New Results
A machine learning approach to predicting short-term mortality risk in patients starting chemotherapy
Aymen A. Elfiky, Maximilian J. Pany, Ravi B. Parikh, Ziad Obermeyer
doi: https://doi.org/10.1101/204081
Aymen A. Elfiky
1Dana-Farber Cancer Institute, Boston, MA
2Harvard Medical School, Boston, MA
3Brigham and Women’s Hospital, Boston, MA
Maximilian J. Pany
2Harvard Medical School, Boston, MA
3Brigham and Women’s Hospital, Boston, MA
Ravi B. Parikh
2Harvard Medical School, Boston, MA
3Brigham and Women’s Hospital, Boston, MA
Ziad Obermeyer
2Harvard Medical School, Boston, MA
3Brigham and Women’s Hospital, Boston, MA
4Ariadne Labs, Brigham and Women’s Hospital and Harvard School of Public Health, Boston, MA

Article usage
Posted October 19, 2017.
A machine learning approach to predicting short-term mortality risk in patients starting chemotherapy
Aymen A. Elfiky, Maximilian J. Pany, Ravi B. Parikh, Ziad Obermeyer
bioRxiv 204081; doi: https://doi.org/10.1101/204081
Subject Area
Subject Areas
- Biochemistry (7782)
- Bioengineering (5673)
- Bioinformatics (21257)
- Biophysics (10565)
- Cancer Biology (8165)
- Cell Biology (11918)
- Clinical Trials (138)
- Developmental Biology (6748)
- Ecology (10392)
- Epidemiology (2065)
- Evolutionary Biology (13847)
- Genetics (9699)
- Genomics (13061)
- Immunology (8133)
- Microbiology (19975)
- Molecular Biology (7840)
- Neuroscience (43004)
- Paleontology (318)
- Pathology (1276)
- Pharmacology and Toxicology (2257)
- Physiology (3350)
- Plant Biology (7218)
- Synthetic Biology (2000)
- Systems Biology (5529)
- Zoology (1126)