






Figure 15: Reverse Correlation for all rats Reverse Correlation curves for each rat (black), as well
as the best fit exponential discounting function (blue).
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Figure 16: Reverse Correlation for all rats Reverse Correlation curves for each rat (black), as well
as the best fit exponential discounting function (blue).
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Optimal inference details556

Derivation of optimal inference557

Here we provide more detail on the derivation from equation (2) to equation (3). This derivation was558

developed by Veliz-Cuba et al. 2016, see equations 3.2 and 3.3. However, we do not approximate the559

evidence term into its first two moments, instead evaluating the evidence term. For this reason we560

report the same derivation but halting at the intermediate step not shown in Veliz-Cuba et al. 2016.561

562

Beginning with the evidence ratio, equation (2) in the present study, and equation 3.2 in Veliz-Cuba

et al. 2016.

Rt =
P (S1|ε1...t)
P (S2|ε1...t)

=
P (εt|S1)

P (εt|S2)

(
(1− h∆t)Rt−1 + h∆t

(h∆t)Rt−1 + 1− h∆t

)
. (27)

Dividing each side by Rt−1

Rt
Rt−1

=
P (εt|S1)

P (εt|S2)

(
(1− h∆t)Rt−1 + h∆t

(h∆t)Rt−1 + 1− h∆t

)
1

Rt−i
. (28)

Now, define ât = log (Rt), and take the logarithm of both sides:

ât − ât−1 = log

(
P (εt|S1)

P (εt|S2)

)
+ log

(
(1− h∆t) + h∆te−ât−1

(h∆t) eât−1 + 1− h∆t

)
, (29)

∆ât = log

(
P (εt|S1)

P (εt|S2)

)
+ log

(
(1− h∆t) + h∆te−ât−1

(1− h∆t) + h∆teât−1

)
, (30)

∆ât = log

(
P (εt|S1)

P (εt|S2)

)
+ log

(
1 + h∆t

(
te−ât−1 − 1

))
− log

(
1 + h∆t

(
eât−1 − 1

))
(31)

Using the approximation log (1 + a) ≈ a, which is valid when |a| << 1. Here, h∆t << 1.

∆ât = log

(
P (εt|S1)

P (εt|S2)

)
+ h∆t

(
e−ât−1 − 1

)
− h∆t

(
eât−1 − 1

)
, (32)

∆ât = log

(
P (εt|S1)

P (εt|S2)

)
+ h∆t

(
e−ât−1 − eât−1

)
. (33)

Using sinh(x) = 1
2 (ex − e−x):

∆ât = log

(
P (εt|S1)

P (εt|S2)

)
− 2h∆t sinh (ât−1) . (34)
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Here, we again use ∆t << 1 to justify replacing ât−1 with ât on the right hand side. Evaluating the

evidence term as derived in the main text, and rescaling κ:

∆at = δt,R − δt,L −
2h

κ
∆t sinh (κat) . (35)

Taking the limit of ∆t→ 0:

dat = δt,R − δt,L −
2h

κ
sinh (κat) dt. (36)

Here we are making the assumption that the action of the auditory clicks happen instantaneously with563

respect to the accumulation equation.564

565

Decreasing click reliability lengthens integration timescales566

We found that plotting the evidence discounting term with less reliable clicks (smaller κ) resulted in a567

flatter curve, which corresponds to a longer integration timescale. To see this relationship more clearly568

we can expand the discounting function in a taylor series around the origin:569

f(x) ≈ f(a) +
f ′(a)

1!
(x− a) +

f ′′(a)

2!
(x− a)2 +

f ′′′(a)

3!
(x− a)3 + . . . (37)

2h

κ
sinh (κx) ≈ 2h

κ
sinh (0) +

2h

κ

κ

1!
cosh (κ · 0) (x− 0) +

2h

κ

κ2

2!
sinh (κ · 0) (x− 0)2 (38)

The even terms drop out, and we collect the odd terms:570

2h

κ
sinh (κx) ≈ 2hx+

2hκ2

3!
x3 +

2hκ4

5!
x5 + . . . (39)

We find that κ only appears with even power exponents in odd powers of x. Increasing κ will increase571

the strength of the discounting function. Increasing the strength of the discounting function leads to572

shorter integration timescales. In short, increasing κ shortens the integration timescale. Decreasing κ573

lengthens the integration timescale.574
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Sensory noise parameterization details575

The main analysis in the text derives optimal inference given sensory noise that is discrete, clicks are576

either localized on one side or the other. It is easy to imagine many other forms of sensory noise,577

including Gaussian fluctuations in the click amplitude, or simply missing clicks. Here we demonstrate578

by evaluating the log-evidence term that decreases in click reliability are primarily driven by click579

mislocalization, not fluctuations in the perceived amplitude of the clicks, or missed clicks. Finally, we580

provide a general argument for why only click mislocalization matters581

582

Click reliability with Gaussian sensory noise583

Consider Gaussian noise where the clicks played from the right/left are perceived with amplitude given584

by N (±µ, σ2). Here we interpret clicks with positive amplitude as right clicks, and negative amplitude585

as left clicks. Note that if σ2 is sufficiently large, clicks will be mislocalized.586

To compute the reliability of an individual click with a specific amplitude fluctuation (a), we need587

to compute the probability of a click generated on the right being observed with amplitude a: Pr(a), as588

well as the probability of a click generated on the left being observed with amplitude a: Pl(a). Formally589

we need to integrate the Gaussian probability density function over a small window centered at a.590

Pr(a) =

a+ε∫
a−ε

1√
2πσ2

e−
(µ−s)2

2σ2 ds (40)

Pl(a) =

a+ε∫
a−ε

1√
2πσ2

e−
(−µ−s)2

2σ2 ds (41)

κ (r1, r2, Pr, Pl) = log
(r1∆t)Pr(1− r2∆t) + (1− r1∆t)(r2∆t)Pl
(r2∆t)Pr(1− r1∆t) + (1− r2∆t)(r1∆t)Pl

. (42)

This expression for κ seems hard to interpret, but notice what happens if Pl = 0.

κ (r1, r2, Pr, 0) = log
(r1∆t)(1− r2∆t)
(r2∆t)(1− r1∆t)

= κ(r1, r2). (43)

In this case, Pr drops out entirely, and we get the same value of κ as the no-noise case. This demonstrates591

that click mislocalization is necessary for a decrease in click reliability.592

Next, we will compare how the Gaussian click reliability scales with the rate of mislocalization. We593

generated a dataset of trials where each click had an amplitude drawn from a Gaussian distribution. We594

asked what was the accuracy of the nonlinear inference using the Gaussian click reliability derived above,595

and what is the discounting rate of the best linear discounting agent? We refer to this as “quenched596
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Figure 17: Three Interpretations of Gaussian noise Numerically optimized discounting rates
for different noise amplitudes. (Black dots) Discrete noise, same points as Figure 2. (Grey dots)
unquenched Gaussian noise of the form in equation (45). The unqueched fluctuations favor a larger
discounting rate.

Gaussian noise,” the meaning of quenched is explained below. We then considered a second dataset597

where the Gaussian amplitudes were thresholded to either be ±1 reflecting whether the amplitude was598

above or below 0. We refer to this as “discrete noise.” We compute the click mislocalization probability599

for corresponding to each Gaussian variance σ2 by:600

〈n(µ, σ2)〉 = 1
2

(
µ+ erf

(
1√
2σ2
s

))
(44)

Figure 17 shows the results of the comparison. The discrete noise has a slight decrease in accuracy,601

and a slightly smaller discounting rate. The difference is due to clicks that weakly change sign. The602

discrete noise doesn’t distinguish between small and large amplitude clicks, where the quenched Gaus-603

sian noise does. Importantly, in the noise regime we expect the rats, there is no difference between604

these interpretations of sensory noise.605

606

Unquenched Gaussian noise in the quantitative model607

Gaussian noise subjects the clicks to large amplitude fluctuations in how they are perceived. Our608

quantitative model handles these fluctuations slightly differently from the normative theory outlined609

in the section above. First, observe that in the optimal inference theory, the evidence reliability term610

quenches large amplitude fluctuations. Following the derivation in the section above, κ (r1, r2, Pr, Pl)611

is bounded between ±κ (r1, r2), so the evidence added to the accumulation variable after each click is612

bounded (“quenched”) and not subjected to large amplitude fluctuations.613
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Second, we asked whether the presence of large amplitude fluctuations of click amplitudes if they are614

not quenched, would cause a linear approximation to favor a stronger evidence discounting in order to615

damper the fluctuations. Specifically, we asked whether an evidence discounting agent with unquenched616

Gaussian noise:617

da = (δR,t − δL,t)N (1, σ2)− λadt, (45)

would maximize accuracy with a larger λ than the same click mislocalization strength implemented as618

quenched noise in the normative theory. Quenched noise as properly implemented in the normative619

theory would look like:620

da = (δR,t − δL,t)κ
(
r1, r2,N (1, σ2)

)
− λadt. (46)

Figure 17 shows a comparison between quenched and unquenched Gaussian noise. We find no differ-621

ence between these interpretations. In panel B, the accuracy of the unquenched Gaussian noise is from622

the best linear discounting agent, because we do not have a normative theory for unquenched noise623

(precisely what the simulation was asking to compare).624

625

Click reliability with missed clicks626

An alternative form of sensory noise might parameterize the probability that a subject just fails to627

hear a click at all. Using this framework, we show that missed clicks doesn’t change the click reliability628

function. Assume a click that is generated is not detected at all with probability m. Then, the click629

reliability of a click on the right can be computed as:630

κ(r1, r2,m) = log

(
r1(1−m)r2m+ r1(1−m)(1− r2)
r2(1−m)r1m+ r2(1−m)(1− r1)

)
(47)

We can interpret this expression as the probability of having a click be generated on one side and not631

missed and a click generated on the other side and missed, or the probability of a click being generated632

on one side and not being missed and no click is generated on the other side. Given that ∆t << 1, we633

can remove second order terms in ∆t:634

κ(r1, r2,m) = log

(
r1(1−m)

r2(1−m)

)
= log

(
r1
r2

)
(48)

We find the click reliability is independent of the probability of missing a click, m.635
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A general argument for click mislocalization636

In the previous sections we demonstrated that in the case of missed clicks, or gaussian clicks, mislocal-637

ization is necessary for decreasing click reliability. Here we provide a general argument for why that is638

true under any form of sensory noise. The auditory evidence takes on two possible values S = {+1,−1}.639

Let y be the value of each auditory stimuli after being noisily encoded by the sensory transduction pro-640

cess (y = f(S)). If f() maps left and right clicks separately into non-overlapping distributions of click641

amplitudes, then an ideal observer can bin y into groups y < 0 and y > 0, and perfectly recover the642

original signal S. If f() maps left and right clicks into overlapping distributions, then an observer can-643

not bin y to perfectly recover the original signal. If the observer uses the same binary binning scheme644

as before, then the error rate in the recovered signal will be equal to the mislocalization rate. Notice645

that an observer with perfect knowledge of the distribution of f() can do slightly better by using a646

different binning scheme. If the observer recognizes that clicks in the domain where the left and right647

distributions overlap are less trustworthy, then the observer can use multiple bins to discount specifi-648

cally those clicks near 0. The Gaussian reliability function above κ(r1, r2, Pr, Pl) can be considered an649

observer with an infinite number of bins. As seen in figure 17, this strategy slightly improves accuracy650

above the two-binning strategy. We thus conclude that click mislocalization is the source of decreasing651

click reliability from sensory noise.652

653
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Psychophysical Reverse Correlation details654

Here we present two control analyses on our reverse correlation method. First, we show that our method655

is not biased by the presence of a lapse rate, unlike logistic regression. Second, we rule out degenerate656

strategies like deciding based on only the last click.657

0% Lapse Rate
1% Lapse Rate
5% Lapse Rate
10% Lapse Rate
20% Lapse Rate

Logistic Regression Reverse Correlation

0% Lapse Rate
10% Lapse Rate

Figure 18: Reverse Correlation timescales are unaffected by lapse rates. Lapse rates are
defined as the percentage of trials where the subject makes a random response. (A) Logistic regression
is strongly biased by the presence of a lapse rate. (B) Psychophysical reverse correlation methods used
in this study are not biased.
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Are the rats really integrating? Ruling out last click strategies658

One possible concern is that the rats might be relying on degenerate strategies like choosing based659

on the last click they heard. Or that the rat’s integration timescale is so short, that their behavior660

shouldn’t really be considering integration. Figure 19A shows a quasi-fixed point analysis of the optimal661

accumulation equation given a noise level. Assuming the environment stays in one state for a long662

time, we then replace the evidence term with the expected rate of clicks, and solve for the steady state663

accumulation value. We can see that for all noise levels, the fixed point lies above 1 click, so the optimal664

behavior necessarily involves integrating clicks. For the average rat noise level, we see integration of665

about 5 clicks.666

Figure 19B shows the recovered discounting rate from the reverse correlation method against a667

simulated discounting agents, similar to Figure 3. Here, we include much stronger discounting agents,668

and find the recovered discounting rate asymptotes at just under 36 Hz, which is the expected total669

click rate(r1− r2 ≈ 36). The last click strategy could be considered a discounting agent with an infinite670

discounting rate, and would be recovered in our analysis as a discounting rate of about 36. We find our671

rats are well away from this limit. Thus we confidently rule out a last click strategy.672

673
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Figure 19: Ruling out last click strategies. (A) Quasi fixed points derived from the expected click
rate and evidence discounting functions, assuming a fixed environmental state. For all noise levels, the
fixed point is greater than 1 click. (B) Integration timescales measured from reverse correlation curves.
At large discounting rates, the timescale saturates reflecting the timescale of click generation.
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Model details674
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Figure 20: Best fitting model parameters on static and dynamic tasks. The best fitting
parameters and their standard errors are shown for each rat in the current study, compared to each rat
from Brunton et al. 2013. Each parameter plot has the rats sorted independently by parameter value,
rows across panels do not indicate the same rat.
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Figure 21: Model Residual error against time The model fits short and long trials equally well.
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Figure 22: Model Residual error against time The model fits short and long trials equally well.
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Figure 23: Rats adjust their integration timescales quickly to new environments Evidence
discounting rates estimated in blocks of 4 sessions for each rat in figure 6D. Session 1 is the first session
in the 0Hz environment. Each rat is then moved back to 0.5 Hz. Dashed lines show the evidence
discounting rates estimated over all sessions of the same hazard rate. Variability across blocks of
session is due to low trial count.
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