures on large-scale gene expression data in cancer.  

 

Introduction 

Gene signatures, over the past decade have revolutionised our understanding of disease, 

pathogenesis, and clinical response (Van De Vijver et al., 2002), (Liu et al., 2007), (Byers 

et al., 2013). The application of gene signatures to the clinic has become a massive force 

driving healthcare forwards towards personalised medicine, and in doing so, has led to a 

large development effort. These gene signatures are derived by an ever-increasing arsenal 

of methodologies, spanning approaches such as supervised (Shipp et al., 2002) and 

unsupervised clustering (Li et al., 2009), seed-based approaches (Buffa et al., 2010) and 

other machine-learning techniques (Kourou et al., 2015). However, in many cases these 

signatures remain limited by narrow use cases, or display a general ability in predictive 

power not specific to any particular state of disease, with even random gene signatures 

capable of significantly separating groups of breast cancer patients with favourable and 

unfavourable outcomes (Venet et al., 2011). 

 

The pertinent application of gene signatures to a vast array of clinical data depends 

critically upon the ability of the signature to perform robustly over a wide range of 

possible confounders, noise, and inter-platform differences for gene expression profiling 

(Liberzon et al., 2015). In order to ensure that the influence of such factors is reduced, we 

propose, within this work, a battery of tests and validation criteria that, if passed, would 

ensure that these competing effects are reduced. Specifically, the R package sigQC was 

developed  to standardise and simplify the quality control metrics used to evaluate the 

applicability of a gene signature to a given dataset, summarising a series of established 

metrics (see e.g. Buffa et al., 2010 or Masiero et al., 2013) whilst deriving compact 

metagenes. To illustrate this tool in this work, the use case of sigQC in evaluating a 

published gene signature for breast cancer metastasis on clinical tumour samples with 

gene expression measured by RNA-seq and microarray is shown, in addition to a 

signature comprised of a random set of genes to highlight the differences in performance 

between a well-performing signature and a poor-performer with respect to the metrics 

produced by the sigQC tool. We show how the output of the quality control plots change 

in the presence of a high-performing signature and a relatively poorly performing 
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signature on a particular dataset, and how a signature may be tested to ensure cross-

platform applicability.  

 

Overview of the protocol 

Conceptually, this protocol is designed to ensure that gene signatures are derived with 

characteristics suitable for clinical utility, and to elicit those properties that pertain to 

broader application. During the process of derivation of a new gene signature or 

assessment of an existing one, there are many different aspects that must be accounted 

for: i) signature technical transportability, ii) signature biological generality, iii) signature 

suitability and iv) dataset suitability.  

 

To clarify further, signature transportability refers to the use of a gene signature across 

datasets produced by different technologies, such as RNA-seq vs. microarrays, which 

quantify genes differently, though they may come from the same sample or origin. The 

importance of this is underscored by the fact that over the previous decade, most gene 

signatures have been developed using DNA microarray technology, i.e. a collection of 

DNA ‘probe’ sequences attached to a solid surface, but most sequencing at present is 

done by RNA-seq. However, this is further complicated by the fact that microarrays 

themselves comprise a range of technical methodologies (e.g. spotting, in-situ synthesis) 

and may have different output characteristics (e.g. one-channel vs. two-channel 

detection) (Schulze et al., 2001). Moreover, presently, whole transcriptome sequencing 

(RNA sequencing) is increasing in popularity and decreasing in cost, providing a wealth 

of genomic data, quantified in yet a different manner, and represents the current 

trajectory forward in the technological development of new gene signatures (Wang et al., 

2009). All of this variability between technologies must be taken into account, and the 

behaviour of a gene signature should show consistency across datasets generated by these 

technologies.  

 

Secondly, given datasets generated using the same technology, a signature’s ability to 

capture a biological phenomenon in a general, robust sense in a specific context, should 

be ensured, before moving on to further generality. For instance, gene signatures derived 

in a general sense for cancer, should first encapsulate all of the heterogeneity in, for 

instance, breast cancer, before being tested on colon cancer. 

 

Lastly, in the case of multiple signatures and multiple datasets for the same phenotype or 

biological process being captured, the signature under primary consideration should be 

the most suitable for both the dataset and the level of generalizability desired. Further, it 

should be ensured that the dataset itself is applicable to the signature before proceeding 

with further analysis. Once these have been ensured, quality control via this protocol may 

proceed. 

 

There are two overarching aspects to this protocol, the first being the tests of the 

properties of the genes comprising the signature itself, and the second being the 

properties of the dataset as it pertains to the signature genes.  
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The evaluation of the genes composing the signature is primarily to evaluate whether 

signature genes are those that co-operate to give a strong, coherent signal across the 

samples, which are both expressed and varying. Furthermore, the distribution of 

expression values for signature genes should be coherent enough to be summarised into a 

robust value for comparison across samples, and these tests are described within this 

protocol. 

 

As important as the signature itself, is the dataset to which it is applied. Thus, within this 

protocol, we describe how a search for structured subcomponents of a gene signature or 

dataset may be done, to discover whether there are subsets of genes or samples that could 

benefit from subsetting as a distinct class. Furthermore, the sigQC package includes 

commands for bootstrapping, or the evaluation of a set of negative controls – random 

gene sets of the same length as the signature itself, to reveal the underlying null 

distributions of each of the metrics we consider in evaluating signature quality.  

 

Application of the method 

Here, we depict a motivating example of the protocol, as implemented through the R 

package sigQC to evaluate a published gene signature for breast cancer metastasis, and a 

random gene signature on a RNA-seq dataset from clinical breast tumour samples, 

downloaded through the Firebrowse portal as part of the Cancer Genome Atlas project 

(TCGA) (Cancer Genome Atlas Network, 2012), (Broad Institute TCGA Genome Data 

Analysis Center, 2016). The gene signature used is a set of upregulated genes in breast 

cancer metastasis, taken from (Van't Veer et al., 2002). 

 

(Un)-certainty in signature gene annotation 

Prior to the testing of a gene signature, as a pre-evaluation step, we propose ensuring 

compatibility between a gene signature and the dataset intended for use. In particular, 

because of a number of different annotation conventions for genes, compatibility between 

the genes of a signature - derived from one annotation of the genome, should be able to 

be mapped to a different annotation of the genome, without significant loss of content or 

specificity. Because such mappings are generally not bijective, it is critical to ensure that 

there is reasonable representation of all genes in a signature among the annotation used in 

a dataset of interest, as this uncertainty can detract from the functional ability of a given 

gene signature, using publically available tools such as BioMart (Durinck et al., 2005). 

 

Evaluation of signature gene expression  

A critical first step in the evaluation of the validity of a gene signature on a dataset is to 

ensure that the genes of the signature are expressed at a detectable level across the 

samples being considered. A gene consistently unexpressed within a gene signature, 

contributes little to the overall use of the signature as a classifier. Thus sigQC evaluates 

the expression of all genes in the signature, and presents the proportion of samples 

expressing each gene at supra-threshold level, as well as the proportion of all samples 

that are not recorded as NA values. The threshold for expression may be user-specified 

for each dataset, depending also on the platform used. A graphical representation of this 

in the form of a bar chart and density plot showing the proportion of samples expressing 

each gene above a particular threshold is returned.  
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Evaluation of signature gene variability 

In addition to having non-zero expression across a number of samples, signature genes 

that function well as classifiers should vary across samples. As a result, we propose an 

evaluation step involving the comparison of the coefficient of variation (a standardised 

metric of variance) among the genes of the signature, to all genes recorded. This 

functionality is provided as a visualization of mean versus standard deviation of all genes, 

and overlayed with the same scatter plot for all signature genes and their associated 

quantiles for mean and standard deviation.  

 

Co-correlation of scoring metrics 

One need for a gene signature is its ability to be summarised into a `scoring' value to 

compare across samples. Such a value should encapsulate information from the entire 

signature, but not be swayed by outliers in the signature genes, which may detract from 

its performance. To assess this, within sigQC, each gene signature score as summarised 

by the mean, median, and first principal component is taken across the samples, and 

compared. A high degree of correlation between the metrics gives confidence that the 

signature score (independent of which metric is used) is providing a reliable value 

summarising the information of the full signature.  

 

Effects of data standardisation 

A subsequent issue with the application of gene signatures is the effect of data 

standardisation, as a given signature may be applied on a set of data standardised in a 

particular way for biomarker discovery purposes, but for application purposes, the data is 

often re-standardised in a different way. To account for this, we offer that the gene 

signature score should be compared using unstandardised data and standardised data, to 

ensure that it ranks samples in a similar way in both cases. In this way, it can be ensured 

that information carried in the standardisation process will not be  lost when using 

unstandardised data (which we use in clinical application). 

 

Evaluation of signature compactness 

A compact gene signature, often referred to as ‘metagene’, is one that contains genes with 

high levels of autocorrelation among themselves. To test the level of autocorrelation 

among signature genes, comparing expression across the dataset, in the sigQC package, a 

heatmap of correlation coefficients is created, which compares the correlation of every 

gene with every other gene in the signature. Ensuring that all genes act together in a co-

ordinated manner ensures that the signature is more likely to have captured a biological 

response, and that summary scoring metrics will not have significant outlier genes 

detracting from the other genes of the signature. 

 

Searching for signature structure 

Signature structure can be thought of as an underlying set of components comprising the 

signature that tend to cluster together in terms of either co-expression, or patient 

subgroups. Structure can be evaluated using various techniques, here we use hierarchical 

clustering for its easier visual interpretability with respect to other methods.. This initial 

qualitative assessment is useful to prompt the need for further more advanced analyses of 
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the signature structure. Understanding whether these subcomponents of a signature exist 

is an important part of evaluating a gene signature, as such clusters may signal either 

biologically distinct sets of samples within the datasets considered, or may be subgroups 

of genes that carry redundant information.  

 

Comparison of multiple signatures and datasets 

The sigQC package has been designed with an extensible framework, and can be used for 

the simultaneous evaluation of multiple signatures and datasets at once. A summary plot 

produced by the package displays a host of metrics summarizing the previous steps on a 

single radar plot. This methodology facilitates comparison of various metrics of multiple 

signatures on multiple datasets at once, with a single graphic image. Using this, the 

quality of various signatures, and the reasons for differences in quality can be rapidly 

assessed over multiple datasets in a comprehensive manner. 

 

Evaluation of null distribution of gene signature quality control metrics 

Each of the metrics presented on the summary radar plot is computed for a given gene 

signature on a particular dataset, but to gain a greater understanding of the significance of 

these values for a given signature, it is critical to consider the underlying null distribution 

from which each of these statistics arise. Thus, for each dataset and gene signature 

combination, bootstrap resampling of a random gene signature of the same length as the 

given signature is computed and presented in boxplot format, for each dataset and for 

each of the fourteen metrics considered. Immediately, this gives a robust evaluation of 

the significance of the quality control metrics and how much each differs from its 

underlying null distribution.  

 

Comparison with other methods of signature quality control 

To our knowledge, no generally adopted methods of gene signature quality control exist 

in the literature, though some methods have been suggested for specific purposes. For 

example, validation of significant prognostic ability of a signature is often carried out by 

resampling random gene lists of the same length as the gene signature, and determining 

their prognostic ability (Venet et al., 2011). This resampling approach is the one adopted 

by sigQC to provide the null distribution for the metrics. Interestingly, such an analysis 

has also shown that a cutoff of p = 0.05 may be too lenient when aiming to capture 

specific biology with a gene signature, as many randomly selected gene signatures can 

also prognosticate with statistical significance (Venet et al., 2011). Consensus 

classification in the face of normalization method uncertainty has also been proposed as 

an option to robustly evaluate gene signature performance, as done in (Fox et al., 2014). 

These methods solve specific issues related to gene signature validation, but primarily 

assay the gene signature's performance as it relates to its final purpose, without 

consideration for the qualities of the signature genes themselves. 

 

Limitations 

The protocol presented through sigQC is limited by the fact that the applicability of a 

gene signature to a broader step can never be entirely determined, and so there may be 

characteristics, intrinsic to a signature or signature types, that enable it to pass all of the 

proposed quality control measures, without performing well in its intended sense. Such a 
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limitation will almost certainly occur, given the diversity of methodologies of gene 

signature generation, and to address this, we caution users of this method that it provides 

a set of conditions which are important to check, but not fully necessary or sufficient for 

the determination of gene signature applicability. Undoubtedly, because of the nature of 

gene signatures, this limitation will be present regardless of the quality control 

methodology, as there may always be extremal cases for which such a quality control 

methodology may not detect a poorly performing signature. 

 

Materials 

 
Equipment 

Hardware: 

 Personal computer, capable of running R version 3.3.0 or higher 

Software: 

 R version ≥ 3.3.0, available to install from https://www.r-project.org/ 

 sigQC package, available to download from https://github.com/FMBuffa/sigQC 

 

Equipment setup 

 

R software installation:  

 Download and install the latest version of R from https://www.r-project.org/, or 

the freely available RStudio from https://www.rstudio.com/. 

 

sigQC installation: 

 To install the sigQC package, execute the following commands in R or RStudio: 

install.packages("devtools") 

library("devtools") 

install_github("FMBuffa/sigQC", ref="rpackage") 

 

Variable Name Default value Description 

gene_sigs_list None A list of gene signature matrices, 

representing the gene signatures to be 

tested. 

mRNA_expr_matrix None A list of expression matrices, one for 

each dataset 

names_sigs NULL The names of the gene signatures (e.g. 

Hypoxia, Invasiveness), one name per 

each signature in gene_sigs_list. 

names_datasets NULL The names of the different datasets 

contained in mRNA_expr_matrix 

covariates NULL A list containing a sub-list of 

`annotations' and `colors' which contains 

the annotation matrix for the given 

dataset and the associated colours with 

which to plot in the expression heatmap. 

thresholds NULL A list of thresholds to be considered for 
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each data set, default is median of the 

data set. A gene is considered expressed 

if above the threshold, non-expressed 

otherwise. One threshold per dataset, in 

the same order as the dataset list. 

out_dir “~” A path to the directory where the 

resulting output files are written 

showResults FALSE Tells if open dialog boxes showing the 

computed results. Default is FALSE 

origin NULL Tells if datasets have come from different 

labs/experiments/machines. Is a vector of 

characters, with same character 

representing same origin. Default is 

assumption that all datasets come from 

the same source. 

doNegativeControl TRUE Logical, tells the function if negative 

controls must be computed. 

numResampling 50 Integer for the number of re-samplings 

while computing negative controls 

 

Table 1: Description of input variables to sigQC function make_all_plots(). 

 

Input formats and usage: 

The primary user-accessible function of sigQC, make_all_plots, expects a number of 

inputs, the format of each of which is defined in Table 1 as well as the package 

documentation. Further, once installed and with all data loaded into the appropriate 

variables, use of the package is accomplished with the following commands in R or 

RStudio: 

 

library("sigQC") 

make_all_plots(gene_sigs_list, mRNA_expr_matrix, names_sigs, names_datasets, 

covariates, thresholds, out_dir, showResults) 

 

Downloading of sample data and code: 

Sample data and code can be found in the sample_data sub-folder that is available for 

download from https://github.com/FMBuffa/sigQC  

 

Sample data represent a subset of publicly available mRNA expression datasets from The 

Cancer Genome Atlas (TCGA). 

 

Procedure 

 

1. Preparation of input data:  

 The input data should consist of lists of expression matrices, and should be pre-

normalised, and standardised if required. Care should be taken to ensure that 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 16, 2017. ; https://doi.org/10.1101/203729doi: bioRxiv preprint 

https://doi.org/10.1101/203729


genes of interest are present in the dataset and not reported primarily as NA 

values. 

 Additionally, the signatures to be tested must be annotated in a manner consistent 

with the input data. Furthermore, any specific expression thresholds for 

expression (other than global median) should be computed, as this is the default 

the package uses as an expression cutoff. Lastly, any additional annotation data to 

be used alongside the expression heatmaps should be identified, and loaded into 

the appropriate matrices with color descriptors as specified in the package 

documentation.  

 

2. Creation of input variables:  

 The input data must be loaded into variables in the R environment as specified 

within the package documentation. We provide a worked example of this within 

the Supplementary materials and code, which provides an example of how gene 

signatures and datasets may be loaded directly from .csv or tab-delimited .txt files 

into the necessary format of lists of matrices. 

 

3. Running of sigQC package:  

 With the input data pre-processed and in the appropriate variables, the principal 

function of the sigQC package can be run, with the following command: 

 

library("sigQC") 

make_all_plots(gene_sigs_list, mRNA_expr_matrix, names_sigs, 

names_datasets, covariates, thresholds, out_dir, showResults) 

 

 This produces, in the output directory or graphically displayed directly to the user 

if desired, a number of plots in PDF files which may be analysed as described in 

the subsequent steps. The package also creates an output file `log.log' in the 

output directory, a text file, which summarises the run, and reports any errors that 

may have occurred if they are not printed to the console. This should be consulted 

if any issues are encountered in the running of this principal function and for 

troubleshooting purposes. 

 

4. Analysis of expression:  

 From the code and data presented in the Supplementary materials, in steps 4-10 of 

this procedure, we outline the analysis done for a sample use case of evaluating 

the suitability of a gene signature on a number of datasets concurrently. We 

present the use case for the evaluation of a breast cancer metastasis signature and 

a random set of genes (random gene signature) on the TCGA breast cancer RNA-

seq dataset, to show the effects of high and low performing signatures across the 

quality control metrics. We also present the analysis of output data for the use 

case of signature transportability across microarray and RNA-seq datasets for the 

metastasis signature in Box 1.  

 First, expression of signature genes should be evaluated across samples in both 

datasets, and this is done by analysis of the plots sig_expr_*.pdf, as shown in 

Figure S1A-C. These plots describe the proportion of samples with supra-
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threshold expression of each signature gene, and the proportion of samples with 

non-NA values, identifying non-expressed signature components.  

 

5. Analysis of variability:  

 The analysis of variability is carried out by loading the file ‘sig_mean_vs_sd.pdf,' 

an example of which for the sample datasets and gene signatures is shown in 

Figure 1. These plots describe the mean and standard deviation of expression of 

all genes reported (in grey) versus all signature genes (in red), with corresponding 

dashed lines over the plots describing the 10
th

, 25
th

, 50
th

, 75
th

 and 90
th

 percentiles 

of both mean and standard deviation. This facilitates the easy identification of 

those signature genes, which are not variable or expressed among the samples, as 

well as a global evaluation of signature behaviour across samples of a dataset. 

 
Figure 1: Expression of signature gene expression and variability across datasets for 

RNA-seq breast cancer for the metastasis signature (left) and a random gene signature 

(right). 

 

6. Analysis of co-correlation of scoring metrics:  

 Loading the files called ‘sig_compare_metrics_*.pdf’ it is possible to analyse the 

co-correlation of mean, median and first principal component (PCA1) as scoring 

metrics across the samples for each signature across each dataset, as depicted in 

Figure 2 Further, also shown in the fourth row of panels of these plots in Figure 2 

is a principal components analysis (PCA) scree plot, which describes the 

proportion of the variance attributable to each principal component, which may 

reflect whether the first PCA represents a reasonable scoring summary metric for 

a particular gene signature. 
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Figure 2: Comparison of scoring metrics for a metastasis gene signature (left) and a set 

of random genes (right) in the TCGA breast cancer RNA-seq dataset. 

 

7. Analysis of data standardisation effects:  

 An analysis of data standardisation effects can be carried out by loading the 

output file called ‘sig_standardisation_comp.pdf’, an example of which is 

presented in Figure S2. This plot provides the comparison of median of gene 

signature expression on the raw data provided versus the median of the gene 

signature expression on the z-transformed (standardised to zero mean and unit 

variance) dataset, for each sample in each dataset and each gene signature under 

consideration. 

 

8. Analysis of signature compactness: 

 Loading the files produced in the output directory called ‘sig_autocor_hmaps.pdf’ 

and ‘sig_autocor_dens.pdf’ provides the plots in heatmap and kernel density 

estimate plot of the correlation of each signature genes’ expression with the 

expression of every other signature gene, providing an analysis of signature 

compactness. We present these plots for the sample data in Figure 3 where it can 

be seen that as expected, the breast cancer metastasis signature shows a high 

degree of autocorrelation generally, whereas the random gene signature does not. 

 

 In addition to the aforementioned plots produced for the analysis of 

autocorrelation, the files ‘sig_autocor_rankProd_*.pdf’ are produced when there 

is more than one dataset present for a given gene signature (not shown for this 

analysis). These plots represent the output of the BioConductor RankProduct 
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package in the evaluation of signature genes whose median autocorrelation with 

all other genes consistently ranks low with the other signature genes. This 

facilitates the process for finding genes with consistent poor autocorrelation with 

the other genes of the gene signature, particularly when refining a given signature 

for optimal performance across a number of different datasets (e.g. multiple 

clinical cohorts, or clinical data and cell line data). 

 

 
Figure 3: Autocorrelation of signature genes across datasets for a metastasis gene 

signature (top left) and a random gene signature (top right), with heatmaps represented in 

density plot form (bottom) for the TCGA breast cancer RNA-seq dataset. 

 

9. Analysis of signature structure: 

 Signature structure is evaluated by the consideration of a number of plots created 

by the sigQC package. Firstly, signature structure is sought to be evaluated by 

hierarchical clustering on the provided expression values of the signature 

elements over all samples, in conjunction with annotations for the samples, if they 

are provided. These plots are present in the output directory and are named 

‘sig_eval_struct_clustering_*.pdf’, which are clustered based on each dataset in 

turn, and run over each signature and each dataset present. An example of such a 

plot is shown in Figure 4, where the different expression profiles of the random 

gene signature and the metastasis gene signature across patients can be seen. 

 

 In addition to hierarchical clustering on patient samples and signature elements, in 

the output directory of sigQC, biclustering results can be found, which describe 

the output if biclusters of sample groups and signature elements are found (not 
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shown for this analysis). The particular details of the biclustering outputs and 

algorithm used may be found in the R Package documentation. If no biclusters are 

found, the files termed ‘sig_eval_bivariate_clustering.pdf’ show blank plots only, 

as had occurred with the sample datasets and signatures presented. 

 
 

 

Figure 4: Hierarchical clustering of signature gene expression for the metastasis 

signature (left) and the random signature (right) over the TCGA breast cancer dataset. 

 

10. Optional: Comparison of multiple signatures:  

 The file produced, entitled ‘sig_radarplot.pdf’ describes each signature applied to 

each dataset in a holistic, radar chart format. This plot evaluates the gene 

signature across a number of metrics, many of which are summary metrics for 

those in steps 4-9 of this procedure, and these are described in detail in the 

Supplementary Table S1. A sample of this plot, for the metastasis gene signature 

and the random gene signature on the TCGA breast cancer data set is shown 

Figure 5. 
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Figure 5: Radar plot showing summary of gene signature quality control metrics for a 

metastasis signature (solid line) and a random set of genes (dashed line), as calculated for 

the TCGA breast cancer RNA-seq dataset. 

 

11. Optional: Analysis of null distributions of QC metrics (Timing: several minutes-

hours): 

 The file produced, entitled boxplot_metrics.pdf, in the negative_control subfolder 

of the results output shows the distributions of each of the fourteen summary 

metrics as reported in the radar plot for each signature and dataset combination. 

These distributions are generated for the number of repeats as specified by the 

input parameter numResampling, with default set to 50. The values for the gene 

signature and dataset combination in question are shown in red overlaid with the 

other points in grey, giving a sense of significance of each of the metrics, as 

shown in Figure 6. From this figure, it can be seen that for the breast cancer 

metastasis signature on this dataset, the metrics evaluated show high significance 

for the signature genes, as compared to a random set of genes of the same length, 

whereas the same significance is not seen for the randomly chosen gene signature. 
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Figure 6: Box and scatter plots depicting the null distributions of each of the 

metrics measured on the radar plot for the metastasis signature (left) and a random 

signature (right), for N=50 resampling runs using random gene signatures of the 

same length. 

 

12. Optional: Analysis of raw data:  

 The package produces tables of raw data, in tab-delimited text format, output into 

subfolders in the output directory for ease of re-analysis by the user. In particular, 

the sigQC package produces subfolders for the table of mean expression and 

standard deviation of expression for all signature elements, tables of the mean, 

median, and first PCA of each sample, tables of the median and z-transformed 

median for each sample, autocorrelation matrices for all signature elements, tables 

of proportion of expression above threshold and proportion of NA expression for 

all signature elements, as well as the table of values plotted for each signature and 

dataset in the summary radar plot. We provide these raw data tables may then be 

reloaded into the user's analysis pipeline of choice for re-plotting or re-analysis. 

 

 

Timing 

 

The timing of SigQC functions varies, depending on the number of datasets and 

signatures analysed, from few minutes (for the examples shown here) to hours (for 

concomitant analysis of several datasets and signatures, and high number of replicate 

resampling).  

 

Troubleshooting 

Step 3: 

Issues may be experienced with input data not conforming to the format required by 

sigQC. If this occurs, the package will alert the user with an error message describing the 

nature of the discrepancy. For example, common errors may include the following: 
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 Gene signatures must be formatted as a list of matrices, of dimension k rows by 1 

column, for a signature of length k genes. Inputting a single list as a vector will 

cause an error to the program. 

 Datasets must also be formatted as lists of matrices, such that genes are the 

rownames of the dataset, and samples are organised by columns of the dataset. 

 Gene signatures and datasets must be annotated in the same way, as if the names 

of the genes of a signature are not found in a dataset, the computation will not 

continue. 

 

Anticipated results 

Here, we provide an explanation of the results generated in the example described above. 

In particular, we describe the figures produced in steps 4-11 of the above procedure. 

 

Analysis of expression and variability (Steps 4-5): 

In the case of a signature performing well on a given dataset, the genes of the signature 

will be highly expressed and highly variable, as evidenced by the plots of expression and 

variability in Figures S1 and 1. As shown in Figure 1, the red dots, corresponding to the 

genes of the signatures are enriched higher-expression and higher-variability regions of 

the plot for the metastasis signature, as compared to the random gene signature. 

 

Analysis of scoring metrics and standardisation (Steps 6-7): 

The next steps in the protocol are the evaluation of the correlation between different 

scoring metrics, and whether standardisation preserves scoring metrics’ rank within the 

dataset. In the case of a well-performing signature on a dataset, as evidenced by the case 

of the metastasis signature, as seen in Figures S2, 2, each of the scoring metrics is 

correlated with the other, as well as the median metric between standardised and un-

standardised data. This is not seen as such for the random gene signature, as might be 

expected. 

 

Analysis of autocorrelation (Step 8): 

Within a well-performing gene signature, each of the genes of the signature should be 

acting within the same way within the signature; that is, each gene should be increasing 

or decreasing in expression concordant with the others of the signature. This is quantified 

by the autocorrelation of the gene signature, as shown in Figure 3, and it can be seen that 

for a well-performing signature, the metastasis signature, there is a significant 

autocorrelation between each of the genes, which is not seen for the random gene 

signature. 

 

Analysis of signature structure (Step 9): 

For a signature expected to perform well on a full dataset, each of the genes should have 

an expression profile similar to itself across all patients; that is, there should not be 

necessarily subgroups of patients with markedly different expressions of the genes of the 

signature discordant with other genes of the signature (i.e. all genes should act in a 

similar manner to capture a biological phenomenon). This is evidenced by the lack of 

biclusters and obvious visual subclusters of patients for both signatures considered in this 

example in Figure 4. 
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Global analysis of metrics and their significance (Steps 10-11): 

In order to effectively compare signatures across a range of metrics, we designed the 

radar plot depicted in Figure 5, to quickly show, on a scaled plot, the various means of 

comparing statistical properties of gene signatures across datasets. As can be seen, over 

nearly all metrics, the metastasis gene signature outperforms the random gene signature, 

as might be expected. However, to fully appreciate the magnitude of these differences, an 

understanding of the null distribution of each of these metrics is required, which is shown 

in Figure 6, from Step 11. This shows that over nearly every metric, the well-performing 

gene signature for breast cancer metastasis is highly significant, whereas the random gene 

signature does not show significance across many of the metrics considered, thereby 

facilitating the rapid identification of a well-performing versus a poor-performing gene 

signature.   
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Box 1: Example evaluation of signature translatability cross-platform 

As an example to highlight the utility of sigQC in determining the translatability of a 

signature across different sequencing platforms, we consider here the outputs of the 

package in comparing cross-platform performance. In particular, we consider the same 

breast cancer metastasis signature [Ref: vandervelde] taken from MSigDb, on each of an 

RNA-seq dataset (TCGA), and a microarray generated dataset (GEO Series GSE3494). 

An initial step is to generate a signature annotated for each of the platforms, which is 

done through the use of BioMart, enabling the conversion of gene symbols into 

Affymetrix U133A probe IDs for use with the microarray dataset. Subsequently, running 

sigQC on each of these datasets and converted signatures individually gives the 

underlying data needed to generate the following radar plots, which can be used, in 

conjunction with the plots of negative control, to determine both the differences and the 

significance of these differences of the metrics reported by the radar plot. In this example, 

we observe that there is a high concordance between the outputs of the radar plots in both 

case, as well as high significance of many of the metrics in both cases, suggesting that 

this signature is highly applicable cross-platforms. 
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Supplementary information 

 

S1: sigQC availability 

 

The sigQC package has been made available for download from CRAN at https://cran.r-

project.org/package=sigQC, and can be cited through this publication. 
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S2: Radar plot metrics 

 

In Table 2 we provide a description of the metrics plotted on the arms of the radar plot. 

 

Metric Abbreviation Metric Description Metric Calculation 

Relative Med. SD Relative median standard 

deviation of signature 

genes as compared median 

standard deviation of all 

genes.  

Consider the standard deviation 

of all signature elements' 

expression across all samples, 

then consider the median of this 

list, α. Similarly consider the 

median of the standard deviation 

of all reported genes across all 

samples, β. Value considered is 

|α/(α + β)|, where |.| represents 

the absolute value. 

ρMed., Z-Med. Absolute correlation 

coefficient of median of 

signature genes and median 

of signature genes on z-

transformed dataset. 

Absolute value of Spearman 

correlation coefficient between 

median and z-median of 

signature elements, used as 

scoring metrics across samples. 

ρMean, PCA1 Absolute correlation 

coefficient of mean and 

first principal component 

of signature genes. 

Absolute value of Spearman 

correlation coefficient between 

mean and first principal 

component of signature elements, 

used as scoring metrics across 

samples.   

ρPCA1, Med. Absolute correlation 

coefficient of first principal 

component and median of 

signature genes. 

Absolute value of Spearman 

correlation coefficient between 

first principal component and z-

median of signature elements, 

used as scoring metrics across 

samples. 

ρMean, Med Absolute correlation 

coefficient of mean and 

median of signature genes. 

Absolute value of Spearman 

correlation coefficient between 

mean and median of signature 

elements, used as scoring metrics 

across samples. 

Autocor. Median of autocorrelation 

values for all signature 

genes. 

Median of list of all correlation 

coefficients for each signature 

element with every other 

signature element.   

Prop. Expressed Median proportion of 

samples expressing 

signature genes above 

threshold. 

Median value of list of 

proportions of samples 

expressing each signature 

element above threshold for each 

signature element. Threshold is 
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defined as median of expression 

of all genes, if not user-specified. 

Non-NA Prop Median over all samples 

expressing each element as 

non-NA.  

Median value of list of 

proportions of samples which 

have expression not recorded as 

NA, for each signature element. 

Coef. of Var. Median coefficient of 

variation of all signature 

genes, relative to the 

median coefficient of 

variation of all genes. 

Consider the coefficient of 

variation of all signature 

elements across all samples, then 

consider the median of this list, 

α. Similarly consider the median 

of the coefficient of variation of 

all reported genes across all 

samples, β. Value considered is 

|α/(α + β)|, where |.| represents 

the absolute value. 

σ ≥ 50% Proportion of signature 

genes in the top 50% of all 

varying genes. 

This is the proportion of 

signature elements that have 

coefficients of variation in the 

top 50% of all coefficients of 

variation for all genes. 

σ ≥ 25% Proportion of signature 

genes in the top 25% of all 

varying genes. 

This is the proportion of 

signature elements that have 

coefficients of variation in the 

top 25% of all coefficients of 

variation for all genes. 

σ ≥ 10% Proportion of signature 

genes in the top 10% of all 

varying genes. 

This is the proportion of 

signature elements that have 

coefficients of variation in the 

top 10% of all coefficients of 

variation for all genes. 

Skewness Relative skew of 

distribution of signature 

gene expression over all 

samples compared with 

skewness of overall 

expression distribution for 

all genes. 

Consider the skewness of the 

distribution for the mean 

expression of all signature 

elements across all samples, α. 

Similarly consider the skewness 

of the distribution for the mean 

expression of all genes across all 

samples, β. Value considered is 

|α|/(|α| + |β|), where |.| represents 

the absolute value. 

σPCA1 Proportion of gene 

signature score taken by 

median, by first principal 

component. 

This is the proportion of the 

variance of gene signature score 

that is explained by the first 

principal component of the 

expression of the signature genes 
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taken across all samples. 

Supplementary Table S1: Description of metrics defining components of summary 

radar plot. 
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S3: Pseudocode for radar plot metrics 

We define an m-dimensional array, 𝐞 =  [𝑒1, … , 𝑒𝑚] as the gene expression data relative 

to a single sample, such that 𝑒𝑘 is the expression value of gene k in the given sample. In 

this way, we may define the full dataset as the bi-dimensional matrix E=[𝐞1, . . . , 𝐞𝑛], 

where n is the number of samples and 𝑒𝑖𝑗 is the expression value of gene i in the j-th 

sample. Similarly, we denote by E=[𝐞1, . . . , 𝐞𝑚]𝑡  the same matrix, where 𝐞𝑘  is an n-

dimensional array containing the expression data of a single gene across all n samples 

and (. )𝑡 indicates the transpose of a matrix. Finally, we denote by 𝐑 = [𝐫1, . . . , 𝐫𝑛] the 

reduced gene expression matrix containing only the expression of the genes included in 

the assessed signature so that 𝐫𝑘 =  [𝑟1, … , 𝑟𝑙], where  𝑙 ≤ 𝑚. 

 

Ratio of Med. SD 

1. Compute the standard deviation (σ1) of each signature gene across all samples 

2. Denote by α the median of the standard deviations 

3. For every gene, compute the standard deviation (σ2) across all samples 

4. Denote by β the median of the standard deviations 

5. Return the absolute value of α/(α + β) 

 

Pseudocode 

𝐑 = [𝐫1, . . . , 𝐫𝑛] = [𝐫1, . . . , 𝐫𝑙]
𝑡 

𝛔1 = [σ11, . . . , σ1𝑙] = l-dim array 

𝛔2 = [σ21, . . . , σ2𝑛] = m-dim array 

for 𝑖 = 1 ∶ 𝑙 
   𝛔1(𝑖) =  𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛(𝐫𝑖) 

α = 𝑚𝑒𝑑𝑖𝑎𝑛(𝛔1) 

for 𝑗 = 1 ∶ 𝑚 

   𝛔2(𝑗) = 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛(𝐞𝑗) 

β = 𝑚𝑒𝑑𝑖𝑎𝑛(𝛔2) 

𝑟𝑒𝑡𝑢𝑟𝑛 |α/( α +  β)| 
 

Med., Z-Med. Score Cor. 

1. Compute the median of each signature gene across all samples 

2. Normalise the input matrix using the z score 

3. Compute the median of each signature gene in the normalised matrix across all 

samples 

4. Compute the Spearman correlation between the 2 median arrays 

5. Return the absolute value of the Spearman correlation coefficient 

 

Pseudocode 

𝐑 = [𝐫1, . . . , 𝐫𝑛] = [𝐫1, . . . , 𝐫𝑙]
𝑡 

𝐦𝐞𝐝, 𝐦𝐞𝐝𝒛, 𝛍, 𝛔 = l-dim arrays 

𝐙 = [𝐳1, . . . , 𝐳𝑛] = [𝐳1, . . . , 𝐳𝑙]𝑡 = normalised matrix 

for 𝑖 = 1 ∶ 𝑙 
   𝐦𝐞𝐝(𝑖) = 𝑚𝑒𝑑𝑖𝑎𝑛(𝐫𝑖) 

   𝛍(𝑖) = 𝑚𝑒𝑎𝑛(𝐫𝑖) 
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   𝛔(𝑖) = 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛(𝐫𝑖) 
 

for 𝑖 = 1 ∶ 𝑙 
   for 𝑗 = 1 ∶ 𝑛 

      𝐙(𝑖, 𝑗) = (𝑟𝑖𝑗 − 𝛍(𝑖)) /𝛔(𝑖) 

for 𝑖 = 1 ∶ 𝑙 
   𝐦𝐞𝐝𝒛(𝑖) = 𝑚𝑒𝑑𝑖𝑎𝑛(𝐳𝑖) 

𝑟ℎ𝑜 = 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝐦𝐞𝐝, 𝐦𝐞𝐝𝒛) 

𝑟𝑒𝑡𝑢𝑟𝑛 |𝑟ℎ𝑜| 
 

 

Mean, PCA1 Score Cor. 

1. Compute the mean of each signature gene across all samples 

2. Compute the first principal component (PCA1) of each signature gene across all 

samples 

3. Compute the Spearman correlation between the mean and PCA1 arrays 

4. Return the absolute value of the Spearman correlation coefficient 

 

Pseudocode 

𝐑 = [𝐫1, . . . , 𝐫𝑛] = [𝐫1, . . . , 𝐫𝑙]
𝑡 

𝛍, 𝐩𝐜𝐚𝟏 = l-dim arrays 

for 𝑖 = 1 ∶ 𝑙 
   𝛍(𝑖) = 𝑚𝑒𝑎𝑛(𝐫𝑖) 

   𝐩𝐜𝐚𝟏(𝑖) = 𝑓𝑖𝑟𝑠𝑡 𝑝𝑟𝑖𝑛𝑐𝑖𝑝𝑎𝑙 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡(𝐫𝑖) 

𝑟ℎ𝑜 = 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝛍, 𝐩𝐜𝐚𝟏) 

𝑟𝑒𝑡𝑢𝑟𝑛 |𝑟ℎ𝑜| 
 

 

PCA1, Z-Med. Score Cor. 

1. Compute the first principal component (PCA1) of each gene across all samples 

2. Normalise the input matrix using the z score 

3. Compute the median for each signature gene across all samples in the normalised 

matrix 

4. Compute the Spearman correlation between the PCA1 and median arrays 

5. Return the absolute value of the Spearman correlation coefficient 

 

Pseudocode 

𝐑 = [𝐫1, . . . , 𝐫𝑛] = [𝐫1, . . . , 𝐫𝑙]
𝑡 

𝐩𝐜𝐚𝟏, 𝐦𝐞𝐝𝒛, 𝛍, 𝛔 = l-dim arrays 

𝐙 = [𝐳1, . . . , 𝐳𝑛] = [𝐳1, . . . , 𝐳𝑙]𝑡 = normalised matrix 

for 𝑖 = 1 ∶ 𝑙 
   𝐩𝐜𝐚𝟏(𝑖) = 𝑓𝑖𝑟𝑠𝑡 𝑝𝑟𝑖𝑛𝑐𝑖𝑝𝑎𝑙 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡(𝐫𝑖) 

   𝛍(𝑖) = 𝑚𝑒𝑎𝑛(𝐫𝑖) 

   𝛔(𝑖) = 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛(𝐫𝑖) 

for 𝑖 = 1 ∶ 𝑙 
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   for 𝑗 = 1 ∶ 𝑛 

      𝐙(𝑖, 𝑗) = (𝑟𝑖𝑗 − 𝛍(𝑖)) /𝛔(𝑖) 

for 𝑖 = 1 ∶ 𝑙 
   𝐦𝐞𝐝𝒛(𝑖) = 𝑚𝑒𝑑𝑖𝑎𝑛(𝐳𝑖) 

𝑟ℎ𝑜 = 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝐩𝐜𝐚𝟏, 𝐦𝐞𝐝𝒛) 

𝑟𝑒𝑡𝑢𝑟𝑛 |𝑟ℎ𝑜| 
 

Mean, Med. Score Cor. 

1. Compute the mean of the signature genes for each sample 

2. Compute the median of the signature genes for each sample 

3. Compute the Spearman correlation of the mean and median arrays 

4. Return the absolute value of the Spearman correlation coefficient 

 

Pseudocode 

𝐑 = [𝐫1, . . . , 𝐫𝑛] 
𝛍, 𝐦𝐞𝐝 = n-dim arrays 

for 𝑗 = 1 ∶ 𝑛 

   𝛍 = 𝑚𝑒𝑎𝑛(𝐫𝑗) 

   𝐦𝐞𝐝 = 𝑚𝑒𝑑𝑖𝑎𝑛(𝐫𝑗) 

𝑟ℎ𝑜 = 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝛍, 𝐦𝐞𝐝) 

𝑟𝑒𝑡𝑢𝑟𝑛 |𝑟ℎ𝑜| 

 

Med. Autocor. 

1. Compute the autocorrelation of the reduced gene expression matrix 

2. Return the absolute value of median of all correlations coefficients 

 

Pseudocode 

𝐑 = [𝐫1, . . . , 𝐫𝑛] = [𝐫1, . . . , 𝐫𝑙]
𝑡 

𝐀 =  𝑙 × 𝑙 matrix 

for 𝑖 = 1 ∶ 𝑙 
   for 𝑗 = 1 ∶ 𝑙 

      𝐀(𝑖, 𝑗) = 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛( 𝐫𝑖, 𝐫𝑗) 

𝑟𝑒𝑡𝑢𝑟𝑛|𝑚𝑒𝑑𝑖𝑎𝑛(𝐀)| 

 

Med. Prop. Expressed 

1. Compute the median of the dataset 

2. For each gene, check if expression is > median 

3. For each gene, count the proportion over all samples 

4. Return the median over the array of proportions 

 

Pseudocode 
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E=[𝐞1, . . . , 𝐞𝑛], 𝐑 = [𝐫1, . . . , 𝐫𝑛] = [𝐫1, . . . , 𝐫𝑙]
𝑡 

prop = 𝑚-dim array 

𝑚𝑒𝑑 = 𝑚𝑒𝑑𝑖𝑎𝑛(𝐄) 

C = 𝑙 × 𝑛 zeros matrix 

for 𝑖 = 1 ∶ 𝑙 
   for 𝑗 = 1 ∶ 𝑛 

      𝑖𝑓(𝑟𝑖𝑗 > 𝑚𝑒𝑑) 

         C (𝑖, 𝑗) = 1 

for 𝑖 = 1 ∶ 𝑙 

   𝐩𝐫𝐨𝐩(𝑖) = 𝑐𝑜𝑢𝑛𝑡(𝐂(𝑖))/𝑛 

𝑟𝑒𝑡𝑢𝑟𝑛 𝑚𝑒𝑑𝑖𝑎𝑛(𝐩𝐫𝐨𝐩) 

 
Med. non-NA Prop 

1. Count the number of times each gene in the signature is expressed over all 
samples 

2. For each gene, compute the expression proportion over all samples 
3. Return the median over the array of proportions 

 
Pseudocode 

𝐑 = [𝐫1, . . . , 𝐫𝑛] = [𝐫1, . . . , 𝐫𝑙]
𝑡 

prop = 𝑚-dim array 

C = 𝑙 × 𝑛 zeros matrix 

for 𝑖 = 1 ∶ 𝑙 
   for 𝑗 = 1 ∶ 𝑛 

      𝑖𝑓(𝑟𝑖𝑗 ! = 𝑁𝐴) 

         C (𝑖, 𝑗) = 1 

for 𝑖 = 1 ∶ 𝑙 

   𝐩𝐫𝐨𝐩(𝑖) = 𝑐𝑜𝑢𝑛𝑡(𝐂(𝑖))/𝑛 

𝑟𝑒𝑡𝑢𝑟𝑛 𝑚𝑒𝑑𝑖𝑎𝑛(𝐩𝐫𝐨𝐩) 

 
Coef. of Var. Ratio 

1. Compute the standard deviation (σ) for each signature gene across all samples 

2. Compute the mean (𝜇) for each gene across all samples 

3. Compute the coefficient of variation (𝑐𝑣1 = σ/𝜇) for each signature gene across 

all samples 

4. Denote by 𝛼 the median of the coefficients of variation 

5. For each gene, compute the coefficient of variation (𝑐𝑣2) across all signature 

genes 

6. Denote by 𝛽 the median of all 𝑐𝑣2 

7. Return the absolute value of α/( α + β) 

 

Pseudocode 
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𝐄 = [𝐞1, . . . , 𝐞𝑛] = [𝐞1, . . . , 𝐞𝑚]𝑡 , 𝐑 = [𝐫1, . . . , 𝐫𝑛] = [𝐫1, . . . , 𝐫𝑙]
𝑡 

𝐜𝒗𝟏 = l-dim arrays 

𝐜𝒗𝟐 = 𝑛-dim arrays 

for 𝑖 = 1 ∶ 𝑙 
   𝐜𝒗𝟏(𝑖) = 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛(𝐫𝑖)/𝑚𝑒𝑎𝑛(𝐫𝑖) 

𝛼 = 𝑚𝑒𝑑𝑖𝑎𝑛(𝐜𝒗𝟏) 

for 𝑗 = 1 ∶ 𝑚 

   𝐜𝒗𝟐(𝑗) = 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛(𝐞𝑗)/𝑚𝑒𝑎𝑛(𝐞𝑗) 

𝛽 = 𝑚𝑒𝑑𝑖𝑎𝑛(𝐜𝒗𝟐) 

𝑟𝑒𝑡𝑢𝑟𝑛 |α/( α +  β)| 
 
Prop in top 50% var. 

1. Compute the standard deviation (σ) for each gene across all samples 

2. Compute the mean (𝜇) for each gene across all samples 

3. Compute the coefficient of variation (𝑐𝑣 = σ/𝜇) for each gene across all samples 

4. Rank the 𝑐𝑣 

5. Return the proportion of signature genes with 𝑐𝑣 in the top 50% of the rank 

 

Pseudocode 

𝐄 = [𝐞1, . . . , 𝐞𝑛] = [𝐞1, . . . , 𝐞𝑚]𝑡 

𝐜𝒗 = m-dim array 

𝐜 = 𝑙-dim zero array 

for 𝑖 = 1 ∶ 𝑚 

   𝐜𝒗(𝑖) = 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛(𝐞𝑖)/𝑚𝑒𝑎𝑛(𝐞𝑖) 

𝑞 = 𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒0.5(𝐜𝒗) 

for 𝑖 = 1 ∶ 𝑙 
   𝑖𝑓(𝐜𝒗(𝑖) ≥ 𝑞) 

      𝐜(𝑖) = 1 

𝑟𝑒𝑡𝑢𝑟𝑛 𝑐𝑜𝑢𝑛𝑡(𝐜)/𝑙 
 

Prop in top 25% var. 

1. Compute the standard deviation (σ) for each gene across all samples 

2. Compute the mean (𝜇) for each gene across all samples 

3. Compute the coefficient of variation (𝑐𝑣 = σ/𝜇) for each gene across all samples 

4. Rank the 𝑐𝑣 

5. Return the proportion of signature genes with 𝑐𝑣 in the top 25% of the rank 

 

Pseudocode 
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𝐄 = [𝐞1, . . . , 𝐞𝑛] = [𝐞1, . . . , 𝐞𝑚]𝑡 

𝐜𝒗 = m-dim array 

𝐜 = 𝑙-dim zero array 

for 𝑖 = 1 ∶ 𝑚 

   𝐜𝒗(𝑖) = 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛(𝐞𝑖)/𝑚𝑒𝑎𝑛(𝐞𝑖) 

𝑞 = 𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒0.75(𝐜𝒗) 

for 𝑖 = 1 ∶ 𝑙 
   𝑖𝑓(𝐜𝒗(𝑖) ≥ 𝑞) 

      𝐜(𝑖) = 1 

𝑟𝑒𝑡𝑢𝑟𝑛 𝑐𝑜𝑢𝑛𝑡(𝐜)/𝑙 
 

Prop in top 10% var. 

1. Compute the standard deviation (σ) for each gene across all samples 

2. Compute the mean (𝜇) for each gene across all samples 

3. Compute the coefficient of variation (𝑐𝑣 = σ/𝜇) for each gene across all samples 

4. Rank the 𝑐𝑣 

5. Return the proportion of signature genes with 𝑐𝑣 in the top 10% of the rank 

 

Pseudocode 

𝐄 = [𝐞1, . . . , 𝐞𝑛] = [𝐞1, . . . , 𝐞𝑚]𝑡 

𝐜𝒗 = m-dim array 

𝐜 = 𝑙-dim zero array 

for 𝑖 = 1 ∶ 𝑚 

   𝐜𝒗(𝑖) = 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛(𝐞𝑖)/𝑚𝑒𝑎𝑛(𝐞𝑖) 

𝑞 = 𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒0.90(𝐜𝒗) 

for 𝑖 = 1 ∶ 𝑙 
   𝑖𝑓(𝐜𝒗(𝑖) ≥ 𝑞) 

      𝐜(𝑖) = 1 

𝑟𝑒𝑡𝑢𝑟𝑛 𝑐𝑜𝑢𝑛𝑡(𝐜)/𝑙 
 

Skew Ratio 

1. Compute the skewness (α) of mean of each signature gene, across all samples 
2. Compute the skewness (β) of mean of each gene, across all samples 
3. Return |α|/(|α| + |β|) 

 

Pseudocode 

𝐄 = [𝐞1, . . . , 𝐞𝑛] = [𝐞1, . . . , 𝐞𝑚]𝑡 , 𝐑 = [𝐫1, . . . , 𝐫𝑛] = [𝐫1, . . . , 𝐫𝑙]
𝑡 

𝛍 = m-dim array 

for 𝑖 = 1 ∶ 𝑚 

      𝛍(𝑖) = 𝑚𝑒𝑎𝑛(𝐞𝑖) 

 α = 𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠[𝛍(𝐫𝑗)] 

 𝛽 = 𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠[𝛍(𝐞𝑗)] 

return |α|/( |α | + |β|) 
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Prop var by PCA1 

 

1. Compute the principal component of every signature gene across all samples 
2. Return proportion of variance explained by first principal component 

 

Pseudocode 

𝐑 = [𝐫1, . . . , 𝐫𝑛] = [𝐫1, . . . , 𝐫𝑙]
𝑡 

𝐩𝐜𝐚𝟏 = l-dim arrays 

for 𝑖 = 1 ∶ 𝑙 
   𝐩𝐜𝐚𝟏(𝑖) = 𝑓𝑖𝑟𝑠𝑡 𝑝𝑟𝑖𝑛𝑐𝑖𝑝𝑎𝑙 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡(𝐫𝑖) 
return variance_prop(pca1) 
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S4: Supplementary figures: 

 
Figure S1a-c: Expression of signature genes across the TCGA breast cancer RNA-seq 

dataset for the metastasis gene signature (top) and a random set of genes (bottom), shown 

as (a) a barplot for the proportion of samples expressing a gene above the median, (b) a 

density plot showing the same information as the barplots in (a), and (c) a plot of the 

proportion of samples showing NA expression for each of the genes of the signature. 

  

  
Figure S2: Comparison of median and z-transformed median of signature gene 

expression across the RNA-seq breast cancer dataset for the metastasis gene signature 

(left) and the random set of genes (right). 
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