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Abstract 

 The Maternal Embryonic Leucine Zipper Kinase (MELK) has been identified as a 

promising therapeutic target in multiple cancer types. MELK over-expression is associated with 

aggressive disease, and MELK has been implicated in numerous cancer-related processes, 

including chemotherapy resistance, stem cell renewal, and tumor growth. On the basis of these 

findings, a MELK inhibitor is currently being tested in several clinical trials. Here, we report that 

cancer cell lines harboring CRISPR/Cas9-induced null mutations in MELK exhibit wild-type 

growth in vitro, under environmental stress, in the presence of multiple chemotherapy agents, 

and in vivo. By combining our MELK-knockout clones with a recently-described, highly-specific 

MELK inhibitor, we further demonstrate that the acute inhibition of MELK results in no specific 

anti-proliferative phenotype. Analysis of gene expression data from cohorts of cancer patients 

identifies MELK expression as a correlate of tumor mitotic activity, explaining its association with 

poor clinical prognosis. In total, our results demonstrate the power of CRISPR/Cas9-based 

genetic approaches to investigate cancer drug targets, and call into question the rationale for 

treating patients with anti-MELK monotherapies.      
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Introduction 

Cancer cells require the expression of certain genes, called “addictions” or “genetic 

dependencies”, that encode proteins necessary for tumor growth. Silencing the expression of 

these genes or blocking the activity of the proteins that they encode can trigger cell death and 

durable tumor regression (1). Identifying and characterizing cancer dependencies is therefore a 

key goal of pre-clinical cancer research.    

The Maternal Embryonic Leucine Zipper Kinase (MELK) has been implicated as a 

cancer dependency and putative drug target in multiple cancer types, including melanoma, 

colorectal cancer, and triple-negative breast cancer (2–6). MELK is over-expressed in these 

cancers, and high expression of MELK is associated with poor patient prognosis (4, 7–10). 

Moreover, knockdown of MELK using RNA interference (RNAi) has been reported to block 

cancer cell proliferation and trigger cell cycle arrest or mitotic catastrophe (3, 4, 10–13). On the 

basis of these pre-clinical results, several companies have developed small-molecule MELK 

inhibitors, and one MELK inhibitor (OTS167) is currently being tested in multiple clinical trials 

(14).  

In contrast to these results, we recently reported that triple-negative breast cancer cells 

harboring CRISPR/Cas9-induced loss of function mutations in MELK proliferate at wild-type 

levels in vitro (15). Additionally, we demonstrated that the MELK inhibitor OTS167 remained 

effective against MELK-mutant cells, suggesting that OTS167 kills cells through an off-target 

mechanism. These results have been replicated by an independent group, who further 

demonstrated that the shRNA vectors commonly used to study MELK also kill cells in a MELK-

independent manner (16). The off-target effects of both the small-molecule MELK inhibitor and 

the MELK-targeting shRNAs provide a potential explanation for certain previous results obtained 

studying this potential drug target.    

Despite the conflicting in vitro data, MELK expression remains one of the strongest 

predictors of patient mortality in diverse cancer types (17). Additionally, MELK has been 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 16, 2017. ; https://doi.org/10.1101/203984doi: bioRxiv preprint 

https://doi.org/10.1101/203984
http://creativecommons.org/licenses/by/4.0/


	 4 

implicated in several other cancer-related processes, including cancer stem cell maintenance, 

chemotherapy resistance, anchorage-independent growth, and reactive oxygen species (ROS)-

signaling (4, 5, 13, 18–22). These processes may not be challenged by the routine in vitro 

growth assays that have been performed in MELK-knockout (MELK-KO) cells to date. Several 

of these studies were conducted using distinct RNAi constructs and small-molecule inhibitors, 

raising the possibility that they reflect true functions of this kinase. Moreover, the over-

expression of MELK has been reported to transform cells, suggesting that in addition to MELK’s 

putative role as a cancer dependency, it may also function as a driver oncogene (4).   

 While RNA interference is susceptible to off-target interactions that confound 

experimental interpretation (23, 24), CRISPR/Cas9 mutagenesis is also prone to several 

important limitations. In particular, clonal cell lines harboring Cas9-induced modifications must 

be expanded from a single cell with a mutation of interest to several million cells. This intense 

pressure may select for secondary mutations that blunt any anti-proliferative consequences of 

the original mutation (25). In a therapeutic context, the immediate inhibition of a particular target 

achieved with a small-molecule drug may induce a more severe phenotype than observed in a 

CRISPR-modified cell line subjected to evolutionary pressure over the course of days or weeks.        

To investigate the role of MELK in cancer-related processes beyond cell proliferation, 

and to assess the therapeutic potential of immediate MELK inhibition, we performed assays 

combining CRISPR-knockout cell lines with a recently-described, highly-specific MELK inhibitor 

(16). In a variety of in vitro and in vivo challenges, we found that cells lacking MELK behave 

indistinguishably from wild-type cells. Moreover, through a close analysis of gene expression 

data, we report that MELK levels strongly correlate with mitotic activity in human tumors, 

suggesting that MELK may function as an indirect proxy for aggressive growth. In total, these 

results cast doubt on the possibility that MELK-specific inhibition will serve as a useful 

monotherapy in cancer.   
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Results 

MELK over-expression fails to transform immortalized cell lines 

The over-expression of driver oncogenes allows immortalized but non-transformed cell 

lines to form colonies when grown in soft agar, a phenotype that is tightly linked with in vivo 

tumorigenicity (26–28). It has previously been reported that the over-expression of MELK was 

sufficient to induce anchorage-independent growth in several cell lines, including Rat1 

fibroblasts expressing dominant-negative p53 (p53dd) and the human mammary epithelial cell 

line MCF10A (4). We attempted to replicate these results using Rat1-p53dd and MCF10A cells, 

as well as the immortalized 3T3 mouse fibroblast cell line. To accomplish this, we stably 

transduced each cell line with a retroviral vector encoding either the mouse or the human MELK 

protein. Western blot analysis confirmed that full-length mouse or human MELK was over-

expressed in all six cell lines that we generated relative to the level of MELK in vector-

transduced control cell lines (Figure 1A,D). Additionally, as positive controls in this assay, we 

transduced each cell line with an allele of H-Ras known to function as a strong driver oncogene 

(H-RasG12V)(29), and with an allele of EGFR that weakly transforms cells (EGFRL858R) (30). We 

then assessed whether cell lines over-expressing each gene would proliferate when suspended 

in soft agar. As expected, cells that had been transduced with an empty vector exhibited 

minimal anchorage-independent growth, while cells transduced with H-RasG12V or EGFRL858R 

formed numerous colonies (Figure 1B-C and E-F). However, in multiple independent 

experiments, we failed to detect an increase in anchorage-independent growth in any of the six 

cell lines over-expressing either mouse or human MELK. We conclude that, under the 

conditions tested, the over-expression of MELK fails to transform cells.  

 

MELK is dispensable for growth in vitro and in vivo 

We previously showed that MELK was not required for cell division in two triple negative 

breast cancer cell lines, Cal51 and MDA-MB-231 (15). However, MELK has been reported to 
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support growth in several other cancer types, including colorectal cancer and melanoma (6, 10, 

20). To examine the role of MELK in other cancer types, we used CRISPR/Cas9 to generate 

multiple MELK-knockout (MELK-KO) clones in A375, a melanoma cell line, and DLD1, a 

colorectal cancer cell line (Supplemental Figure 1). As controls, we also derived clones of A375 

and DLD1 harboring guide RNAs that targeted the non-essential Rosa26 locus. MELK 

mutagenesis was verified by sequencing the sites targeted by the gRNA, and loss of the MELK 

protein was verified by western blot (Supplemental Figure 1A-C). MELK-KO melanoma and 

colorectal cancer clones grew at wild-type levels in vitro, demonstrating that MELK is 

dispensable for proliferation in these cancer types as well (Supplemental Figure 1D-E). We 

previously reported that OTS167, a putative MELK inhibitor in clinical trials, kills breast cancer 

cells in a MELK-independent manner (15). Consistent with these observations, MELK-KO and 

Rosa26 clones were equally sensitive to OTS167, verifying that this drug kills cells via an off-

target effect across cancer types (Supplemental Figure 1F).  

Many genes that are non-essential for cell division in vitro may still play crucial roles in 

cancer by supporting other processes, including stem-cell renewal, resistance to anoikis, and 

angiogenesis (31–34). We therefore subjected our MELK-KO and Rosa26 clones to various in 

vitro and in vivo assays to assess whether MELK loss impairs any cancer-related phenotypes. 

Although all MELK-KO cells grow well when seeded at high density in proliferation assays (15, 

16), plating cells at low density can challenge a cell’s colony-forming ability and replicative 

lifespan (35). To test whether MELK loss confers a defect in colony growth, MELK-KO and 

Rosa26 DLD1, A375, Cal51, and MDA-MB-231 clones were serially-diluted and allowed to grow 

at varying cell densities. Crystal violet staining of these plates revealed that the loss of MELK 

failed to impair colony growth relative to the control Rosa26 cell lines (Figure 2A). In fact, one 

MELK-KO clone (MDA-MB-231 c1) grew consistently better than either control clone in this 

assay. Significant variation in proliferative capacity has previously been described among 
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independent clones of the MDA-MB-231 cell line (36), and may arise due to heterogeneity in the 

parental population or secondary mutations acquired during cell line derivation.  

To further investigate the impact of MELK loss on anoikis and tumorigenicity, MELK-KO 

and Rosa26 cells were plated in soft agar. However, we observed no significant difference in 

anchorage-independent growth between MELK-KO cells and Rosa26 cells in every cell line 

tested (Figure 2B-C). MELK has previously been implicated in the maintenance of breast cancer 

stem cells (5, 21, 37). We therefore tested whether loss of MELK impairs mammosphere 

formation, a phenotype tightly linked with breast cancer stem cell activity (38). While we 

observed inter-clonal variability in mammosphere growth, all MELK-KO clones were capable of 

forming mammospheres, and two MELK-KO clones exhibited consistently greater 

mammosphere formation than their wild-type controls (Figure 2D-E). We conclude that MELK is 

dispensable for growth as a mammosphere.   

Finally, we sought to determine whether MELK was required for tumor formation in vivo. 

To address this, we performed flank injections into nude mice with multiple clones of Cal51 and 

MDA-MB-231 MELK-KO and Rosa26 cells. Across all clones tested, 23 of 34 injections with 

MELK-KO cells and 24 of 34 injections with Rosa26 cells resulted in detectable tumor formation, 

and no significant growth defect was observed in any MELK-KO clone (Figure 2F-G). Consistent 

with our previous assays, we observed superior growth in the MDA-MB-231 MELK-KO c1 clone, 

while MDA-MB-231 MELK-KO c2 and Rosa26 c2 grew at equivalent rates (Figure 2G). In total, 

our results demonstrate that MELK is dispensable for the proliferation of cancer cells in vitro and 

in vivo. 

 

MELK is not required for the phosphorylation or expression of previously reported 

targets 

MELK has been reported to support cancer cell proliferation by phosphorylating various 

proteins involved in splicing, translation, metabolism, and cell cycle progression (19, 39–42). In 
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particular, a recent publication reported that MELK phosphorylates eukaryotic translation 

initiation factor 4B (eIF4B), and this phosphorylation event promotes cell survival by increasing 

translation of the anti-apoptotic protein MCL1 (39). However, western blot analysis revealed 

normal levels of eIF4B phosphorylation in MELK-knockout MDA-MB-231, CAL51, and A375 

cells (Supplemental Figure 2A-C). Additionally, MELK-KO cell lines continued to express MCL1, 

the putative downstream target of eIF4B (Supplemental Figure 2 D-E). We conclude that MELK 

is not required for eIF4B phosphorylation or MCL1 translation.  

  

MELK is dispensable for cell growth under exogenous stress 

Developing tumors must survive in hypoxic and nutrient-poor conditions (43), and MELK 

has been implicated in glucose signaling and in the detection of ROS (19, 44). We therefore 

considered the possibility that MELK expression is necessary to support growth under metabolic 

or environmental stress. To generate ROS stress, we cultured cells in varying concentrations of 

H2O2, but we observed no difference in sensitivity between MELK-KO and control Rosa26 

clones (Figure 3A). MELK has been suggested to contribute to ROS signaling by 

phosphorylating ASK1 (44); however, this protein remained phosphorylated at normal levels in 

cells lacking MELK (Supplemental Figure 2F). MELK-KO clones also exhibited wild-type levels 

of growth when cultured under hypoxic, serum-deprived, or glucose-limited conditions (Figure 

3B-D). We conclude that MELK is dispensable for proliferation under common metabolic 

stresses.  

As high MELK expression is associated with poor patient prognosis, we wondered if 

MELK could promote resistance to cytotoxic chemotherapies. Indeed, it has been previously 

reported that knocking down or inhibiting MELK sensitizes cells to DNA damage (13, 18, 20, 

37). To test whether MELK has a role in chemotherapy resistance, we performed drug 

sensitivity assays using a variety of DNA-damaging or anti-mitotic agents. However, we 

observed no significant difference in viability between MELK-KO and Rosa26 cell lines treated 
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with five common chemotherapies (Figure 3E-I). In total, these results demonstrate that MELK 

is dispensable for cell survival under metabolic and cytotoxic stress.  

 

Acute inhibition of MELK fails to block proliferation 

Deriving CRISPR-knockout clones from single cells selects for a population of cells that 

are capable of surviving clonal expansion. Since our MELK-KO cell lines were generated from 

single cells, we considered the possibility that MELK plays an important role supporting 

proliferation, but the clones we generated had evolved to tolerate the loss of MELK. To assess 

this possibility, we performed an epistasis experiment combining our MELK-knockout clones 

with a recently-described, highly-specific small molecule MELK inhibitor, HTH-01-091 (16). We 

reasoned that treating Rosa26 clones with HTH-01-091 would reveal the consequences of the 

acute loss of MELK. However, if such phenotype(s) were also present in MELK-KO cell lines 

treated with HTH-01-091, then the phenotype(s) could be attributed to an off-target effect of the 

drug. 

 We first sought to identify a concentration at which HTH-01-091 inhibited MELK in our 

cells of interest. However, as described in this manuscript, we lacked a verified MELK substrate 

whose phosphorylation status could be monitored to confirm MELK inhibition. Nonetheless, it 

has been reported that a by-product of MELK inhibition is the degradation of MELK protein (13, 

16). Therefore, to determine an effective concentration of HTH-01-091, we monitored the level 

of MELK protein after drug treatment by western blot. We found that 1µM HTH-01-091 triggered 

near-complete MELK degradation in MDA-MB-231, DLD1, and Cal51 cells (Figure 4A). The loss 

of MELK was not an indirect effect of cell cycle arrest, as these cells maintained high levels of 

the mitotic marker cyclin B. This concentration was therefore used in subsequent assays.  

To test whether the acute inhibition of MELK affected clonogenicity or anchorage-

independent growth, we grew MELK-KO and Rosa26 cells on plastic or in soft agar in the 

presence of DMSO or 1µM HTH-01-091. Neither MELK-KO nor Rosa26 clones were affected by 
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HTH-01-091 treatment, verifying that MELK is dispensable for colony formation and anchorage-

independent growth in these cells (Figure 4B-C). Indeed, a drug sensitivity assay revealed that 

HTH-01-091 exhibited significant anti-proliferative effects only at concentrations above ~5µM 

(Figure 4D). This toxicity is likely a consequence of an off-target effect, as these drug 

concentrations were found to affect Rosa26 and MELK-KO cells equivalently.  

We next sought to test whether acute MELK inhibition sensitized cells to chemotherapy. 

To accomplish this, we treated MELK-KO and Rosa26 clones with various chemotherapy drugs 

in the presence of HTH-01-091. Consistent with our previous results, HTH-01-091 treatment 

failed to sensitize the Rosa26 clones to 5-florouracil or paclitaxel treatment (Figure 4E). Finally, 

we assessed the effect of HTH-01-091 treatment on eIF4B phosphorylation and MCL1 

expression, and found that MELK inhibition failed to affect either target (Supplemental Figure 

2G-H). In total, these results demonstrate that the acute loss of MELK results in no significant 

defect in cell viability, proliferation, or drug resistance, and suggest that our knockout clones 

have not acquired mutations that tolerize cells to the loss of MELK.  

 

The association between MELK expression and cancer lethality is due to its correlation 

with mitotic activity 

 Our in vitro and in vivo experiments failed to reveal any cancer-related phenotypes 

affected by either the deletion or over-expression of MELK. Yet, MELK is up-regulated in many 

cancer types (10), and high levels of MELK expression have been reported to confer a dismal 

clinical prognosis (4, 7–9). If MELK plays no overt role in cancer biology, then why would MELK 

expression be linked with death from cancer?  We note that MELK expression is cell cycle-

regulated, peaking in mitosis (4, 45), and gene signatures that capture mitotic activity have been 

found to be prognostic in multiple cancer types (17, 46, 47). We therefore considered the 

possibility that, rather than functioning as an oncogene or a cancer dependency, MELK 

expression could report cell division within a tumor. To assess the link between MELK 
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expression and cell proliferation, we analyzed gene expression data from different sets of cells 

and tissues. In normal human tissue, MELK expression was the lowest in non-proliferative 

organs, including the heart and skeletal muscle, while MELK expression was the highest in 

organs with on-going mitotic activity, including the bone marrow and testes (Figure 5A). Indeed, 

across 32 tissue types, MELK levels were highly correlated with the expression of the 

proliferation marker MKI67 (R = 0.93). Similarly, in human fibroblasts cultured until senescence, 

MELK expression decreased up to 11-fold between proliferating and arrested populations, while 

stimulating lymphocytes to divide increased MELK expression 20-fold (Figure 5B-C). These 

data suggest that MELK levels reflect mitotic activity in diverse cell types.  

 To examine the link between MELK and cell division in cancer, we compared the levels 

of MELK expression with 5 well-characterized proliferation markers: MKI67, PCNA, CCNB1, 

MCM2, and TOP2A (48). In cohorts of patients with tumor types in which MELK levels are 

associated with advanced disease, MELK expression was significantly correlated with each of 

the proliferation genes (median correlation = 0.82; Figure 5D). We then sought to determine 

whether the correlation between MELK expression and proliferation could explain the prognostic 

significance of MELK. To test this, we collected 15 breast cancer microarray datasets from 

patients with known clinical outcomes. We calculated Z scores for univariate Cox models for 

each patient cohort, and found that MELK expression was associated with poor outcome in 14 

of 15 datasets (Table S3). Similarly, a proliferation meta-gene derived by combining MKI67, 

PCNA, CCNB1, MCM2, and TOP2A was prognostic in 13 of 15 datasets (Table S3). Strikingly, 

we found that the Z scores generated by our univariate proliferation model were highly 

correlated with the Z scores generated by the univariate MELK model (Figure 5E; R = 0.78, P < 

.001), suggesting that these two models capture very similar clinical information. To confirm this, 

we constructed bivariate Cox models that considered both MELK expression and the 

proliferation meta-gene (Table S4). In the bivariate models, MELK was significantly associated 

with patient outcome in only 2 of 15 datasets, demonstrating that considering tumor cell 
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proliferation ablated its clinical utility (Figure 5E). Thus, when tumors are stratified according to 

their proliferation level, MELK expression is no longer prognostic (Figure 5F). In total, these 

results suggest that the observed pattern of MELK expression in cancer can be explained by the 

fact that MELK is up-regulated in rapidly-dividing cells.        
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Discussion 

Pre-clinical cancer research efforts apply different genetic and chemical tools (RNA 

interference, CRISPR, and small-molecule inhibitors) to a variety of artificial assays (in vitro 

proliferation, xenograft growth, etc.) in order to discover targets that will have clinical efficacy 

when inhibited in human patients. No single assay perfectly mimics the behavior of a tumor in a 

human cancer patient, and no single chemical or genetic tool exhibits absolute specificity. 

Nonetheless, we believe that by using multiple orthogonal approaches and assays, we can gain 

insight into the role that certain genes play in human malignancies. In this current manuscript, 

we report that combining CRISPR and a small-molecule inhibitor in a variety of assays failed to 

reveal a role for MELK in several cancer-related processes. These results suggest that anti-

MELK monotherapies are unlikely to be effective cancer treatments.      

Our previous work demonstrated that MELK is dispensable for the proliferation of triple-

negative breast cancer cells in vitro (15). Nonetheless, multiple cellular functions are 

dispensable for in vitro proliferation but required for tumor progression, including stem cell 

renewal, oxygen sensing, and chemotherapy resistance (31–34). Though MELK has been 

implicated in each of these processes, our results demonstrate that MELK-knockout cancer cell 

lines grow at wild-type levels in a variety of assays designed to test these pathways. We 

speculate that, as has previously been reported for one MELK inhibitor and one set of MELK-

targeting shRNA’s (16), several previous studies of MELK function may have been 

compromised by off-target activity of the constructs and inhibitors that were used.    

To assess MELK function in cancer, we combined clonal cell lines harboring null 

mutations in MELK with a specific MELK inhibitor. Of note, we observed some variability 

between clonal lines, underscoring the importance of assessing multiple independent clones in 

CRISPR experiments. To rule out the possibility that our MELK-KO clones had evolved to 

tolerate the loss of MELK, we performed “epistasis” experiments by treating these knockout 

clones with a MELK inhibitor. We reasoned that specific consequences of MELK inhibition 
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would be detectable upon drug treatment in MELK-WT but not MELK-KO clones, while non-

specific consequences of drug treatment would affect both genotypes equally. In all experiments 

conducted thus far, no phenotypes have been observed only in MELK-WT cells after HTH-01-

091 treatment, further verifying that MELK is dispensable for cancer cell growth. We suggest 

that these “epistasis” experiments can be widely applied to assess the on-target consequences 

of acutely inhibiting potential cancer drug targets.       

Initial interest in blocking MELK function in cancer stemmed from the discovery that it 

was over-expressed across cancer types (10). Further research revealed that patients whose 

tumors expressed the highest levels of MELK had the worst clinical outcomes (4, 7–9, 11). As 

we observed no role for MELK as either an oncogene or a cancer dependency, we sought to 

instead investigate whether its cell cycle-dependent expression pattern could explain its 

prognostic value. Consistent with this hypothesis, we discovered that MELK expression closely 

mirrors cell and tumor mitotic activity. As actively-growing tumors appear to up-regulate 

thousands of genes involved in cell cycle progression when compared to quiescent normal 

tissue (48), this observation may explain why MELK is commonly over-expressed in cancer. 

Moreover, rapid cell division in tumors is indicative of tissue de-differentiation and aggressive 

disease; therefore, most cell cycle-regulated genes are also associated with clinical outcome 

(17, 46, 47). We found that controlling for cell proliferation ablates the significance of MELK 

expression, suggesting that this link may explain its prognostic role in cancer.  

While many cell cycle genes are indeed suitable cancer drug targets (e.g., CDK4 and 

CDK6), other genes may be up-regulated during normal cell division but dispensable for this 

process (46). We suggest that MELK is an example of the latter. We believe that, if MELK does 

play a role in cancer, it may be detectable only in very limited circumstances, and likely in vivo. 

As MELK-knockout mice display no observable deficiencies, MELK’s function may be redundant 

with other kinases (4). Future synthetic lethal screening and additional in vivo assays may clarify 

what role, if any, MELK plays in cancer biology. 
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Materials and Methods 

Cell lines and culture conditions 

The identity of each human cell line was verified by STR profiling (University of Arizona 

Genetics Core). MDA-MB-231, Cal51, A375, and DLD1 cell lines were grown in DMEM 

supplemented with 10% FBS, 2mM glutamine, and 100 U/mL penicillin and streptomycin. Rat1 

cells were grown in DMEM supplemented with 5% FBS, 2mM glutamine, and 100 U/mL 

penicillin and streptomycin. 3T3 cells were grown in DMEM supplemented with 10% bovine calf 

serum (BCS), 2mM glutamine, and 100 U/mL penicillin and streptomycin. MCF10A cells were 

grown in Mammary Epithelial Cell Growth Medium (Lonza; Cat. No. CC-3150) supplemented 

with 5% horse serum, 100 ng/mL of cholera toxin (Sigma-Aldrich; Cat. No. C8052) and 100 

U/mL penicillin and streptomycin. All cell lines were grown in a humidified environment at 37˚C 

and 5% CO2  

 

Retroviral plasmid over-expression  

Mouse and human MELK cDNA was cloned into an MMLV vector and verified by sequencing 

(Vectorbuilder, Cyagen Corporation). Positive and negative control plasmids were acquired from 

Addgene: pBabe-Puro (Addgene; Cat. No. 1764), EGFR L858R (Addgene; Cat. No. 11012), 

and RasV12 (Addgene; Cat. No. 1768). Retrovirus was generated by transfecting plasmids into 

Plat-A cells (Cell BioLabs; Cat. No. RV-102) using the calcium-phosphate method (49). Virus 

was harvested 48-72 hours post transfection, filtered through a 0.45μm syringe and applied to 

cells with 4μg/mL polybrene. After 24 hours, the media was changed and cells were allowed to 

recover in fresh media for 2 days. Subsequently, the cells were split and the appropriate 

antibiotic was added to select for transduced cells.  
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Soft agar assays 

To assay anchorage-independent growth, all cell lines except MCF10A were suspended at a 

cell count of 10,000 cells in a 0.35% Difco Agar Noble (VWR Scientific; Cat. No. 90000-772) 

solution in a six-well plate. MCF10A cell lines were suspended at a cell count of 20,000 cells. 

The mixture was plated over a 0.5% Difco Agar Noble solution. Plates were allowed to solidify at 

room temperature for 2 hours and then placed in a 37˚C incubator overnight. 1 mL of normal 

growth media was added to each well the next day and every 3 days after (50). After 14 days, 

colony formation was quantified under 20x magnification. 

 

Stress assays  

To study the role of MELK in surviving stressful culture conditions, 30,000 MELK-KO and 

Rosa26 cells from MDA-MB-231 and DLD1 cell lines and 10,000 MELK-KO and Rosa26 cells 

from Cal51 and A375 cell lines were plated in the first column of a 24-well plate (Corning; Cat. 

No. 3526) and then five three-fold dilution were performed across the plate. For the low glucose 

conditions, low glucose DMEM (Thermo Fisher Scientific; Cat. No. 11885076) supplemented 

with 10% FBS, 2 mM glutamine, and 100 U/mL penicillin and streptomycin was added to the 

cells. For the low serum conditions, cells were cultured in DMEM supplemented with 1% FBS, 2 

mM glutamine, and 100 U/mL penicillin and streptomycin. For the hypoxic conditions, cells were 

cultured in normal media and then placed in a hypoxic incubator set at 37°C with 2% oxygen. 

After 10-14 days, cells were fixed with 100% methanol and stained with 0.5% crystal violet 

dissolved in 25% methanol.  

 

Mammosphere formation assay 

Mammosphere formation media was prepared using DMEM/F12 (Lonza; Cat. No. CC-3151) 

supplemented with 2 mM L-glutamine, 100 U/mL penicillin and streptomycin, 20 ng/mL 

recombinant human epidermal growth factor (Sigma Aldrich; Cat. No. E9644), 10 ng/mL 
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recombinant human basic fibroblast growth factor (R&D Systems; 233-FB-025) and 1x B27 

supplement (Invitrogen; Cat. No. 17504-044) (51). Cells were plated at a density of 20,000 cells 

or 30,000 cells per well for the MDA-MB-231 and Cal51 cell lines respectively in a 6-well low 

attachment plate (Corning; Cat. No. CLS3814) with 3mL of media. Fresh media were added to 

the wells every three days over the course of the assay. Mammospheres were measured four 

weeks post plating for the MDA-MB-231 cell lines and two weeks post plating for Cal51 cell 

lines. 

 

Drug sensitivity assays 

To quantify a cell line’s sensitivity to a particular drug, 10,000 A375, DLD1, or MDA-MB-231 

cells or 5,000 Cal51 cells were plated in 100µL of media in an 8 × 4 matrix on a flat-bottomed 

96-well plate (Corning; Cat. No. 3596). Cells were allowed 24 hours to attach, then fresh media 

was added to each well. The highest concentration of a drug was added onto the first row of 

cells and then six three-fold serial dilutions were performed. Cells were grown in the presence of 

the drug for 72 hours then trypsinized and counted using a MacsQuant Analyzer 10 (Milltenyi 

Biotec). HTH-01-091 was a kind gift of Hubert Huang and Nathanael Gray (Dana-Farber 

Institute). Idarubicin, Oxaliplatin, Paciltacxel and Bleomycin were obtained from Selleck 

Chemcials (Cat No. S1228, S1224, S1150, and S1214).  Fluorouracil was obtained from Sigma 

Aldrich (Cat. No. F6627-1G).  

 

Western blot analysis 

Whole cell lysates were harvested using RIPA buffer (25 mM Tris, pH 7.4, 150 mM NaCl, 1% 

Triton X 100, 0.5% sodium deoxycholate, 0.1% sodium dodecyl sulfate, protease inhibitor 

cocktail, and phosphatase inhibitor cocktail). Protein concentration was quantified using the RC 

DC Protein Assay (Bio-Rad; Cat. No. 500-0119) or the Pierce BCA Protein Assay Kit (Thermo 

Fisher Scientific; Cat. No. 23225). Equal amounts of lysate were denatured and loaded onto an 
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8% SDS-PAGE gel. The protein was transferred onto a polyvinylidene difluoride membrane 

using the Trans-Blot Turbo Transfer System (Bio-Rad). For westerns with phospho-antibodies, 

membranes were blocked in 5% BSA, while all other antibodies were blocked with 5% milk. The 

following antibodies and dilutions were used: Anti-MELK (Abcam; Cat. No. ab108529) at a 

dilution of 1:3000, Anti-elF4B (Cell Signal; 3592) at a dilution of 1:2000, Anti-ASK1 (Abcam, Cat. 

No. ab45178) at a dilution of 1:1000, Anti-cyclin B (Abcam; Cat. No. ab32053) at a dilution of 

1:10000, Anti-Phospho-ASK1 (Cell Signal; 3765) at a dilution of 1:1000, Anti-Phospho-elF4B 

(Cell Signal; Cat. No. 5399) at a dilution of 1:1000, or anti-MCL1 (Cell Signal; Cat. No. 5453) at 

a dilution of 1:2000. Blots were incubated with the primary antibody overnight at 4°C. Anti-alpha 

tubulin (Sigma-Aldrich; Cat. No. T6199) at a dilution of 1:20000 or anti-GAPDH (Santa Cruz 

Biotechnology; Cat. No. sc-365062) at a dilution of 1:20000 were used as loading controls. 

Membranes were washed at room temperature for an hour before they were incubated in 

secondary antibodies [Anti-Rabbit (Abcam; Cat. No. ab6721) at 1:50000 for anti-MELK and at 

1:20000 for all other antibodies or Anti-mouse (Bio-Rad; Cat. No. 1706516) at 1:50000 for anti-

tubulin and anti-GAPDH)] for an hour.  

 

Xenograft growth assays 

Nude mice were obtained from The Jackson Laboratory (Cat. No. 002019). To perform the 

xenograft injections, Cal51 and MDA-MB-231 MELK-KO and Rosa26 clones were harvested 

and resuspended at a concentration of 107 cells/mL in 1X cold PBS. The cell suspension was 

then mixed 1:1 with growth factor reduced-matrigel (Corning; Cat. No. 47743-720). Each mouse 

was injected subcutaneously in the left and right flanks with 100µL of the cell suspension, 

containing 5x106 cells. Tumors were monitored by visual inspection routinely after injection. 

Once a tumor was visible, mice were measured every three days by caliper in duplicate. Tumor 

volume was calculated using the formula V = ½ (longer axis)(shorter axis)2. All mouse protocols 

were approved by the CSHL Institutional Animal Care and Use Committee.    

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 16, 2017. ; https://doi.org/10.1101/203984doi: bioRxiv preprint 

https://doi.org/10.1101/203984
http://creativecommons.org/licenses/by/4.0/


	 20 

 

CRISPR plasmid construction and virus generation 

Guide RNAs were previously described in Lin et al. (15). In short, oligonucleotides were cloned 

into the LRG 2.1 vector [a gift from Jun-Wei Shi (University of Pennsylvania) and Chris Vakoc 

(Cold Spring Harbor Laboratory)] using a BsmBI digestion (52). To produce virus, HEK293T 

cells were transfected using the calcium-phosphate method. Supernatant was harvested 48 to 

72 hours post-transfection, filtered through a 0.45μm syringe, and then applied to cells with 

4μg/mL polybrene (49). Guide RNAs in each clone are listed in Table S1.  

 

Analysis of CRISPR-mediated mutagenesis 

Single cells isolated via fluorescence-activated cell sorting (FACS) were grown into clonal 

populations. Genomic DNA was extracted from these populations with the QIAmp DNA Mini kit 

(Qiagen; Cat. No. 51304). The cut site regions targeted by the guide RNAs were amplified using 

the primers listed in Table S2. PCR products were then sequenced with the forward and reverse 

primer at the Cold Spring Harbor Laboratory sequencing facility. 

 
 

Analysis of published gene expression data 

Data from normal human tissue was acquired from (53). Data from senescent fibroblasts was 

acquired from (54). Data from stimulated lymphocytes was acquired from (55). Cancer patient 

cohorts and probeset definitions were downloaded from the Gene Expression Omnibus as 

described in Table S3 (56). Probesets annotated to the same gene were collapsed by 

averaging. Data were cleaned and processed using python’s pandas library, and cox 

proportional hazard models were constructed using the survival library in R and as described in 

(17). Several additional python packages were used for clarity, conciseness, and correctness 
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including numpy, getopt and rpy2. Source code is available on github (https://github.com/joan-

smith/survival-analysis-scripts).  
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Figure Legends 

Figure 1. MELK over-expression fails to confer anchorage-independent growth.  

(A) Western blot analysis of mouse MELK over-expression in 3T3, Rat1-p53dd, and MCF10a 

cell lines.  

(B) Quantification of colony formation of control and mouse MELK over-expressing cell lines in 

soft agar. For each assay, colonies were counted in at least 15 fields under a 10x objective. 

Boxes represent the 25th, 50th, and 75th percentiles of colonies per field, while the whiskers 

represent the 10th and 90th percentiles. 

(C) Representative images of the indicated cell lines grown in soft agar.  

(D) Western blot analysis of human MELK over-expression in 3T3, Rat1-p53dd, and MCF10a 

cell lines. 

(E) Quantification of colony formation of control and human MELK over-expressing cell lines in 

soft agar. For each assay, colonies were counted in at least 15 fields under a 10x objective. 

Boxes represent the 25th, 50th, and 75th percentiles of colonies per field, while the whiskers 

represent the 10th and 90th percentiles. 

(F) Representative images of the indicated cell lines grown in soft agar. 

 

Figure 2. MELK is dispensable for growth in vitro and in vivo 

(A) Crystal violet staining of serial dilution plates of control and MELK knockout clones from 

DLD1 (colorectal cancer), A375 (melanoma), Cal51 (breast cancer) and MDA-MB-231 (breast 

cancer) cell lines.  

(B) Representative images of colonies of A375 control and MELK knockout clones grown in soft 

agar. 

(C) Quantification of colony formation in A375, DLD1, and MDA-MB-231 control and MELK 

knockout clones. For each assay, colonies were counted in at least 15 fields under a 10x 
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objective. Boxes represent the 25th, 50th, and 75th percentiles of colonies per field, while the 

whiskers represent the 10th and 90th percentiles. 

(D-E) Representative images and quantification of mammosphere growth in MDA-MB-231 or 

Cal51 control and MELK knockout clones. For each assay, mammospheres were counted in at 

least 6 fields under a 10x objective. Boxes represent the 25th, 50th, and 75th percentiles of 

colonies per field, while the whiskers represent the 10th and 90th percentiles. 

(F-G) Representative images and quantification of xenograft growth in nude mice. Cal51 and 

MDA-MB-231 control and MELK knockout clones were injected subcutaneously into nude mice, 

and then tumor growth was measured every three days. Arrows indicate the location of the 

tumor. Error bars in the volume measurements indicate the standard error.  

 

Figure 3. MELK is not required for growth under stress.  

(A) Dose-response curves of Cal51 and MDA-MB-231 Rosa26 and MELK-KO clones grown in 

the presence of H2O2. 

(B-D) Crystal violet staining of Cal51 and MDA-MB-231 Rosa26 and MELK-KO clones grown as 

serial dilutions under the indicated stressful culture condition. 

(E-I) Dose-response curves of Cal51 and MDA-MB-231 Rosa26 and MELK-KO clones grown in 

the presence of the indicated chemotherapy drug.  

 

Figure 4. Acute inhibition of MELK fails to block growth. 

(A) Western blot analysis of MELK expression levels during treatment with 1µM HTH-01-091 in 

the MDA-MB-231, DLD1, and Cal51 Rosa26 clonal cell lines. 

(B) Crystal violet staining of Cal51 and MDA-MB-231 Rosa26 and MELK-KO cell lines grown as 

serial dilutions in the presence of DMSO or 1µM HTH-01-091. 

(C) Quantification and representative images of colony formation of MDA-MB-231 and DLD1 

Rosa26 and MELK-KO clones in soft agar in the presence of DMSO or 1µM HTH-01-091. 
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(D) Dose-response curves of Cal51 and MDA-MB-231 Rosa26 and MELK-KO clones grown in 

the presence of HTH-01-091. 

(E) Dose-response curves of Cal51 and MDA-MB-231 Rosa26 and MELK-KO clones grown in 

the presence of 1µm HTH-01-091 and the indicated chemotherapy drug.  

 

Figure 5. MELK expression correlates with proliferation markers in vitro, in normal 

tissue, and in cancer.  

(A) A heatmap of the expression of either MKI67 or MELK in normal tissue sorted according to 

MKI67 expression (53).  

(B) The expression level of either MKI67 or MELK is displayed in five different primary human 

fibroblast lines at either low passage (proliferating) or high passage (senescence) (54). 

(C) The expression level of either MKI67 or MELK is displayed in CD4+ lymphocytes resting or 

after stimulation with a-CD3/a-CD28 beads (55). 

(D) The expression level of MELK is plotted against the expression of five common proliferation 

markers in cohorts of patients with breast cancer, glioma, or melanoma (57–59). Black lines 

represent linear regressions plotted against the data. 

(E) Univariate (left) or bivariate (right) Cox proportional hazards models were calculated for the 

15 breast cancer cohorts listed in Table S3 and S4. For each cohort, the expression of either 

MELK or the average expression of CCNB1, MCM2, MKI67, PCNA, and TOP2A in each tumor 

was regressed against patient outcome. Dotted lines represent Z scores of 1.96, corresponding 

to a p-value of 0.05. Black lines represent linear regressions plotted against the data.  

(F) Kaplan-Meier curves displaying disease-specific survival in one breast cancer cohort (60). 

Patients were split into two populations based on the average expression of either MELK or the 

five-gene proliferation meta-gene.     
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Supplemental Figure 1. Generation and characterization of MELK-KO clones in A375 and 

DLD1. 

(A) Sanger sequencing of MELK knockout clones in the DLD1 (colorectal cancer) and A375 

(melanoma) cell lines. Highlighted regions indicate bases recognized by the gRNA.  

(B-C) Western blot analysis of DLD1 and A375 MELK-KO clones.  

(D-E) Proliferation and doubling time analysis of DLD1 and A375 control and MELK-KO clones. 

(F) Dose-response curves of the putative MELK inhibitor OTS167 in A375 and DLD1 control 

and MELK knockout clones. 

 

Supplemental Figure 2. MELK is not required for the phosphorylation or expression of 

previously-reported targets.  

(A-C) Western blot analysis of MDA-MB-231, Cal51, or A375 with antibodies against phospho-

EIF4B and total EIF4B.  

(D-E) Western blot analysis of Cal51 or A375 with antibodies against MCL1. 

(F) Western blot analysis of MDA-MB-231 with antibodies against phospho-ASK1 and total 

ASK1. 

(G-H)  Western blot analysis of MDA-MD-231 or Cal51 treated with 1µM of HTH-01-091 with 

antibodies against MCL1, phospho-EIF4B and total EIF4B. 
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Figure 4
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Figure 5
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