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Abstract

Hi-C has revolutionized global interrogation of chromosome conformation, however there are few tools to assess
the reliability of individual experiments. Here we present a new approach, QuASAR, for measuring quality within
and between Hi-C samples. We show that QuASAR can detect even tiny fractions of noise and estimate both return
on additional sequencing and quality upper bounds. We also demonstrate QuASAR’s utility in measuring replicate
agreement across feature resolutions. Finally, QuASAR can estimate resolution limits based on both internal and
replicate quality scores. QuASAR provides an objective means of Hi-C sample comparison while providing context
and limits to these measures.
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Background

Chromosome Conformation Capture assays, particularly Hi-C, are becoming widely used, and have enabled a much
better understanding of chromatin spatial interactions and architecture. What has not kept pace is the ability to
assess the reliability of these data. One dimensional genomic annotation assays, such as ChIP-seq, have been the
focus of quality control efforts for years[1–6]. These methods take a variety of approaches for assessing sample quality
including external control samples, orthogonal datasets, replicate comparison, and mapping statistics. This allows
direct comparison between similar datasets and a degree of confidence in the biological conclusions associated with
the results of analyzing these datasets. The field of chromatin topology would benefit from a similar set of quality
assessment resources.

Three areas need to be addressed when considering Hi-C data quality. Two of these, individual sample quality and
replicate agreement, are also of great importance in other genomic annotation data types. The final area, limits of
data resolution, is a consideration in other types of genomic data but has a special importance in Hi-C data because of
the two dimensional nature of the data compared to more traditional one dimensional annotation data. For example,
the amount of sequencing required to achieve saturation in a mammalian ChIP-seq experiment is about 40 million
reads [7]. While not trivial, this depth of sequencing is often achieved. It is currently unknown what the saturation
point of a Hi-C experiment is, but given that most Hi-C samples rarely have more than a couple hundred million
reads prior to mapping and filtering, it is unlikely that they approach the saturation point for 2D dataset. Thus it is
important to be able to determine reasonable limits for analysis resolution.

A variety of approaches have been use to infer Hi-C sample quality, primarily focused on statistics derived from
sequencing quality, read alignment and the position of read ends relative to restriction fragments [8–14]. Sequencing
quality and alignment quality give some information about sample integrity and possible contamination. Rao et al.
[11] proposed a complexity statistic to determine which Hi-C libraries were worth sequencing. This statistic was based
on the percent of unique reads in the sequenced sample. Other groups have pre-screened samples using fragment
size profiles as an indication of Hi-C library quality prior to sequencing [12, 13]. While these approaches can provide
information about the utility of sample processing, they fail to provide information about how well the Hi-C library
captures chromatin conformations reflective of the ground truth. Statistics derived from aligned reads such as PCR
duplication rates, self-ligation of restriction fragments, or the percentage reads with inserts of expected size can also
be useful in determining the percentage reads in a Hi-C library that have been correctly processed, and it is crucial to
perform filtering based on these features. They do not, however, provide information about the actual conformational
quality of reads passing these filters, only that the reads conform to a set of expected characteristics based on the
Hi-C protocol. For example, a negative control sample lacking the cross-linking step would produce a Hi-C library
with the a similar percentage of reads passed to downstream analysis as a normally processed Hi-C sample. The
one statistic that has been put forth to directly address sample quality is the ratio of intra- to inter-chromosomal
reads [15]. If fragments are randomly ligated, rather than based on proximity, the number of inter-chromosomal
interactions would increase, lowering this ratio. The shortcoming of this measure is that it does not necessarily
provide information about the quality of intra-chromosomal reads, nor does it account for possible biologically
relevant drivers of increased inter-chromosomal interactions such as chromatin decondensation or release from
lamina associated domains.

The second important consideration in Hi-C data quality is reproducibility between samples. A primary means of
establishing the similarity between two Hi-C samples has been measuring correlation, either Spearman or Pearson,
between heatmaps at a chosen resolution [11, 15–19]. The largest drawback to this approach is that the strongest driver
of Hi-C signal is genomic distance between loci, regardless of biological interactions [20]. This means that all Hi-C
datasets have the same strong underlying distance-based signal decay driving correlation and differences between
samples are small by comparison and harder to detect. Two methods have been devised specifically to address this
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problem, HiCRep [21] and HiC-Spector [22]. The authors of HiCRep demonstrate that heatmap correlation measures
are insufficient at consistently distinguishing unrelated samples from each other compared to biological replicates.
This indicates that correlation-based assessments of sample similarity are unreliable. Both of these approaches
provide a single summary statistic for the reproducibility between samples, although HiCRep also provides feedback
about saturation of the reproducibility measure as a function of sequencing depth.

The final consideration for Hi-C quality assessment is determining what levels of resolution are appropriate for a
dataset given its sequencing depth, quality, and reproducibility. Rao et al. [11] proposed a measure of resolution
based on minimum number of contacts for some percentage of bins produced by partitioning the genome at a given
resolution. This intuitively makes sense from the standpoint of having sufficient data density to resolve features at a
given resolution. However, consider a pair of samples with equal numbers of reads, one with a large proportion of
random ligation: assuming similar marginal distributions of reads, both samples would have identical resolution
limit statistics but different sample qualities at the same resolution.

Here we present a new approach for measuring Hi-C data quality, both within and between samples, using a
technique called Quality Assessment of Spatial Arrangement Reproducibility (QuASAR). Using a combination of
matrix transformations and sub-sampling, we show that QuASAR not only provides information about a sample’s
quality and agreement between replicates, but also estimates for return on additional sequencing, absolute quality
limits, and an estimate of the maximum reliable resolution that can be used for a Hi-C sample. Together, these results
show that QuASAR can facilitate optimized choices in Hi-C data production as well as informed data comparisons
and analysis parameter selection.

Results

Spatial consistency concept and matrix transformation strategy

To quantify Hi-C quality, we consider the consistency of inferred spatial arrangement of the Hi-C intra-chromosomal
(cis) data. Initially, the genome is partitioned into uniform-sized bins at a chosen resolution. For bins that occur
close together in space as determined by their read count, there should be a high correlation between their sets
of cisinteractions (Figure 1A). Conversely, bins occurring further apart should show little or no correlation across
interactions. Thus, for any given pair of bins, we can identify disagreement between the direct and inferred measure
of their interaction. For each sample, we produced a “QuASAR-transformed matrix” by finding the element-wise
product of the read count matrix and the local correlation matrix as calculated from a distance-corrected enrichment
matrix (Figure 1B). Transformed matrices are calculated across multiple resolutions to examine consistency of
different features and scales. In order to target features appropriate to a given resolution, we limit the maximum
interaction genomic distance used for analysis as a function of the bin size. This includes in the calculation of
correlations, thus the term “local correlation”. The resulting transformed matrices can then be used to calculate
individual sample quality scores and replication scores for pairs of samples.

The primary drivers of low quality are random ligation products and missing expected interaction fragments. Within
the QuASAR transformed matrix, these types of noise appear as individual entries showing deviation from their
surroundings (Figure 1C), higher than local background in the case of random ligation and lower for missing reads.
A third factor that may impact the quality score is population heterogeneity, which will manifest as a compression of
the dynamic range of signal and less differentiation between the correlation and transformed matrices.
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Figure 1: Using spatial consistency between local and regional signals to identify Hi-C sample quality. A) Sample reads are
partitioned into bins and pairwise assessment of interaction strength and bin correlation are compared to identify inconsistencies
(black arrows). B) Multiple resolutions are considered by QuASAR using transformed matrices derived from local correlation
matrices weighted by interaction enrichment. C) Two samples derived from mouse ES cells of differing quality. Lower quality
manifests as random points indicating non-specific ligation.

In order to determine an individual sample’s quality, we find the mean of the correlation matrix (C) weighted by the
read count matrix (R) minus the unweighted mean (Figure 1B):
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∑
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i+100
∑
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i+100
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−
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∑
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i+100
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|Ck|−1
∑
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i+100
∑
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where for bins i and j on chromosome k, ckij is the correlation from matrix Ck, rkij is the raw enrichment value from
matrix Rk, and tkij is the transformed value from the QuASAR transformed matrix Tk. I is an indicator function
taking on a value of one or zero for valid and invalid correlations, respectively.

Replicate scores were determined by finding the correlation of valid values from the transformed matrices (Tk) for
chromosome k between two samples:

Replicatek = Corr ({TAkij|IA(k, i, j) = 1, IB(k, i, j) = 1} , {TBkij|IA(k, i, j) = 1, IB(k, i, j) = 1})

where IA and IB are the indicator functions for samples A and B, respectively. In order to find sample-wide scores,
summations and correlations were calculated across all chromosome matrices simultaneously.
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QuASAR evaluation strategy

In order to assess the effectiveness of QuASAR, we used three separate testing approaches. First, we generated noise
models for different genome/restriction enzyme combination and created datasets with varying percentages of reads
drawn from these models. Second, we used combinations of reads from two separate datasets, either biological
replicates in order to generate pseudo-replicates or unrelated samples to create heterogeneous population samples.
Finally, we used sub-sampling to investigate the effects of numbers of reads. This was done using cisreads that
had already passed initial mapping and circularization filters. Because this does not, strictly speaking, qualify as
sequencing depth, we refer to the number of valid cisreads as “coverage”.

To ensure our results were robust, we tested 96 samples across three species, Mouse, Human, and Drosophila
melanogaster (Table S1). Samples ranged in coverage from less than 1 million to 185 million reads. All samples
were paired biological replicates and were generated from a diverse set of tissues and cell lines, and originated from
numerous laboratories.

QuASAR Quality results

QuASAR quality scoring effectiveness was tested using injection of simulated random ligation noise, at levels of 0.1%
to 75% relative to read coverage. All samples showed a monotonically decreasing relationship between quality signal
and percent noise, with the exception of eight instances (Figure 2A). Exceptions to this relationship all occurred at
the lowest level of resolution and the majority occurred at under 0.5% noise, with all of them occurring at 5% noise
or less. The highest deviating value as a percentage of the raw sample score, was 100.02273%. Because all of these
exceptions occurred at low resolution, which is less responsive to coverage and noise effects, and because increases in
quality score were minimal, it is likely that these represent stochastic noise. At all but the lowest resolution, as little as
0.1% noise was detectable in every sample using the QuASAR quality score. These results suggest that this metric is
sensitive to even small changes in the amounts of random ligation present in Hi-C samples.

In addition to noise injection, we also examined the effects of heterogeneity on sample scores. Pairs of samples with
quality scores differing by less than 1% at the 1 Mb resolution were mixed in varying ratios at 20 million read coverage.
At all resolutions, samples showed decreased quality scores when part of a mixture, indicating that QuASAR is
sensitive to heterogeneity as well as noise (Figure 2B). Thus, QuASAR quality scores not only detect noise but also
the dilution of spatial consistency by superimposition of multiple disparate configurations.

Next, we examined the effects of coverage on quality scoring. As coverage decreased, quality scores decreased in a
highly consistent manner for all samples and resolutions (Figure 2C). All quality score vs. log-transformed coverage
relationships (for samples with at least 8 million reads for mouse and human samples, 1 million reads for Drosophila)
were fit using logistic curves. This suggests that additional sequencing has diminishing returns on quality. Further,
there exists some upper limit of quality for each sample. We also find that, consistent with expectations, the amount of
coverage necessary to approach this quality asymptote increases with increasing resolution. In other words, a sample
requires much less coverage to fully resolve large-scale conformational features in a consistent and high-quality
manner. The X-axis offset of different samples also indicates that there should not be an arbitrary guideline for target
coverage to resolve a particular resolution as the quality response to coverage is tissue and assay-specific. However, a
minimum coverage based on currently tested samples may be appropriate.

Despite different resolutions plateauing at different rates, quality scores showed good agreement in sample ranking
across resolutions (Figure S1A). Ranking was more consistent between more similar resolutions, indicating a greater
overlap in the features being assessed compared to larger jumps in resolution. Because quality is a function of
coverage, we also examined sample rankings at a uniform coverage level to remove any confounding effects. In
most cases, the sample rankings still showed good agreement, although the consistency did decrease (Figure S1B).
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Figure 2: QuASARquality scoring is sensitive to noise and coverage differences. A) Samples show an almost entirely negative
relationship between injected noise and quality score. All scores are reported as a percentage of their unaltered sample score.
The insets show a detailed view of values for noise levels between 0 and 2%. All samples within a species are colored consistently
across resolutions. B) QuASAR quality scores for mixed samples with varying levels of contribution from each sample pair.
All samples have 20 million cisreads. C) All quality scores show a monotonically increasing relationship to coverage. Gray
lines indicate logistic curves fit to each sample. All samples within a species are colored consistently across resolutions. D) The
relationship between quality scores and the percentage intra-chromosomal reads (cis) out of all valid reads is depicted. Quality
scores were assessed at three different points: the score at maximum sample coverage (top); the score at a uniform coverage
across all samples (middle, 10 million reads for human and mouse, 1 million reads for Drosophila); the modeled quality score at
infinite coverage (bottom, only samples with at least 4 million reads in human and mouse or 1 million reads in Drosophila). For
each plot, the Pearson correlation coefficient and associated p-value are shown.
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Interestingly, the mouse-derived samples showed an increase in correlation across resolutions after accounting for
coverage.

We also examined how QuASAR quality scores related to various read statistics that have been used as proxies for
sample quality. As observed in the coverage analysis, samples do not plateau at the same rate as a function of coverage.
This means that a simple comparison across sample qualities at a given resolution may be misleading. In order to
address this, we compared read statistics to three different quality reference points: the quality score at each sample’s
actual coverage; the quality score at a uniform coverage level; and the inferred quality limit as determined by logistic
curve fitting. Although we compared scores to four different read statistics, only the percentage of cisreads out of
all valid reads showed a consistent and strong relationship to QuASAR quality scores (Figure 2D). For human and
mouse samples, all three sets of quality scores showed strong correlation to the cisread ratio. However, the quality
limit scores performed significantly better than the other two sets. The Drosophila samples did not show this same
pattern and in fact negatively correlated to the cisread ratio. It is unclear why this pattern did not hold for Drosophila
samples, although the number of samples is much lower compared to either mouse or human sample sets. The
three other read statistics tested, percentage of reads with an insert size too large, percentage of reads from fragment
circularization, and percentage of reads from putative missed restriction cuts showed no consistent relationship
across any of the quality sets (Figure S2).

Reproducibility results

To determine the performance of QuASAR replicate scoring, we began by finding replicate scores as a function
of noise. In order to assess the effects of noise, we calculated a replicate score for each sample across varying
resolutions and levels of noise injection into its matched biological replicate. The majority of samples showed a
monotonically decreasing relationship between replicate score and noise level (Figure 3A). About 15% of sample-
resolution relationships did not strictly hold to this trend. In all of these cases, the scores hovered around the
noise-free replicate score before decreasing. Of these, most (35 of 42) occurred at the lowest level of resolution. None
of these score fluctuations was over 1% above the noise-free replicate score. These results demonstrate the robustness
of QuASAR replicate scores to noise, particularly when comparing macro features (low resolution).

Next, we examined how coverage impacted replicate scoring. For each biological replicate sample pair, samples were
down-sampled to various equal numbers of reads and replicate scores were calculated across multiple resolutions. In
all sample pairs, replicate scores increased as a function of coverage following a logistic curve and ranging between
zero and one (Figure 3B). Every sample pair showed a rightward shift of the curve midpoint as resolution increased,
indicating that replicate agreement for macro features, such as compartments, occurred at lower coverage levels than
fine-scale features, such as topologically associating domains or loops.

Finally, we calculated replicate scores for all pairwise combinations of samples within each species set across multiple
resolutions. For human and mouse samples, pairs were scored at 1 Mb, 200 Kb, 40 Kb, and 10 Kb resolutions while
Drosophila samples were scored at 100 Kb, 20 Kb, and 4 Kb (Figure S3). For all sample pairs, we took the highest
score across all resolutions. The majority of biological replicate sample pairs scored close to one, the maximum
replicate reproducibility score, indicating strong agreement in Hi-C signal between samples (Figure 4A-C). For
all replicate pairs we also generated a pseudo-replicate sample composed of half of all reads from each replicate,
randomly sampled and combined. Scores between samples and their pseudo-replicates were always higher than true
biological replicates. In nearly all cases unrelated sample pair scores showed clear separation from replicate scores.
There were two exceptions to this: samples with low biological replicate scores, and human ES and mesendoderm
cells. The latter may be because the mesendoderm cells were differentiated from the ES cell line and either retain a
strong conformational resemblance or differentiation was incomplete. We also observed elevated reproducibility
scores for samples derived from the same tissue or cell line but from unrelated experiments. These samples typically
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Figure 3: QuASAR replicate scores are sensitive to both noise and coverage. A) Replicate scores were calculated for each
pair of sample replicates between the noise-free first replicate and the noise-injected levels of the second replicate and vice versa
for each resolution. Sample color coding is consistent within each species across resolutions. B) For each pair of replicates,
replicate scores were calculated at each coverage level and resolution. Sample color coding is consistent within each species
across resolutions.

fell in between the range of unrelated and biological replicate pair scores. Two exceptions to this pattern were
human embryonic stem cells and mouse primary fetal liver cells, both of which showed reproducibility scores at or
above biological replicate scores. We also observed that there was a relationship between sample quality scores and
biological replicate scores such that if at least one of the replicates was of lower quality, the replication score was
lower (Figure 4D).

Determining maximum resolution

One of the key choices to be made in using Hi-C data is determining an appropriate resolution for analysis. To
answer this rigorously we propose a combination of quality and replicate scores to determine empirical cutoffs. In
order to find the best cutoff values, we used an iterative process, cycling between using replicate or quality scores for
classification followed by quality or replicate scores for cutoff value determination, respectively. For each each step,
each sample and resolution combination tested was classified as passing or failing based on one set of scores (replicate
or quality) and that set’s associated cutoff value. These labels were then applied to the other set of scores (quality or
replicate) and a new cutoff value for that score type was determined based on minimizing the sum of the two Gini
impurity indices for scores falling above and below the cutoff. This was repeated, reversing the score sets and cutoffs,
until cutoff values stabilized. We tested initial replicate score cutoffs ranging from 0.75 to 0.99 and resolutions 10 Kb,
40 Kb, 200 Kb, and 1 Mb for mouse and human and 4 Kb, 20 Kb, and 100 Kb for Drosophila (Figure 5A). We found
that across this range of initial replicate cutoffs, there were four sets of stable cutoff value pairs (Figure S4A). We
selected the pair of cutoffs with the lowest combined Gini impurity score as our stringent cutoffs and the second
lowest scoring pair as our loose cutoffs. For both cutoff sets, samples were partitioned into two groups with distinct
distributions (Figures 5B & S4B) We then estimated resolution limits for each sample based on quality and replicate
scores. For each score type, the resolution limit was defined as the point at which the log-transformed resolution
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Figure 5: Calculatingmaximumusable resolutions fromQuASAR scoring. A) QuASAR replicate (top) and quality (bottom)
scores plotted as functions of log-transformed resolutions. Sample color-coding is consistent within each species plot pairs.
Stringent and loose cutoff values are denoted by dashed line and dotted lines, respectively. B) Replicate (left) and quality (right)
score distributions, partitioned by stringent quality and replicate cutoffs, respectively. Dotted lines donate the best separation
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and quality cutoffs. The Pearson R value and associated p-value are shown. D)Three samples (rows), selected for resolution
limits close to target resolutions 10 Kb, 100 Kb, and 1 Mb, are shown binned at each target resolution (columns).

vs. score curve equaled the score cutoff (Figure 5A). To further validate our cutoff values, we compared estimated
resolution limits determined from quality and replicate analyses. Estimates from the twomeasures showed significant
agreement for both cutoff sets (Figures 5C & S4C). The resolution limits also matched with a visual assessment of
the data such that features were resolvable by eye at and above the resolution limits but were sparse or absent below
(Figure 5D).

Discussion

We have demonstrated the variability of Hi-C dataset quality across a variety of measures including resolution,
coverage, and heterogeneity. Accurate quantification of this variability is necessary to make informed dataset
selection and analysis choices. One of the primary strengths of QuASAR is its ability to provide resolution-specific
information, which will benefit both producers and consumers of Hi-C data. It is currently difficult, if not impossible,
to gauge the sequencing depth required to achieve a target level of resolution for analysis. QuASAR can provide crucial
information for estimating the number of reads for a specific library necessary to produce high-confidence results at
that target resolution by determining both the underlying library quality and the quality return on sequencing. For
end users of Hi-C data, the redundancy of Hi-C datasets for specific cell lines or tissue types presents a challenge
in selecting the most suited data for their analysis goals. An objective quality measure allows comparison of Hi-C
protocols to evaluate strengths and weaknesses with respect to data quality. In addition to individual sample quality,
the ability to find sample similarity between replicates or unrelated samples is of interest to the Hi-C community.
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Two recent publications describe tools to do just that [21, 22]. While both appear to function well, their outputs, while
quantitative, give a binary-feeling classification of same/different. As we demonstrate in this study, there may be more
nuance to sample comparisons (Figure 4). It is important not only to show the similarity of samples but to provide
context such as at which resolutions the samples appear similar and are they similar enough to provide reliability to
analyses. This is especially important given the prevalence of cell line-derived Hi-C data and the heterogeneity and
instability of cell line genomes [23, 24]. In this study, we observed that Hi-C sample similarity was lower between cell
line-derived datasets produced in different labs than between replicates, even at the lowest resolution of analysis. In
many cases these scores approached the level of similarity seen for unrelated samples. This may serve as a cautionary
tale about mixing dataset origins without verifying their similarity. Thus, to get the best return from time and
financial investments in Hi-C data, it is important to evaluate the data critically prior to drawing conclusions. To this
end, QuASAR provides an objective means of comparison of both individual samples and replicate agreement while
providing context and limits to these measures.

Methods

Hi-C data processing and normalization

Hi-C raw read datawere obtained from the SequenceReadArchive (SRA;https://www.ncbi.nlm.nih.gov/sra)
or, in the case of ENCODE data, the ENCODE Data Portal (https://www.encodeproject.org; Table S1). Read
ends were aligned using BWAmem version 0.7.12-r1039 and default settings [25] to the appropriate genome build
(Table S1). Reads were considered valid and retained if both ends uniquely mapped to single locations, or at least
one end spanned a ligation junction and mapped uniquely to two restriction fragments. In cases where both ends
mapped to multiple fragments, reads were only kept of the upstream and/or downstream fragment locations matched
across read ends. Reads were processed and normalized using HiFive version 1.3.2 [26]. Distance-dependent signal
curves were estimated using the settings shown in Table S1. A maximum insert size of 650 bp was used to filter reads.
Fends (fragment ends) were filtered to have a minimum of one valid interaction greater than 500 kb. Fend interaction
filtering was applied only for the normalization step. All quality analyses were performed on unfiltered reads.

Data were normalized using the “binning” algorithm correcting for GC content, fragment length, and mappability.
GC content was calculated from the 200 bp upstream of restriction sites or the length of the fragment, whichever was
shorter. Mappability was determined using the GEMmappability function, version 1.315 [27]. Mappability of 36-mers
was calculated every 10 bp with an approximation threshold of six, a maximummismatch of 1 bp, and a minimum
match of 28 bp. For each fend, the mean mappability score for the 200 bp upstream of the restriction site, or total
fragment size if smaller, was used. For normalization, only intra-chromosomal reads with an interaction distance
of at least 500 kb were used. GC content and fragment length were partitioned into 20 bins each and mappability
was partitioned into 10 bins. All parameter partitions were done such that together they spanned the full range of
values and contained equal numbers of fends in each bin. All bins were seeded from raw count means and GC and
length parameters were optimized for up to 100 iterations or until the change in log-probability was less than one,
whichever was achieved first. Normalization was used only for noise model construction.

QuASAR matrix transformation and scoring

All intra-chromosomal raw reads were binned at a predefined resolution (1 Mb, 200 Kb, 40 Kb, or 10 Kb for mouse
and human datasets, 100 Kb, 20 Kb, or 4 Kb for Drosophila datasets), depending on the analysis. Only numbered
chromosomes and the X chromosome were used for analysis in human and mouse datasets while chromosomes
2L, 2R, 3L, 3R, 4, and X were used for fly datasets. For each chromosome, only rows and columns that had at least
one read for an interaction occurring over a span of 100 bins or fewer were included. All other rows and columns
were marked as invalid. The resulting matrix is defined as R. A scaled matrix, S, was calculated as the square-root
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of the sum of matrix R plus one. A distance-normalized matrix, N , was calculated by dividing each diagonal of R
by the sum of the diagonal divided by the sum of valid rows/columns in that diagonal. A local correlation matrix,
C was then calculated from R such that for each pairwise set of rows no more than 100 rows apart, the correlation
was calculated between valid column entries not more than 100 columns from either row number, not including
self-interactions or the interaction between the pair of bins being correlated:

cij = corr(nij,local , nji,local)
nij,local = {nik ∣ j − 100 ≤ k < i + 100, k ≠ i, k ≠ j, I(k) = 1}

where I(k) is an indicator function taking on the value of one for valid rows/columns, and zero otherwise. Entries in
matrix C were considered valid if there were at least three points in the correlation and the standard deviation of
both ni,local and nj,local were non-zero. The QuASAR transformed matrix, T was the element-wise product of S and C.

QuASAR quality scores were calculated as the sum of valid elements of the transformed matrix T divided by the sum
of the corresponding elements of Sminus the mean of the corresponding elements of C. Thus, with the indicator
function I(i, j) taking a value of one for valid element cij and zero for an invalid element, the Quasar quality score is
defined as follows:

Qualitychrom =

|C|−1
∑
i=0

i+100
∑
j=i+1

tijI(i, j)

|C|−1
∑
i=0

i+100
∑
j=i+1

sijI(i, j)
−

|C|−1
∑
i=0

i+100
∑
j=i+1

cijI(i, j)

|C|−1
∑
i=0

i+100
∑
j=i+1

I(i, j)

This score was calculated on a per chromosome basis. A global quality score was calculated by finding each of these
sums across across all chromosomes prior to division.

QuASAR replicate scores were calculated by finding the correlation of the two sample transformation matrices T for
all elements that are valid in both matrices. These scores were calculated on a chromosome by chromosome basis as
well as a global score across all valid matrix elements for all chromosomes.

Hi-C noise and low-coverage modeling

The noise model employed was based on all noise coming from random ligation. For each genome and restriction
enzyme combination, the median bin correction values across all relevant datasets were used to calculate expected
values for all bins at the lowest resolution used for analysis (10 Kb for human and mouse data, 4 Kb for Drosophila
data). Bins that had zero observed reads in any of the used datasets were set to zero. Expected values were converted
into probabilities by dividing values by the sum of all expected values. For noise-injected sample, a random fraction
of reads corresponding to the target noise percentage were randomly selected and discarded. The same number of
reads were then drawn from the above described noise distribution and combined with the remaining sample reads.
This was done prior to filtering or normalization.

Low coverage samples were generated by random selection and removal of reads prior to any filtering or normalization.

Pseudo-replicate and heterogeneous sample generation

Pseudo-replicates were generated by random selection of reads from each replicate across all chromosomes prior to
filtering or normalization. For each replicate, half of the reads were selected and combined, meaning that pseudo-
replicates had a number of reads equal to the mean of the two replicates. Heterogeneous samples were produced the
same way, although the percentage of reads drawn from each sample was varied from 0 to 100% at 20% steps.
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Coverage curve estimation

QuASAR quality curves as a function of coverage were calculated using the curve_fit function from the python
package SciPy [28]. All lines were estimated using the logistic function as follows:

y =
A

1 + k x0
x

where A is the quality score upper bound, x0 is the inflection point coverage level, and k is a scale factor. Initial
values for each sample were set to twice its maximum quality score, its maximum coverage, and 0.5 for A, x0, and k,
respectively. A was bounded between -2 and 2, while the other parameters had no limits.

Resolution cutoff calculation

Resolution cutoffs were calculated in an iterative fashion. Initial resolution cutoff values ranged from 0.750 to 0.990
at steps of 0.005. Each sample/resolution combination was labeled passing if its associated replicate score was greater
than the initial resolution cutoff. Quality scores were then ordered and potential quality cutoff points were defined
as the midpoints between adjacent quality scores. For each potential quality cutoff, the sum of the Gini impurity
scores for the two partitions of samples (above and below quality cutoff) was calculated based on replicate cutoff
labels, weighted by the number of samples in each partition. This quality cutoff was then used to partition associated
replicate/resolution pairs. For all replicates, the lower quality score was used for label determination. The same
procedure was followed for finding the new replicate cutoff value as described for the quality cutoff value. This
process was repeated until both replicate and quality cutoff values remained constant. Maximum resolution limits
were calculated based on quality or replicate curves as a function of the log-transformed resolution. For each sample
or replicate pair, the resolution associated with the point at which the quality or replicate cutoff value, respectively,
fell on the curve was used as the maximum resolution limit.

Availability of data and materials

The datasets analyzed during the current study are available at https://bx.bio.jhu.edu/data/quasar. Analy-
sis code and results are available at https://github.com/bxlab/Quasar_PaperAnalysis. QuASAR is pack-
aged as part of the HiFive suite of tools (https://github.com/bxlab/hifive).
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Figure S1: QuASAR quality scores show decreased consistency between larger changes in resolution. A) QuASAR quality
scores from unaltered datasets are plotted between different pairs of analysis resolution. For each plot, the Spearman rank-order
coefficient of correlation and associated p-value are shown. Sample color coding is consistent within a species across plots.
B) QuASAR quality scores from samples down-sampled to a uniform coverage level are shown for different pairs of analysis
resolution. For human and mouse data, all samples contain 10 million cisreads while for Drosophila samples each contain 1
million cisreads. For each plot, the Spearman rank-order coefficient of correlation and associated p-value are shown. Sample
color coding is consistent within a species across plots.
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Figure S2: QuASAR quality scores show no consistent relationship tomany common descriptive Hi-C statistics. QuASAR
quality scores versus common Hi-C mapping statistics. For each panel, quality scores were derived from unaltered samples (top,
1 Mb resolution for human and mouse, 100 Kb resolution for Drosophila), samples down-sampled to equal coverage (middle, 10
million cisreads for human and mouse, 1 million cisreads for Drosophila), and modeled scores under infinite coverage (bottom,
samples with at least 4 million cisreads for human and mouse or 1 million reads for Drosophila). For each plot, the Pearson
correlation coefficient and associated p-value are shown. A) Quality scores are plotted versus the percentage of reads in each
sample with an estimated insert size larger than 650 bp. B) Quality scores are plotted versus the percentage of reads circularized,
or self-ligated restriction fragments for each sample. C) Quality scores are plotted versus the percentage of reads for each
sample on adjacent restriction fragments that whose ends were in opposing orientations, allowing for the possibility of a failed
restriction cut and circularization.
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Figure S3: QuASAR replicate scores across all tested resolutions. A-C) Replicate scores are denoted as points for each sample
with an all to all pairwise comparison scheme within each set of species samples. Pairs include true replicates (gold diamonds),
pseudo-replicates (purple triangles), same tissue of origin but non-replicates (fuchsia squares), and unrelated samples black
circles). For each species, the associated resolution is displayed at the top of each block of samples.
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Figure S4: Determining and validating QuASAR score cutoffs for finding maximum usable resolutions. A) Optimized
cutoff values and associated Gini impurity score sums as a function of starting replicate cutoff. B) Replicate (left) and quality
(right) score distributions, partitioned by loose quality and replicate cutoffs, respectively. Dotted lines donate the best separation
point between partitions based on Gini impurity scoring. C) Resolution limits for each sample determined by loose replicate
and quality cutoffs. The Pearson R value and associated p-value are shown.
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Table S1: Datasets and associated read statistics used for analysis.

Sample Name Source Genome Restriction
Enzyme

Total
Reads

Cis Reads Trans
Reads

Insert Too
Large

Circular
Fragments

Failed RE
Cut

GSE38468 Kc167 Rep1 GEO dm6 HindIII 27,317,496 7,153,329 1,728,135 14,800,469 1,434,825 2,190,451
GSE38468 Kc167 Rep2 GEO dm6 HindIII 31,866,712 12,541,844 2,432,091 10,748,540 3,536,955 2,597,335
GSE61471 16-18hr-embryos Rep1 GEO dm6 DpnII 417,535,739 119,812,224 42,624,920 164,963,795 17,551,101 72,572,666
GSE61471 16-18hr-embryos Rep2 GEO dm6 DpnII 426,049,573 149,950,110 53,923,579 143,370,660 8,237,509 70,557,812
GSE63515 Kc167 Rep1 GEO dm6 DpnII 13,296,137 7,180,064 1,303,959 2,300,660 1,159,378 1,337,490
GSE63515 Kc167 Rep2 GEO dm6 DpnII 16,574,302 8,899,786 1,701,718 2,917,703 1,415,731 1,618,281
GSE69013 BG3-c2 Rep1 GEO dm6 HindIII 26,400,803 3,294,546 765,730 18,986,828 435,228 2,901,226
GSE69013 BG3-c2 Rep2 GEO dm6 HindIII 23,297,036 3,493,941 841,381 15,708,067 386,559 2,853,631
GSE69013 OSC Rep1 GEO dm6 HindIII 21,380,995 2,808,504 628,555 14,995,492 316,543 2,618,351
GSE69013 OSC Rep2 GEO dm6 HindIII 27,825,128 3,399,903 719,024 20,097,331 445,878 3,143,223
GSE69013 S2 Rep1 GEO dm6 HindIII 16,985,283 2,265,853 323,120 11,652,882 326,404 2,411,260
GSE69013 S2 Rep2 GEO dm6 HindIII 15,659,680 1,612,695 247,311 11,352,367 349,835 2,088,731
Encode A549 Rep1 Encode hg38 HindIII 72,612,071 22,858,964 22,845,515 19,816,503 531,128 6,559,691
Encode A549 Rep2 Encode hg38 HindIII 76,607,276 20,620,077 27,333,003 21,615,741 484,748 6,553,431
Encode Caki2 Rep1 Encode hg38 HindIII 124,611,983 15,055,104 14,092,439 63,585,924 2,844,671 29,033,309
Encode Caki2 Rep2 Encode hg38 HindIII 93,196,968 23,626,839 26,169,276 29,991,725 878,961 12,529,949
Encode G401 Rep1 Encode hg38 HindIII 84,180,566 35,343,065 11,022,653 26,205,757 875,727 10,732,964
Encode G401 Rep2 Encode hg38 HindIII 113,149,805 20,646,983 7,428,005 58,384,950 1,728,126 24,961,144
Encode LNCaP-clone-FGC Rep1 Encode hg38 HindIII 98,746,284 7,283,328 23,201,271 60,492,800 699,496 7,068,557
Encode LNCaP-clone-FGC Rep2 Encode hg38 HindIII 77,023,278 7,728,768 27,195,548 35,269,686 551,162 6,277,727
Encode NCI-H460 Rep1 Encode hg38 HindIII 92,808,397 28,822,618 28,659,574 25,700,402 847,299 8,778,177
Encode NCI-H460 Rep2 Encode hg38 HindIII 79,834,246 18,929,104 24,283,233 27,177,532 592,543 8,851,522
Encode Panc1 Rep1 Encode hg38 HindIII 120,072,122 18,626,287 16,865,350 58,867,110 2,119,754 23,592,859
Encode Panc1 Rep2 Encode hg38 HindIII 99,293,901 11,489,787 9,614,681 52,631,353 2,282,382 23,275,062
Encode RPMI-7951 Rep1 Encode hg38 HindIII 86,921,033 21,604,431 32,397,270 24,748,314 610,146 7,560,556
Encode RPMI-7951 Rep2 Encode hg38 HindIII 115,106,366 34,148,233 40,746,072 30,732,770 689,245 8,789,560
Encode SJCRH30 Rep1 Encode hg38 HindIII 5,935,796 1,193,885 1,635,778 2,638,747 67,606 399,746
Encode SJCRH30 Rep2 Encode hg38 HindIII 4,563,098 566,739 1,246,769 2,321,581 76,756 351,201
Encode SK-MEL-5 Rep1 Encode hg38 HindIII 22,536,343 6,479,488 3,202,548 9,753,484 240,286 2,860,413
Encode SK-MEL-5 Rep2 Encode hg38 HindIII 87,123,588 28,037,119 14,125,496 35,118,308 685,888 9,156,287
Encode SK-N-MC Rep1 Encode hg38 HindIII 81,487,185 7,164,206 38,532,406 29,268,260 430,500 6,091,634
Encode SK-N-MC Rep2 Encode hg38 HindIII 107,114,521 15,152,249 44,287,180 37,685,017 870,651 9,119,138
Encode T47D Rep1 Encode hg38 HindIII 71,523,888 23,196,887 20,325,331 21,523,807 431,158 6,046,328
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Encode T47D Rep2 Encode hg38 HindIII 79,824,528 24,965,075 25,287,422 21,929,437 609,170 7,032,989
GSE35156 H1-ES Rep1 GEO hg38 HindIII 99,225,927 15,728,019 11,013,655 62,995,123 1,262,238 8,226,237
GSE35156 H1-ES Rep2 GEO hg38 HindIII 253,250,501 95,596,874 26,508,473 112,747,912 2,544,935 15,851,285
GSE35156 IMR90 Rep1 GEO hg38 HindIII 197,933,659 61,886,805 35,023,655 84,610,225 2,589,483 13,822,591
GSE35156 IMR90 Rep2 GEO hg38 HindIII 128,792,931 40,120,871 38,964,530 44,662,066 1,512,986 3,531,782
GSE48592 GM12878 Rep1 GEO hg38 HindIII 328,028,071 57,950,306 110,045,885 111,768,542 5,076,394 43,184,730
GSE48592 GM12878 Rep2 GEO hg38 HindIII 304,035,507 53,229,613 101,861,532 104,811,348 4,253,306 39,877,692
GSE52457 H1-ES Rep1 GEO hg38 HindIII 351,157,437 128,489,104 35,665,087 159,410,008 3,503,431 24,088,362
GSE52457 H1-ES Rep2 GEO hg38 HindIII 777,847,319 178,802,683 134,554,773 391,997,800 8,936,942 63,550,893
GSE52457 H1-MesenchymalStem Rep1 GEO hg38 HindIII 277,934,243 171,430,338 31,690,827 49,700,845 1,890,971 23,220,087
GSE52457 H1-MesenchymalStem Rep2 GEO hg38 HindIII 311,178,604 185,105,943 36,792,481 63,818,146 1,989,774 23,470,939
GSE52457 H1-Mesendoderm Rep1 GEO hg38 HindIII 498,214,164 135,013,524 60,198,636 256,421,585 5,217,179 41,361,086
GSE52457 H1-Mesendoderm Rep2 GEO hg38 HindIII 372,886,094 160,461,301 26,272,049 159,350,579 2,467,841 24,332,902
GSE52457 H1-NPC Rep1 GEO hg38 HindIII 465,940,053 64,003,384 166,245,873 201,264,454 12,321,072 22,102,878
GSE52457 H1-NPC Rep2 GEO hg38 HindIII 335,841,327 46,344,708 123,413,974 128,678,675 7,862,163 29,540,171
GSE52457 H1-Trophectoderm Rep1 GEO hg38 HindIII 414,429,662 73,609,663 63,851,283 229,901,258 8,549,479 38,515,926
GSE52457 H1-Trophectoderm Rep2 GEO hg38 HindIII 296,493,743 86,565,334 84,448,280 99,629,689 8,558,430 17,290,771
GSE63525 GM12878 Rep1 GEO hg38 MboI 43,775,044 25,501,372 8,216,991 5,233,259 191,622 4,629,274
GSE63525 GM12878 Rep2 GEO hg38 MboI 43,450,927 25,334,027 7,933,669 5,268,787 182,547 4,729,473
GSE63525 HMEC Rep1 GEO hg38 MboI 14,777,441 7,695,744 2,674,969 1,868,373 327,462 2,191,793
GSE63525 HMEC Rep2 GEO hg38 MboI 13,053,060 7,711,262 2,160,367 1,410,567 189,872 1,572,903
GSE63525 K562 Rep1 GEO hg38 MboI 60,146,326 32,470,863 17,107,447 5,896,409 45,008 4,607,175
GSE63525 K562 Rep2 GEO hg38 MboI 47,824,657 28,329,651 15,953,626 2,477,543 22,090 1,024,336
GSE70181 H9-WA09-Dil Rep1 GEO hg38 HindIII 20,126,169 3,436,591 4,574,042 8,447,808 519,041 3,148,600
GSE70181 H9-WA09-Dil Rep2 GEO hg38 HindIII 17,739,992 4,008,970 1,311,554 9,195,616 344,916 2,878,826
GSE70181 H9-WA09-IS Rep1 GEO hg38 HindIII 23,048,639 7,441,353 1,142,568 9,931,964 287,044 4,245,623
GSE70181 H9-WA09-IS Rep2 GEO hg38 HindIII 21,080,066 5,625,889 578,942 10,177,517 576,933 4,120,676
GSE71831 RPE1 Rep1 GEO hg38 MboI 145,305,043 66,291,497 11,590,065 25,922,123 10,534,199 30,960,810
GSE71831 RPE1 Rep2 GEO hg38 MboI 302,117,374 132,699,637 23,177,903 56,145,371 24,179,203 65,904,467
GSE87112 Bladder Rep1 GEO hg38 HindIII 119,226,332 31,474,525 28,941,017 38,564,740 3,472,838 16,772,414
GSE87112 Bladder Rep2 GEO hg38 HindIII 118,535,904 27,454,462 24,512,068 42,143,974 2,886,078 21,538,520
GSE87112 Lung Rep1 GEO hg38 HindIII 73,446,757 15,602,202 27,538,752 22,661,780 3,078,895 4,564,529
GSE87112 Lung Rep2 GEO hg38 HindIII 58,327,055 13,779,993 31,450,140 9,769,326 1,065,990 2,261,261
GSE87112 Psoas Rep1 GEO hg38 HindIII 37,635,363 9,889,874 13,236,010 9,908,577 1,012,717 3,587,964
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GSE87112 Psoas Rep2 GEO hg38 HindIII 26,748,941 7,527,523 9,975,163 6,554,948 615,005 2,076,130
GSE34587 Cortex Rep1 GEO mm10 HindIII 212,614,457 27,556,396 58,771,240 105,882,359 2,900,093 14,147,018
GSE34587 Cortex Rep2 GEO mm10 HindIII 163,357,944 31,257,972 57,065,969 63,079,946 2,165,699 8,580,341
GSE35156 Cortex Rep1 GEO mm10 HindIII 212,614,457 27,556,396 58,771,240 105,882,359 2,900,093 14,147,018
GSE35156 Cortex Rep2 GEO mm10 HindIII 163,357,944 31,257,972 57,065,969 63,079,946 2,165,699 8,580,341
GSE35156 ES Rep1 GEO mm10 HindIII 265,710,217 94,313,379 21,047,025 126,339,528 2,798,212 20,927,249
GSE35156 ES Rep2 GEO mm10 HindIII 164,478,412 42,231,845 20,764,228 87,368,411 2,439,453 11,402,036
GSE49017 AST Rep1 GEO mm10 HindIII 38,561,251 21,058,621 4,391,813 10,063,301 924,013 2,121,440
GSE49017 AST Rep2 GEO mm10 HindIII 34,234,548 17,996,920 3,677,052 9,132,562 1,311,286 2,114,621
GSE49017 NSC Rep1 GEO mm10 HindIII 20,257,064 12,490,185 2,284,336 3,719,539 501,700 1,260,830
GSE49017 NSC Rep2 GEO mm10 HindIII 17,756,656 10,763,970 1,802,998 3,674,406 415,532 1,099,247
GSE60494 ES Rep1 GEO mm10 MboI 101,850,576 37,397,967 18,128,121 17,531,817 7,217,983 21,565,649
GSE60494 ES Rep2 GEO mm10 MboI 73,926,376 23,705,623 10,008,600 13,313,058 8,486,354 18,406,698
GSE63525 CH12-LX Rep1 GEO mm10 HindIII 71,288,879 11,370,618 7,772,879 48,116,005 169,518 3,839,514
GSE63525 CH12-LX Rep1 GEO mm10 MboI 21,214,642 6,809,170 3,496,650 6,682,211 514,707 3,705,464
GSE63525 CH12-LX Rep2 GEO mm10 HindIII 36,593,801 5,810,424 6,863,380 21,517,260 186,512 2,195,847
GSE63525 CH12-LX Rep2 GEO mm10 MboI 27,609,391 7,938,405 4,545,941 9,157,081 879,386 5,082,898
GSE65126 Liver Rep1 GEO mm10 HindIII 53,135,939 15,514,435 4,367,439 26,404,465 716,353 6,130,595
GSE65126 Liver Rep2 GEO mm10 HindIII 254,523,004 48,693,691 17,370,076 154,709,653 2,826,790 30,909,152
GSE70181 Fetal-Liver-Dil Rep1 GEO mm10 HindIII 196,672,664 42,659,146 79,505,086 57,984,060 5,977,620 10,532,404
GSE70181 Fetal-Liver-Dil Rep2 GEO mm10 HindIII 99,608,593 25,491,323 9,986,406 53,839,178 1,167,911 9,111,579
GSE70181 Fetal-Liver-IS Rep1 GEO mm10 HindIII 190,841,201 95,168,973 15,858,814 67,031,529 1,637,766 11,136,586
GSE70181 Fetal-Liver-IS Rep2 GEO mm10 HindIII 103,085,039 34,296,309 4,580,298 51,951,582 1,683,682 10,565,827
GSE76479 MEF Rep1 GEO mm10 DpnII 70,549,803 22,951,554 3,746,804 28,181,934 835,505 14,816,840
GSE76479 MEF Rep2 GEO mm10 DpnII 30,607,750 9,808,604 2,872,556 12,799,295 148,793 4,971,753
GSE76479 PreB Rep1 GEO mm10 DpnII 76,791,457 27,466,613 5,616,514 29,981,046 925,960 12,798,430
GSE76479 PreB Rep2 GEO mm10 DpnII 92,594,100 32,866,073 6,587,365 35,823,863 950,826 16,362,255
GSE76479 macrophages Rep1 GEO mm10 DpnII 38,112,969 12,393,933 6,068,926 16,167,954 341,586 3,135,971
GSE76479 macrophages Rep2 GEO mm10 DpnII 52,530,406 18,282,498 9,537,324 19,793,224 347,049 4,562,078
GSE85515 CD8-T Rep1 GEO mm10 MboI 176,761,858 25,970,292 7,609,752 95,364,492 31,336,926 16,478,238
GSE85515 CD8-T Rep2 GEO mm10 MboI 179,376,530 25,162,394 6,687,851 96,823,586 33,131,244 17,569,215
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