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Abstract

We present physico-chemical based model grounded in population genetics. Our model predicts the stationary

probability of observing an amino acid residue at a given site. Its predictions are based on the physico-chemical

properties of the inferred optimal residue at that site and the sensitivity of the protein’s functionality to

deviation from the physico-chemical optimum at that site. We contextualize our physico-chemical model

by comparing our model fit and parameters it to the more general, but less biologically meaningful entropy

based metric: site sensitivity or 1/E. We show mathematically that our physico-chemical model is a more

restricted form of the entropy model and how 1/E is proportional to the log-likelihood of a parameter-wise

’saturated’ model. Next, we fit both our physico-chemical and entropy models to sequences for subtype C’s

Gag poly-protein in the LANL HIV database. Comparing our model’s site sensitivity parameters G′ to 1/E

we find they are highly correlated. We also compare the ability of G′, 1/E, and other indirect measures

of HIV fitness to empirical in vitro and in vivo measures. We find G′ does a slightly better job predicting

empirical fitness measures of in vivo viral escape time and in vitro spreading rates. While our predictive

gain is modest, our model can be modified to test more complex or alternative biological hypotheses. More

generally, because of its explicit biological formulation, our model can be easily extended to test for stabilizing

vs. diversifying selection. We conjecture that our model could also be extended include epistasis in a more

realistic manner than Ising models, while requiring many fewer parameters than Potts models.
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Introduction 1

HIV’s protein sequence has been described as having a great deal of ‘genetic plasticity’ due to the fact that 2

amino acid substitutions at many different sites appear to have little or no consistent effect on HIV fitness 3

(Lemey et al., 2006; Salemi, 2013; Cuevas et al., 2015; Rihn et al., 2013). Such genetic plasticity allows HIV 4

populations to evade or ‘escape’ the patient’s immune response by simply evolving to a new location in 5

epitope space. HIV’s remarkable ability to escape the host’s immune response has impeded efforts to create 6

an effective vaccine (Goulder and Watkins, 2004; Autran et al., 2008; Johnston and Fauci, 2008). 7

In response, researchers have tried to identify amino acid sites under strong and consistent stabilizing 8

selection (Ferguson et al., 2013; Liu et al., 2013; Barton et al., 2016a), believing them to be promising 9

vaccine targets (Rolland et al., 2013). In order to identify these sites, researchers have attempted to estimate 10

HIV’s fitness landscape (Deforche et al., 2008; Seifert et al., 2015; Kouyos et al., 2012; Hinkley et al., 2011; 11

Shekhar et al., 2013; Ferguson et al., 2013; Mann et al., 2014; Lorenzo-Redondo et al., 2014; Moradigaravand 12

et al., 2014; Barton et al., 2016a). Since first introduced by Wright (1932), fitness landscapes have become a 13

conceptual cornerstone within the field of evolutionary biology (e.g. Lande and Arnold, 1983; Lande, 1985, 14

1986; Kauffman and Levin, 1987; Charlesworth and Rouhani, 1988; Kauffman, 1993; Niklas, 1994; Gavrilets, 15

1997; Fontana, 2002; Berg and Lässig, 2003; Gavrilets, 2004; Berg et al., 2004; Wilke and Drummond, 2006; 16

Gilchrist, 2007; Lässig, 2007; Calcott, 2008; Mustonen and Lässig, 2009; Draghi et al., 2010; Gilchrist et al., 17

2009; Wallace et al., 2013; Gilchrist et al., 2015). In the simplest scenarios where the evolutionary process has 18

either reached stationarity or we have no a priori information, the probability of observing a sequence i is 19

proportional to its evolutionary fitness Wi raised to the effective population size Ne, i.e. pi ∝WNe
i (Wright, 20

1969; Iwasa, 1988; Berg and Lässig, 2003; Sella and Hirsh, 2005; McCandlish et al., 2015). 21

While often unaware of its theoretical foundation, HIV researchers have extensively used this link between 22

the fitness contribution of an amino acid residue at a particular site and its observed genotype frequency 23

(e.g. Rihn et al., 2013; Liu et al., 2006). For example, researchers have adapted the Potts and Ising models 24

from statistical mechanics to quantify direct and epistatic fitness effects between amino acid sites (Ferguson 25

et al., 2013; Mann et al., 2014; Barton et al., 2016a). While the Ising model, which categorizes amino acid 26

residues as optimal or non-optimal, has been criticized as being overly simplistic, it has been effectively 27

employed to identify epistatic interactions between sites (Ferguson et al., 2013; Mann et al., 2014). Instead 28

of using a simple optimal/non-optimal categorization, the Potts model categorizes each of the 20 amino 29

acid separately. While this greater categorization makes the Potts model more biologically realistic, it also 30

makes it hard to fit. Specifically, in order to describe epistatic effects between any two sites, the Potts model 31

requires the estimation of hundreds of parameters. As a result, confidently fitting this model to multiple 32
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sequence alignments is infeasible, even with large data sets (Barton et al., 2016a). Researchers have also 33

used Shannon entropy E, specifically the inverse entropy of a site 1/E (i.e. its ‘conservation’), as a measure 34

of the strength of consistent stabilizing selection for the presumably optimal consensus amino acid residue 35

(Dietrich and Skipper, 2012; Acevedo et al., 2014). In this approach, sites with little variation in amino acid 36

usage have high 1/E values and are, in turn, inferred to be experiencing strong and consistent stabilizing 37

selection. In contrast, sites with substantial variation have low 1/E values and are inferred to be either under 38

weak or variable stabilizing selection. As we show later, the conservation of a site 1/E is proportional to the 39

expected log-likelihood of observing a randomly chosen amino acid under a saturated, multinomial model 40

parameterized with a given data set. 41

Given its definition, site conservation 1/E can is best viewed as a summary statistic quantifying the 42

ruggosity of HIV’s fitness landscape (Kauffman, 1993) rather than a direct measure of consistent stabilizing 43

selection for an optimal amino acid. Another shortcoming of 1/E as a biologically meaningful metric is the 44

fact that it treats all amino acid residues as being equally dissimilar from the one another. As a result, 1/E 45

ignores the fact that amino acid residues have differing degrees of physico-chemical dissimilarity. This is 46

undesirable given that the physico-chemical properties of amino acids clearly affect the probability one amino 47

acid will substitute for another (Grantham, 1974; Wilke and Drummond, 2010). As a result, 1/E has the 48

potential to miss sites where there is strong, consistent stabilizing selection for a set of physico-chemical 49

properties, but where these properties can be reasonably satisfied by more than one amino acid residue. More 50

generally, the fact that 1/E ignores the physico-chemical properties of amino acid residues suggests it is 51

glossing over information embedded within the data. 52

Despite the fact that site conservation 1/E ignores the physico-chemical characteristics and is not actually 53

a measure of consistent stabilizing selection against non-optimal amino acid residues, it is widely used. One 54

contributing factor to 1/E’s wide use is the fact that it can be easily calculated from sequence alignment 55

data (c.f. the Potts model). A second contributing factor to 1/E’s popularity is its utility. Even though 1/E 56

is a coarse meteric, it has proven useful for identifying ’fragile’ sites, i.e. those with low genetic plasticity. 57

In an effort to overcome these aforementioned shortcomings, we introduce a model that is more biologically 58

detailed than 1/E, but less parameter rich than the Potts model. First, instead of treating amino acids 59

residues as equally dissimilar categories, our model uses a subset set of physico-chemical properties and 60

weighting terms to describe the differences between residues. Second, it explicitly estimates the sensitivity of 61

viral fitness to deviations from the physico-chemical of the optimal amino acid for a given site. While the site 62

sensitivity parameters G′ we estimate correlate well with site conservation 1/E, G′ does a slightly better job 63

predicting HIV genotype fitness from both in vivo and in vitro studies. Unlike site conservation 1/E, our 64

model allows us to test biologically motivated hypotheses. For example, we find that our physico-chemical 65
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weightings and the distributions of G′ vary between the different protein regions of Gag. 66

Taken together, our physico-chemical model helps advance researchers ability to extract information from 67

observational data and represents a biologically grounded framework which can be further extended and 68

used to test clearly posed hypotheses. In its current form, our physico-chemical model only considers site 69

independent effects and can be viewed as a constrained version of the more general, parameter saturated, 70

entropy model underlying the calculation of 1/E. Given the parallels between evolution and statistical 71

mechanics (Sella and Hirsh, 2005), it should be possible to extend our physico-chemical model to include 72

epistatic effects in a more realistic manner than the Ising models, which ignore physico-chemical properties, 73

but in a substantially more efficient manner, in terms of the number of epistatic parameters and the ease of 74

parameter estimation, than the physico-chemical informed Potts models. 75

Methods 76

We begin by presenting our physico-chemical model and, in the process, clearly define our site sensitivity 77

parameter G′. Next, we review how site conservation 1/E is defined using Shannon entropy. We then 78

clearly show the link between the physico-chemical model and the entropy model and their corresponding 79

probabilities of observing each amino acid residue at a particular site. Finally, we describe the data and 80

methods we used to parameterize the physico-chemical and entropy models and evaluate their ability to 81

predict empirical measurements of HIV fitness. Definitions of all of our model parameters can be found in 82

Table 1. 83

Modeling the HIV Fitness Landscape 84

In this study, we focus on two structurally similar models for describing a HIV fitness landscape: our 85

physico-chemical based approach and Shannon entropy. Both models assume the fitness landscape is fixed 86

and that each amino acid site affects viral fitness independent of the others. In the physico-chemical model the 87

expected frequencies of the different amino acid residues are determined by their physico-chemical properties, 88

the optimal residue for that site a∗, and the strength of consistent stabilizing selection G for a∗. These 89

expected frequencies also depend on the physico-chemical weights ~θ, which are shared across a set of sites. 90

In contrast to our physico-chemical model, in the Shannon entropy model there are no shared parameters 91

between sites, the optimal amino acid residue is assumed to be the most frequent one, and the frequency of 92

the 19 other non-optimal amino acids residues are completely unconstrained and set to equal their observed 93

frequencies for that site. Technically, the Shannon entropy model could be viewed as an unconstrained 94

version of our physico-chemical model. In the Shannon entropy model there are 19 free parameters per site. 95
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In contrast, in our physico-chemical model there are only 2, a∗ and G, along with a minimum of 3 global 96

parameters describing physico-chemical weights and a hierarchical distribution for G. We use AIC for model 97

comparisons. 98

A Physico-Chemical Model 99

For a given site, we assume the fitness w of amino acid residue aj declines exponentially as a product of a 100

site specific sensitivity parameter Gi and the distance d, in physico-chemical space, of aj from the optimal 101

amino acid residue for that site a∗. That is, 102

w
(
aj

∣∣∣a∗, Gi, ~θ
)
∝ exp

[
−Gid

(
aj , a∗

∣∣∣~θ)] . (1)

We use the euclidean distance function 103

d
(
aj , a∗

∣∣∣~θ) =

√
θc ((cj − ca∗) /σc)

2
+ θl ((lj − la∗) /σl)

2
+ θv ((vj − va∗) /σv)

2
, (2)

the physico-chemical weighting terms ~θ = (θc, θl, θv) represent a priori unknown weights for the known amino 104

acid residue physico-chemical properties: the ratio of carbon to non-carbon atoms or ‘composition’ c, polarity 105

p, and molecular volume v. The physico-chemical weights ~θ are are assumed to be shared across multiple 106

sites and are estimated from the data. In order to account for the fact that physico-chemical properties 107

are measured in different units and facilitate their interpretation of our weight terms ~θ, the differences in 108

physico-chemical properties are scaled by the standard deviation of this property observed across the 20 109

canonical amino acids, i.e. σi. As a result of this scaling, the weighting term describe the sensitivity of protein 110

function to the deviation in physico-chemical properties between amino acid relative to the total amount of 111

variation possible. Our choice of physico-chemical properties follows Grantham (1974); other physico-chemical 112

properties could be used instead (Sharma et al., 2013). Because G′ is always multiplied by the distance 113

function d in our physico-chemical model, there is an inherent lack of identifiability of these terms. To solve 114

this problem and facilitate ease of interpretation, ~θ was constrained so that the sum of its values equaled 1. 115

Following the example of other researchers in this field (Ferguson et al., 2013; Mann et al., 2014; Barton

et al., 2016a) we treat HIV sequence data from different patients as independent samples from the evolutionary

stationary distribution as described by Sella and Hirsh (2005). We define the composite parameter G′i as

the product of the site sensitivity and the effective population size Ne, i.e. G′i = Gi × Ne. For now we

ignore the effects of mutation bias. In order to avoid issues that would result from the infinite MLE of G′

at invariant sites, we employed hierarchical approach where G′ is assumed to follow either a LogNormal or
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Gamma distribution. As a result, the parameters π1 and π2 represent the shape and scale parameters or the

log scale mean and standard deviation for G′, respectively. We allowed the G distributions and parameters to

be shared or vary between each of the gag poly-peptide regions: the nucleo protein p6, nucleocapsid protein

p7, matrix protein p17, and capsid protein p24. As a result, the probability p of observing amino acid residue

j, at site i is,

pj

(
a∗, Gi, ~θ

)
=

exp
[
−G′id

(
aj , a∗

∣∣∣~θ)]∑
k exp

[
−G′id

(
ak, a∗

∣∣∣~θ)]f (G′i|π1, π2) (3)

Based on our model’s assumptions and structure, G′i represents a quantitative measure of the strength and 116

efficacy of consistent stabilizing selection on a given site relative to genetic drift. 117

Given these assumptions, the probability of observing a set of amino acid residue counts ~x = {x1, x2, . . . , x20}

at a given site i follows a multinomial distribution. That is,

Pr
(
~x
∣∣∣a∗, G′i, ~θ) =

(
xT

x1 x2 . . . x20

) 20∏
j=1

pj

(
a∗, G

′
i,
~θ
)xj

where xT =
∑

j xj is the total number of observations made at site i and and a∗ is the optimal amino acid

for site i. Correspondingly, the Log-Likelihood L of the data ~x as a function of our physico-chemical the

model parameters, a∗, G
′
i, and ~θ, is,

L
(
a∗, G

′
i,
~θ
∣∣∣~x) =

20∑
j=1

xj ln
[
pj

(
a∗, G

′
i,
~θ
)]

(4)

By maximizing Eq.(4) with respect to our model parameters, we can identify the most likely parameter values 118

and our confidence in them: the physico-chemical weights ~θ, the optimal amino acid residue at each site a∗, 119

and the Ne scaled sensitivity of HIV fitness to deviations in physico-chemical space for each site G′. By 120

linking fitness to the physico-chemical qualities of an amino acid residue, we effectively reduce the number of 121

parameters in our multinomial model from 19 parameters per site to 2 parameters per site, G′i and a∗ plus, 122

depending on how we partition the data, 2 or 8 shared physico-chemical weight parameters ~θ. As a result, 123

our physico-chemical model is highly ‘unsaturated’. 124

The Entropy Model 125

While Shannon entropy is a measure of information of a message, it is also proportional to the log of the

probability of the data ~x under a multinomial model where the probability of each category pj is equal to its

observed relative frequency xj/xT where, as before, xT is the number of observations. Setting pj = xj/xT
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not only makes intuitive sense, it is also equal to the maximum likelihood estimate (MLE) of pj under a

multinomial model. Thus Shannon entropy of a given site i with a set of counts ~x can be written as

E (~x) = −
20∑
j=1

xj/xT ln (xj/xT )

and is related to the probability of the data ~x at the maximum likelihood values of its parameters ~p under a

multinomial model

Pr

(
~x

∣∣∣∣~p =
~x

xT

)
=

(
xT

x1 x2 . . . x20

)
exp [−xTE (~x)] (5)

Correspondingly, the maximum Log-Likelihood of the data ~x under the Shannon entropy model is,

L

(
~p =

~x

xT

∣∣∣∣~x) = −xTE (~x) =

20∑
j=1

xj ln (xj/xT ) (6)

The entropy of a site E(~x) can be interpreted in a number of different ways. One interpretation of E(~x) is 126

as a diversity index for amino acid residues at a site or region (Jost, 2006). Another interpretation is, under 127

certain conditions, E(~x) is proportional to the expected number of guesses one must make to infer the state 128

of a site. Equivalently, E(~x) is also equal to the the mean contribution of a category to a site’s log-likelihood. 129

Despite having many potential interpretations, because of its descriptive and ‘many to one’ nature, there 130

is no clear way of linking the Shannon entropy of a site E and the strength of purifying selection for or against 131

a particular amino acid. Finally, the inverse of E is used to describe the conservation of a site or region 1/E 132

which has, in turn, been used as a heuristic measure of the strength of consistent stabilizing selection for the 133

optimal amino acid residue at a site (Allen et al., 2005; Liu et al., 2012a). In addition, because the sum of pi 134

must equal one, from a likelihood perspective the entropy model has 20− 1 = 19 free parameters per site, 135

making it a fully saturated model. 136

Data 137

Amino Acid Sequences 138

To parameterize the models we used the Gag poly-peptide of HIV subtype C MSA. We excluded linker regions 139

and, as a result, analyzed 520 sites using 1058 curated sequences from the Los Alamos National Laboratory 140

(LANL) database (Biophysics Group Los Alamos National Lab, 2016). This database contains filtered web 141

alignments curated by the biophysics group at LANL. Details concerning the curation and filtering of the 142

sequences in the alignment process can be found at http://www.hiv.lanl.gov/. Data was downloaded in 143
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September 2016. Sequences were processed to obtain counts for amino acid residue j at site i for each HXB2 144

site. 145

Empirical Evaluation of Model Predictions 146

In order to test whether our site sensitivity parameter G′ is more biologically informative than the standard 147

conservation metric 1/E, we evaluated its ability to predict empirical observations of in vivo and in vitro 148

viral fitness. To test our physico-chemical model’s ability to predict in vivo behavior of HIV, we used viral 149

escape times from a patient’s CD8 T-cell response as estimated by Barton et al. (2016a) using the patient 150

data from Liu et al. (2012b). In that study, escape times of viral epitopes from the patient’s immune response 151

were estimated using sequential sequencing data from reactive epitopes sites in multiple HIV-1 subtype B 152

and C infected patients over 3 years. These researchers found that that the mean conservation value 1/E for 153

an epitope is positively correlated with escape time. Epitopes were defined as 8-11 amino acid long regions 154

of the proteome recognized by patient specific T cell immune response. Escape time t was defined as the 155

number of days between detection of the T-cell response and the time viral variants bearing that respective 156

reactive epitope fell below 50%. Because of limited sampling, the exact date at which a patient’s reactive 157

epitope response fell below the 50% threshold was not actually observed. Instead, Barton et al. (2016a) used 158

a non-linear model to estimate the escape time. In order minimize the uncertainty in these estimates of 159

escape time, we excluded data from patients who had already met the criteria before a patient’s first sample 160

or whose escape date estimated by extrapolation after a patient’s final sample. In addition, because we fitted 161

our model to HIV subtype C data, we only used epitopes whose consensus sequence was the same between 162

subtypes B and C. As a result, we were left with only 14 estimates of escape times. Because these estimated 163

escape times are defined at the epitope level, we compared escape time to the mean site sensitivity G′ or Ḡ′. 164

Similarly, we also compared estimated escape times to the mean log conservation for each epitope 1/E. 165

To test our physico-chemical model’s ability to predict in vitro data, we used viral replication rate in cell 166

culture as a measure of HIV fitness. Rihn et al. (2013) estimated the replicative fitness of 31 HIV subtype 167

B viruses bearing mutated capsid CA amino acid residues via spreading replication assay on human MT4 168

T-cell lines and peripheral blood monocytes. The CA mutants in this study were generated by creating a 169

mutagenized CA library using a low fidelity PCR approach and then inserting the mutated CA sequences in 170

replication competent proviral clones. Fitness was reported as % of the wild-type replication. 171
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Model Fitting and Inference 172

The model was fitted to the data using Mathematica 11 (Wolfram Research Inc., 2017). We used the built in, 173

optimization function NMaximize[ ] with the “NelderMead” option to optimize all of the parameters other 174

than the site specific G′. Within each evaluation of NMaximize[ ], we used FindMaximum[ ] to identify the 175

optimal G′i for each site. Using this approach, the model was independently fitted to each region from 200 176

different initial sets of parameter values. The first 100 fittings used initial values generated by fitting the 177

model to only variable sites and a uniform hierarchical distribution for G′. For each of these fittings the 178

estimated parameter values were multiplied by uniform random numbers to further vary their starting values. 179

For the second 100 fittings, the initial values were generated using different random seeds for each run of 180

NMaximize[ ]. 181

We calculated the Fisher Information Matrix for the ~θ for each region and used it to calculate the 95% 182

Confidence Intervals (CI) for each of its parameter following Bolker (2008, p.197-200). We used these CI 183

to quantify our uncertainty in our estimates and to compare parameters across regions. If the CI for the 184

same parameter in two regions do not overlap, we concluded that the p− value for the hypothesis the regions 185

shared the same parameter values was < 0.05. 186

In order to evaluate how well our physico-chemical model’s site sensitivity G′ and the Shannon entropy 187

model’s site conservation 1/E predicted available in vivo and in vitro fitness measures. Neither our G′ or 188

1/E estimates nor our empirical in vivo and in vitro fitness estimates appear normally distributed; therefore, 189

we used Kendall’s non-parametric rank correlation τ to measure the association between our consistent 190

stabilizing selection metrics and the empirical data. Significance tests for our τ estimates were done using 191

Mathematica’s KendallTauTest[]. Test statistics were generated by bootstrapping the data 10,000 times with 192

replacement via the “Permutation” option. 193

Results 194

Briefly, we find that our population genetics and physico-chemical based site sensitivity terms G′ are well 195

correlated with the more commonly used entropy based conservation metric 1/E. In terms of fitting the 196

data, the entropy model, a saturated parameter model, has an astronomically better AIC score than our 197

best fitting version of our physico-chemical model where Grantham weights and the distribution of site 198

sensitivities vary by region (∆AIC = 230,007). This poor performance of our model is discouraging, but is 199

not surprising given the fact that the entropy model is a purely descriptive model and fits one parameter for 200

every unconstrained data bin. As a result, the entropy model, by definition, produces the largest L value 201
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possible given the data. This flexibility comes the cost, in terms of AIC, of a large number of estimated 202

parameters: 19/site × 462 sites = 8778 parameters. This cost, however, is mitigated by the fact that we 203

have more than a 1000 observations for each site. In contrast to its poorer AIC value, we find that our 204

physico-chemical model does a better job predicting empirical in vivo and in vitro measurements of HIV 205

fitness, if only slightly so. Further, our parameter estimates can be used to test more refined hypotheses 206

such as whether the properties of natural selection, as described by our physico-chemical weights ~θ and G′ 207

values, varies between protein regions. Thus, while our physico-chemical model appears to capture important 208

biological information embedded in the data, there is clearly much room for future improvement. 209

Regional Variation in Model Parameters The variation and uncertainty in our estimates of ~θ can be 210

found in Table 2 and Figure S1. Although allowing the physico-chemical weights ~θ and G′ distributions 211

to vary between poly-peptide regions required the addition of just 12 additional parameters and vastly 212

improved the ability of our physico-chemical model to fit the sequence data by 1412 log-likelihood units 213

(χ2
12 = 2824, p < 10−300). Surprisingly, despite this vast improvement in model fit, the differences in ~θ were 214

actually quite small. Further, given the sensitivity of our L function to ~θ, it is perhaps a bit surprising that 215

the choice of a LogNormal or Gamma distribution for G′ had no discernible effect on our estimates of a 216

region’s ~θ. This sensitivity is also reflected by fact that our CI for these parameters are on the order of 217

< 1%. These results clearly indicate that the effects of amino acid substitutions vary between protein regions. 218

Consequently, all of the results we discuss below come from the model fit where ~θ varies between proteins. 219

In terms of describing the distribution of site sensitivities G′ across a given poly-peptide region, the 220

LogNormal distribution performed substantially better than the Gamma distribution with the p6 nucleo 221

protein and p24 matrix protein (∆AIC = 7.2 and 15.6, respectively). The LogNormal distribution mean 222

parameter µ was indistinguishable between these two regions, but the standard deviation parameter σ was 223

significantly lower in p6 than p24. In contrast, the Gamma distribution performed substantially better than 224

the LogNormal distribution for the p7 nucleocapsid protein and p17 capsid protein (∆AIC = 9.4 and 24.8, 225

respectively). The Gamma distribution shape parameter α was indistinguishable between these two regions, 226

but the rate parameter β was significantly lower in p7 than p17. Taken together, these results indicate that 227

the distribution of G′ values varies between protein regions. This is in spite of the fact that the first two 228

central moments of p6, p7, and p17 are statistically indistinguishable (Fig. 1 and Table S1). 229

Site Sensitivity G′ vs. Site Conservation 1/E Kendall’s rank correlation τ between our model’s site 230

sensitivity parameter G′ and the entropy model’s site conservation 1/E metric indicate that they are well 231

correlated with one another (τ = 0.598− 0.720 with p < 10−10 for all regions, Fig 2). 232
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Predicting Empirical HIV Fitness Data As expected, both site conservation 1/E and site sensitivity G′ 233

were positively correlated with the in vivo measure of fitness: escape time (τ = 0.291 and 0.475, respectively; 234

Fig 3 and Table S2). However, only the correlation between G′ and escape time was significant (p = 0.016 235

vs. 0.141 for 1/E). 236

Both G′ and 1/E were also positively correlated with changes to the capsid protein on in vitro replication 237

fitness (τ = 0.238 and 0.211, respectively ; Fig. 4). However, as with the escape time predictions, only the 238

G′’s τ was significant (p = 0.047 vs. 0.080 for 1/E). Similarly, G′ and 1/E were also positively correlated 239

with changes to the capsid protein on in vitro spreading fitness (τ = 0.231 and 0.157), but neither predictor’s 240

τ was significantly greater than 0 (p = 0.055 and 0.192, respectively). 241

Discussion 242

Although initially introduced as a metaphor for describing how evolution works, fitness landscapes have 243

proven to be useful tools in theoretical and empirical research (for example, Kauffman, 1993; Wilke and 244

Drummond, 2006; Gilchrist, 2007; Gilchrist et al., 2009; Wallace et al., 2013; Gilchrist et al., 2015, and 245

citations below). Ideally, HIV fitness landscapes can help researchers predict when and where a virus will 246

escape immune control (Barton et al., 2016a) and develop effective vaccines (Ferguson et al., 2013; Shekhar 247

et al., 2013). In a few cases HIV fitness landscapes have been estimated directly from experimental data 248

(Hinkley et al., 2011; Kouyos et al., 2012; Mann et al., 2014; Rihn et al., 2013), but in most studies the 249

landscape is inferred from the ever growing libraries of genotype frequency data (Barton et al., 2016a; Zanini 250

et al., 2016; Mann et al., 2014; Ferguson et al., 2013; Deforche et al., 2008; Seifert et al., 2015). 251

In this study we utilize fundamental findings from the field of population genetics to infer HIV Gag’s 252

poly-peptide physico-chemical fitness landscape using count data from the LANL HIV database. In contrast 253

to explicitly mapping out HIV’s fitness landscape, other researchers have used site conservation 1/E, where 254

E is the Shannon entropy of a site, as a proxy for the strength of consistent stabilizing selection (Rihn et al., 255

2013; Ferrari et al., 2011; Liu et al., 2012b). While this interpretation may seem intuitive, 1/E is actually a 256

summary statistic rather than a measure of the selection coefficient between an optimal amino acid and its 257

alternatives. Further, entropy based metrics such as 1/E result from fitting saturated models, where the 258

number of parameters is on par with the number of data categories. As a result, it is perhaps not surprising 259

that the AIC for the entropy model fit is still substantially better than its value for our highly unsaturated 260

physico-chemical model (∆AIC = 230,007). We note that because, 1/E =∞ at invariant sites, 1/E for an 261

invariant site will change dramatically if new data includes even a single alternative amino acid at that site. 262

In contrast, because we assume G′ comes from a probability distribution whose parameters are estimated 263
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simultaneously with our G′ values, the metric will not change as dramatically if an alternative amino acid is 264

eventually observed at that site. 265

While saturated models have the advantage of being maximally flexible in terms of fitting data, this 266

flexibility comes at the cost of being minimally informative about the processes generating the data. For 267

example, our physico-chemical model’s site sensitivity G′ did a better job than the entropy model’s site 268

conservation 1/E in predicting in vivo and in vitro HIV fitness measurements (Figs 3 and 4). These results 269

suggest that our physico-chemical model is more efficient at extracting biological meaningful information 270

from the sequence data we used to fit our models. 271

In addition to extracting more meaning from the data, because our physico-chemical model is derived from 272

biological principles, it can be used to evaluate biologically based hypotheses. For example, we find that the 273

impact of our three different physico-chemical traits ~θ on fitness varies substantially between between protein 274

regions (Table 2). These results indicates the effects of substituting one amino acid residue for another varies 275

with its broader genetic context. This is, perhaps, unsurprising given that previous researchers have found 276

that interior regions of the protein are more sensitive to changes in polarity (Nakai et al., 1988). Nevertheless, 277

our ability to detect these slight regional differences in the character of the consistent stabilizing selection 278

illustrates the statistical power of our physico-chemical modeling approach. 279

In addition, site sensitivities G′ values differ between protein regions in terms of the distribution that 280

best describe the estimated values (LogNormal vs. Gamma). The fact that the G′ values of different protein 281

regions follow different distributions suggests that the contribution of each site to protein function varies 282

between sites. For example, the LogNormal distribution suggests the G′ values are the result many positive 283

random independent variables acting in a multiplicative manner. In contrast, the Gamma distribution 284

suggests that protein function depends on fluxing through different conformational states with exponential 285

like waiting times for each state. Even amongst the p6 and p24 regions where site sensitivities G′ are best 286

described by a LogNormal distribution, they appear to come from distributions with different µ parameters 287

(Table 2). For example, the average G′ values for region p24 were greater than p7 and p17, which is consistent 288

with previous findings (Rihn et al., 2013; Martinez-Picado et al., 2006) (Figure 1). Despite our ability to 289

differentiate between different hypothesized distributions for G′, our estimates of physico-chemical weightings 290

~θ are actually insensitive to these distributional differences (Table 2). One plausible hypothesis for these 291

peptide region specific differences in G′ distributions could be their differences in secondary structure. This 292

idea could be tested by determining whether grouping sites by secondary structure (or some other feature 293

such as distance from surface or active site) provides a better fit than grouping sites by protein region as we 294

do here. 295

While our physico-chemical model improves our ability to predict empirical HIV fitness data, there is still 296
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a substantial amount of noise in our predictions. This variation likely has a number of different sources. In 297

terms of the data we are trying to predict, the in vitro spreading fitness measures suffer from the unnatural 298

qualities of cell culture. Similarly, the in vivo epitope escape fitness measures likely includes substantial 299

effects due to biological variation between patients, is based on a limited number of sample time points, and 300

limited sequencing depth to determine genotype frequencies. 301

In terms of model shortcomings, there are many. For example, our choice of physico-chemical properties to 302

include in our distance function was based solely on Grantham’s classic work (Grantham, 1974). Fortunately, 303

testing the power of other physico-chemical properties is straightforward with our model. Further, in its 304

current form, our physico-chemical model ignores the effect of mutation bias. Mutation bias, i.e. the fact that 305

mutation rates between residues differ from one another, can also contribute to the probability of observing a 306

particular codon and, in turn, amino acid. Although the effects of mutation bias are likely to be unimportant 307

at sites with large site sensitivities G′, mutation bias can dominate the evolutionary outcome of sites under 308

weak selection. 309

Moving on to shortcomings that are more challenging to over come, both the physico-chemical and entropy 310

models assume statistical independence between patient samples. These assumptions also shared by the 311

more complex Ising and Potts models and could be addressed by extending our approach to a phylogenetic 312

framework (Beaulieu et al., In Review). Both the physico-chemical and entropy models also assume a single, 313

invariant fitness peak centered around a site’s optimal amino acid residue a∗. While it should be possible to 314

extend our physico-chemical to allow for more than one peak in the amino acid residue landscape by modifying 315

our distance function, we suspect our ability to reject the simpler hypothesis of a single peak would be weak, 316

especially if they occurred in similar points in physico-chemical space. Allowing a∗ to explicitly switch over 317

time, would be even more challenging than allowing for multiple fitness peaks. We expect detecting such 318

switches would be very difficult without large, high quality and high resolution datasets. 319

Perhaps most glaringly shortcoming is the fact that our physico-chemical ignores epistatic effects. Epistatic 320

interactions are likely ubiquitous and have been well documented in the virus literature (Koek et al., 2012; 321

Brockman et al., 2007, 2010). Fortunately, we could extend our physico-chemical model to include the effects 322

of epistatic interactions between sites in a similar manner to the Ising and Potts model. In the same way 323

that we use a physico-chemical distance function and site sensitivity G′ to generate the predicted frequency 324

of the 20 canonical amino acid residues, we could define a more complex distance function that would allow 325

us to describe epistatic effects between sites and predict the probability of the 400 different possible site pairs 326

of amino acid residues using a relatively small number of parameters. The end result would ideally be a 327

more realistic model than the Ising model, but one that requires many fewer parameters, is more biologically 328

informative, and is easier to fit than the Potts model. 329
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In conclusion, we argue that one promising way to improve our ability to extract biologically meaningful 330

information from sequence databases is to use well defined and biologically grounded models. Here we show 331

how our physico-chemical model can improve our ability predict HIV fitness. Because our model is grounded 332

in the field of population genetics, it is inherently well suited to describe evolutionary data. Because our 333

model is well defined biologically, it provides a clear framework to test specific hypotheses about HIV protein 334

sequence evolution and can serve as the basis for more complex, but parameter limited, models. 335
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Tables 491

Table 1. Symbols used in this work and their verbal definitions.

Symbol Definition
wij Evolutionary fitness of amino acid residue j at site i.
Ne Effective population size.
a∗ The optimal amino acid residue for site i.
Gi Sensitivity of fitness to deviation from a∗ at site i.
G′i Product of Gi and Ne.

d(aj , a∗) physico-chemical distance between residue j and a∗.
θc, θl, θv Weighting terms for physico-chemical properties composition c, polarity p, and volume v.
π1, π2 Parameters for G′ ∼LogNormal(µ = π1, σ = π2) or Gamma(α = π1, β = π2).
pj Probability of observing amino acid residue j at a given site.
xj Count of amino acid residue j plus 1 at a given site.
~x Vector of amino acid residue counts at a given site.

E (~x) Shannon entropy for a set of residue counts ~x at a given site.
1/E Measure of conservation of site as inverse of Shannon entropy.
L The log-likelihood function in equations (4) and (6).

Table 2. Differences in AIC values ∆AIC and MLE ±95%CI of physico-chemical model parameters for each
poly-peptide region under Log-Normal and Gamma distributions of site sensitivities G′. Note that because
both distributions have two parameters, their ∆AIC values are simply twice their differences in L. The
parameters θc and θl, represent physico-chemical model weights for residue composition and polarity,
respectively. By definition, θv = 1− (θc + θl) and is not presented. For G′ ∼ LogNormal(µ = π1, σ = π2) and
for G′ ∼ Gamma(α = π1, β = π2) where β is the rate parameter. 95%CI calculated using hessian of LLik
surface at MLE (Bolker, 2008, p.197-200).

Region Sites Distribution ∆AIC θc θl π1 π2

p6 44
LogNormal 0 0.280± 0.006 0.495± 0.006 1.973± 0.100 0.803± 0.071
Gamma 7.176 0.279± 0.006 0.495± 0.006 1.607± 0.261 6.288± 1.196

p24 231
LogNormal 0 0.408± 0.004 0.411± 0.003 2.669± 0.044 0.798± 0.032
Gamma 15.648 0.408± 0.004 0.412± 0.003 1.804± 0.131 10.802± 0.920

p7 55
Gamma 0 0.729± 0.001 0.176± 0.001 2.036± 0.300 7.880± 1.329
LogNormal 9.362 0.729± 0.001 0.177± 0.005 2.511± 0.095 0.829± 0.066

p17 132
Gamma 0 0.356± 0.004 0.374± 0.004 0.666± 0.004 18.032± 0.010
LogNormal 24.760 0.354± 0.004 0.375± 0.004 2.097± 0.070 0.973± 0.052
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Figures 484
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Fig 1. Comparison of estimates of mean and variance of G′ for poly-peptide regions. Error bars represent
parameter 95% CI. CI estimated using the t distribution and the likelihood ratio test squares after Zar (1999,
p. 99 and 111). Note that even thought the central moments of p6, p7, and p17 are statistically
indistinguishable, the model parameters describing their distribution are distinguishable.
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p17: Gamma Distribution(c)
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Fig 2. Comparison of site specific physico-chemical sensitivity G′ and site conservation 1/E for each Gag
poly-peptide region using Kendall τ correlation statistic. Invariant sites, by definition, have a 1/E value of
∞. In contrast, because our model assumes G′ is pulled from either a LogNormal or Gamma probability
distribution whose parameters are estimated simultaneously with G′, invariant sites have finite G′ values. G′

values, their distribution, and the parameters used are the best fitting model for each region (Table 2).
Regions: (a) nucleo protein p6 with G′ ∼ Gamma, (b) nucleocapsid protein p7 G′ ∼ LogNormal, (c) matrix
protein p17 G′ ∼ LogNormal, and (d) capsid protein p24 G′ ∼ Gamma. Note, n is the number of sites fitted
for each region.
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Fig 3. Kendall rank correlation τ of mean log conservation ln(1/E) and mean site sensitivity G′ with
ln(escape time) of 14 epitopes of the Gag poly-peptide whose immune escape was observed (original data
from Liu et al. (2013) results from Barton et al. (2016b) used here). Correlation p values estimated by
bootstrapping data 10,000 times.
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Fig 4. Metrics vs Spreading fitness Correlation of conservation and sensitivity of residues with
spreading fitness of 31 viral strains bearing mutations in the corresponding residues A) Correlation of the
assayed spreading fitness of the mutated virus in days with the correspondingly position’s entropy B)
Correlation of the assayed spreading fitness of the mutated virus in days with the corresponding position’s
physico-chemical sensitivity.
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