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Abstract

Understanding how neuronal signals propagate in local network is an important step in
understanding information processing. As a result, spike trains recorded with
Multi-electrode Arrays (MEAs) have been widely used to study behaviors of neural
connections. Studying the dynamics of neuronal networks requires the identification of
both excitatory and inhibitory connections. The detection of excitatory relationships
can robustly be inferred by characterizing the statistical relationships of neural spike
trains. However, the identification of inhibitory relationships is more difficult:
distinguishing endogenous low firing rates from active inhibition is not obvious. In this
paper, we propose an in silico interventional procedure that makes predictions about
the effect of stimulating or inhibiting single neurons on other neurons, and thereby gives
the ability to accurately identify inhibitory causal relationships. To experimentally test
these predictions, we have developed a Neural Circuit Probe (NCP) that delivers drugs
transiently and reversibly on individually identified neurons to assess their contributions
to the neural circuit behavior. With the help of NCP, three inhibitory connections
identified by our in silico modeling were validated through real interventional
experiments. Together, these methods provide a basis for mapping complete neural
circuits.

1 Introduction

As proposed by D. O. Hebb [1] a “cell assembly” is a network of neurons that is
repeatedly activated in a manner that strengthens excitatory synaptic connections. An
assembly of this sort has a spatiotemporal structure inherent in the sequence of
activations, and consequently strong internal synaptic strengths, which distinguish them
from other groups of neurons. Although assemblies of this sort can be defined in
numerous ways, one approach is to identify statistically significant time-varying
relationships among simultaneously recorded neurons from the spike trains [2–6].
Obtaining these neural activity measurements requires recording from many neurons in
parallel that can be spatially localized and temporally resolved at sub-millisecond time
scales [7]. Widely used approaches for recording from multiple neurons such as calcium
imaging and voltage sensitive dyes as a proxy for electrical activity or multiple
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implanted micro electrodes do not satisfy all these requirements. Novel instrumentation
is required to meet the challenge of drawing complete neural circuits.

Dissociated neurons can self-organize, acquire spontaneous activity, and form
networks according to molecular synaptogenic drivers that can be visualized and probed
with multi-electrode arrays (MEAs). The work presented here utilizes MEAs to record
signals sub-millisecond time resolution and precise spatial localization. The Neural
Circuit Probe (NCP) uses mobile probes for local chemical delivery to a neural circuit
of cultured neurons on a commercial MEA with 120 electrodes. Local drug delivery
transiently and reversibly modulates the electrical behavior of individually identified
neurons to assess their contributions to the circuit behavior. The dynamics of neuronal
networks require both excitatory and inhibitory signals. Excitatory cells alone cannot
generate ”cell assemblies” because such interconnections would only lead to more
excitation. A balance between excitatory and inhibitory neurons ensures the stability of
global neuronal firing rates while allowing for sharp increases in local excitability which
is necessary for sending messages and modifying network connections [8]. In a neuronal
network described in terms of correlations among statistically significant time-varying
relationships among the spike trains of simultaneously recorded neurons, the detection
of excitatory relationships can be inferred based upon correlations between spikes with
constant latencies that approximate synaptic transmission [9, 10]. However, the
identification of inhibitory relationships is more difficult: distinguishing endogenous low
firing rates from active inhibition is not obvious.

In this paper, we demonstrate that tools from statistical inference can predict
functionally inhibitory synaptic connections and show how inhibition propagates in a
network to affect other neurons. We first fit a Generalized Linear Model (GLM) to
spike trains recorded from neurons in hippocampal cultures, and inferred effective
interactions between these neurons. We then used the fitted model to perform simulated
in silico experiments in which we simulated the effect of silencing individual neurons in
a network on the activity of other neurons. We tested the predictions from these
simulated silencing experiments by performing real experiments in which we applied
Tetrodotoxin (TTX) to silence neurons and thereby validated our computational
approach toward the detection of inhibitory interactions

2 Methods

2.1 Cell culture

Commercial MEAs (Multi-electrode arrays) were sterilized with UV irradiation (for ¿ 30
minutes), incubated with a poly-D- or poly-L-lysine (0.1 mg/ml) solution for at least
one hour, rinsed several times with sterile de-ionized water water and allowed to dry
before cell plating. The culture chamber surrounding the MEA was 25 mm in diameter
and filled with 1 ml of cell culture media. Cell cultures were prepared in two stages.
This was done to allow glia to proliferate and become confluent in the area of the
electrodes (1st plating) and for neurons to grow within a substrate of confluent glia
(2nd plating). Unless otherwise stated, cells were cultured at 125,000 cells per dish.
Mouse hippocampal neurons were used for all experiments described here. All mice
were in a C57BL/6 genetic background and male mouse pups were used for all cell
cultures. Mouse pups were decapitated at P0 or P1, the brains were removed from the
skulls and hippocampi were dissected from the brain [11]. After one week, cultures were
treated with 200 uM glutamate to kill any remaining neurons followed by a new batch
of cells added at the same density as before. Cultures were grown in a tissue culture
incubator (37°C, 5% CO2), in a medium made with Minimum Essential Media with 2
mM Glutamax (Life Technologies), 5% heat-inactivated fetal calf serum (Life
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Technologies), 1 ml/L of Mito+ Serum Extender (BD Bioscience) and supplemented
with glucose to an added concentration of 21 mM. All animals were treated in accord
with University of California and NIH policies on animal care and use.

2.2 Electrophysiology

Most recordings were done in cell culture medium so as to minimally disturb the
neurons. In some cases we instead used an extracellular solution containing (in mM)
168 NaCl; 2.4 KCl; 10 HEPES; 10 D-glucose; 1.8 CaCl2; and 0.8 mM MgCl2. Pipette
solution contained (in mM): 140 potassium gluconate; 4 CaCl2; 8 NaCl; 2 MgCl2; 10
EGTA; 2 Na2ATP and 0.2 Na2GTP. The pH was adjusted to 7.4 with KOH. The
osmolality of external and internal solutions was adjusted to 320 mosmol. Salts were
obtained from Sigma-Aldrich or Fluka; TTX was obtained from Ascent Scientific.
Recordings were done using MultiChannel Systems MEA 2100 acquisition system. Data
were sampled at 20 kHz and post-acquisition bandpass filtered between 200 and 4000
Hz. Recordings were done at 290 to 340 C. All recordings were done on neurons at 7-30
days in vitro (DIV). Data recordings were typically 3.5 to 5 minutes long. Recording
duration was typically kept short to minimize the effects of removing MEAs from the
incubator. Drug manipulations were done with a custom built instrument that allowed
us to apply drug locally.

2.3 Spike sorting

For each MEA recording, we first removed redundancy propagation signals [12] and
then did spike sorting [13]. Extracellular signals were band pass filtered using a digital
2nd order Butterworth filter with cutoff frequencies of 0.2 and 4 kHz. Spikes were then
detected and sorted using a threshold of 6 times the standard deviation of the median
noise level.

The data in Fig 3a were gathered in one recording session and each ”unit”
corresponds to one spike train after the spike sorting algorithms were applied on the raw
data. However, the data in Fig 3d and Fig 3g were gathered in several recording
sessions. So, the labels of units could be inconsistent in different recording sessions after
the spike sorting algorithms were applied. Hence, to make the data consistent across
different recording sessions, for these two datasets, we merged the spike trains from the
same electrode as one unit.

2.4 A pipeline to identify and validate putative inhibitory
connections

We used a novel pipeline to first identify putative inhibitory connections from spike
trains and then validate them with a Neural Circuit Probe (NCP) that we built. Mouse
hippocampal neurons were dissociated and plated on a multi-electrode array (MEA). To
begin with, as shown in Fig 1a, their spontaneous spiking activity was modeled using a
Generalized Linear Model (GLM) in which the outcome is a zero or one (spike or no
spike) random variable and single neurons generate spikes according to a Poisson
process. The rate of this process was determined by the spikes from other neurons.
Parameters of the GLM were fit using a gradient descent algorithm to minimize the
negative log likelihood of the recorded spike trains.

We next conducted in silico interventional experiments to identity inhibitory
connections as shown in Fig 1b. Single neurons were silenced or activated in silico and
then these data were used to infer predicted effects on connectivity using the fixed
parameters from the GLM as determined above. The procedure for running the in silico
interventional experiment was as follows. First, we selected one neuron as our
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interventional target. Throughout the simulation experiment, the state of this neuron
was fixed to either 0 (silenced) or 1 (activated). Then, for all the other neurons, we ran
the GLM with the inferred parameters to get the probabilities of seeing a spike at the
next time point. Each probability represented how likely it was for a neuron to generate
a spike at the next time point. Given the probability, we sampled a binary value (0 or 1)
from a Bernoulli distribution as the state of the neuron for the next time point, where 0
refers to no spike and 1 means spike. We continued doing this to generate simulated
recordings one time point at a time until a desired length T had been reached, where T
is the number of time points in our in silico interventional recording. To find inhibitory
connections, we investigated the generated simulated data to find those neurons that
were negatively correlated (Pearson correlation coefficient) with the intervention taken
on the target neuron. These neurons were considered as potentially inhibited by the
interventional target.

Finally, we conducted real TTX delivery experiments to validate the putative
inhibitory connections predicted from the in silico interventional experiments as shown
in Fig 1c. In these experiments, TTX was delivered using the NCP as a delivery system.
The NCP delivered TTX in a manner highly localized to a single electrode and in
sufficiently low concentration that its potency dropped below threshold once it diffused
beyond a single electrode. The NCP can detect increased impedance as the probe
approached the cell and therefore allowed us to deliver TTX as close as possible to the
cell without directly contacting the cell. Each TTX delivery resulted in the rapid onset
of complete silencing of the neuron to which it was applied. As a result, putative
inhibitory connections were validated when we observed activation of an inhibited
neuron for a duration that approximated the time of TTX-induced silencing.

2.5 Generalized Linear Model

We used GLM to model the spiking of neurons. Let m denote the number of neurons
being recorded and xi,t be the number of spikes of neuron i at time t. We assume xi,t is
drawn from a Poisson distribution with rate λi,t which is written as

λi,t = exp (bi +
m∑
j=1

maxlag∑
l=minlag

θi,j,lxj,t−l). (1)

where bi is a parameter controlling the spontaneous firing rate of neurons i and θi,j,t
denotes the effective interaction from neuron j to neuron i at time lag l. We assume
that the firing rate of neurons i depends on the activities of all neurons in a history
window that spans from time t−maxlag to time t−minlag, where minlag and
maxlag are the minimum and maximum time lags we consider.

Given Eq. 1 for the firing rate of individual neurons, the likelihood for the
observation of neuron i at time t, Li,t is

Li,t = p(xi,t|λi,t) =
λi,t

xi,te−λi,t

xi,t!
. (2)

In spike train data with one millisecond time bin, there are at most one spike at any
time point and therefore xi,t takes the value of 0 or 1. Hence, the log-likelihood is

logLi,t = xi,t log λi,t − λi,t. (3)

The log-likelihood for all the observations in a recording with length T is

logL =

m∑
i=1

T∑
t=maxlag

logLi,t. (4)
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Fig 1. An overview of the procedure that we used to identify and validate direct and
indirect inhibitory connections. (a) A Generalized Linear Model (GLM), in which the
firing of a neuron is modeled as determined by the spikes from other neurons, was used.
Filters of the GLM were inferred from a training recording of spontaneous firings. (b)
In silico experiments were conducted by performing simulated interventions on a neuron
and generating simulated responses with pre-trained GLM filters. Putative inhibitory
connections were then identified by comparing the simulated interventions and
responses. (c) Real drug delivery experiments were conducted to validate the putative
inhibitory connections.

The model described above includes too many parameters and there is nothing in
the model that ensures the inferred parameters to vary smoothly with time, something
that isas expected from interactions between pairs of neurons. Furthermore, the model
has too many parameters and this might cause problems for robustly inferring them. To
ensure the smoothness of the filters, instead of directly using a history window of spikes
in the model, following [14], we use their filtered versions that are created by convolving
with several cosine bumps. To minimize the number of fitting parameters and prevent
overfitting, we add an L− 1 regularizer to the likelihood. These remedies are described
further below.

We first design p cosine basis functions where the lth cosine basis function can be
written as:

fl(t) =
1

2
{1 + cos[a ln (t+ b)−Θl]} (5)

for all times t such that satisfy

−π ≤ a ln (t+ b)−Θl ≤ π

and
fl(t) = 0
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outside the interval defined above. The values of a, b and Θl are manually chosen. One
of the factors to be considered when choosing their values is the locations where the
peaks of the bumps occur. During experiments, we used pairwise cross-correlations to
determine the locations of the peaks.

In the naive GLM without the basis functions, for neuron j, we used a history
window of spikes to model its influence on other neurons. Now the raw spikes are
convolved with p cosine basis functions to get the filtered versions, of which the lth

value is calculated as follows:

x̃j,l,t =
τ∑

∆=1

fl(∆)xj,t−∆,

where τ is the length of the history window that is covered by the cosine basis functions.
Eq. (1) is rewritten as:

λi,t = exp (bi +
m∑
j=1

p∑
l=1

βi,j,lx̃j,l,t), (6)

where βi,j,l is the weight of the lth basis function for the influence from the neuron j to
neuron i.

As mentioned above, to prevent overfitting, we added an L1 regularization term to
penalize non-zero filter parameters. The loss function we want to minimize is rewritten
as

J = −
m∑
i=1

T∑
t=maxlag

logLi,t + r

m∑
i=1

m∑
j=1

p∑
l=1

|βi,j,l|,

where r is the regularization constant. The value of r is decided by doing 10-fold cross
validation on a spontaneous firing recording of 60 seconds. We used the Area Under the
Receiver Operating Characteristic curve (AUC-ROC) as our metric to evaluate the
performance of the fitted model to do predictions on future spikes given previous
spiking histories.

2.6 in silico interventional experiments

To identify inhibitory connections from an ensemble of neurons, one straightforward way
is to investigate the GLM filters obtained by fitting the spike trains, as these filters
represent the relations of neurons captured by GLM. However, the inhibitory effects
among neurons can be rather complex than obvious, and simply using the GLM is
usually not enoughsufficient. For example, two of the inhibitory connections we
identified in this study were not observable from the their corresponding GLM filters,
but became obvious once interventions were applied. Therefore, in this study, we have
proposed a method to conduct in silico interventional experiments which could discover
hidden inhibitory connections by running simulated experiments.

To cold start the simulated experiment, we used a history window of length τ with
none spiking states (i.e., all the neurons take the value 0 in a time window of τ). The
instantaneous firing rate of neuron i at time t was calculated according to E.q. (6) in
Methods section. Therefore, the probabilities of seeing and not seeing a spike are

p(xi,t = 1|λi,t) = λi,te
−λi,t

and
p(xi,t = 0|λi,t) = e−λi,t
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Because in our setting, there is at most one spike in the one millisecond time bin, xi,t
can only take the value of 0 or 1. However, if we run simulated experiments by directly
sampling from a Poisson distribution, the value xi,t takes could be arbitrary instead of
binary. Hence, we normalize the probability of getting a spike at time point t as

p(xi,t = 1|λi,t) =
p(xi,t = 1|λi,t)

p(xi,t = 1|λi,t) + p(xi,t = 0|λi,t)

=
λi,t

1 + λi,t
,

(7)

For neuron i at time point t, we generate the simulated sate by sampling a value
from a Bernoulli distribution with the probability of Eq. (7).

During the in silico interventional experiments, we selected one neuron as our
interventional target and fixed its state to be either 0 (silenced) or 1 (activated). Then,
the responses from other neurons were gathered and compared with the intervention
taken on the target neuron by calculating their Pearson correlation coefficients. Those
neurons that were negatively correlated with the intervention were considered as
potentially inhibited by the interventional target. The algorithm is shown in Algorithm
1.

Algorithm 1: Identifying Putative Inhibitory Connections

input : A recording X of spontaneous firing events and a target neuron t
output : Top k neurons that are potentially inhibited by t
Train a GLM model using X
Conduct in silico experiments where neuron t is intervened
for each neuron i do

Calculate the Pearson correlation coefficient between simulated recordings of
neuron i and neuron t

end
Select top k neurons that have the largest negative Pearson correlation coefficient
with neuron t
return top k neuron ids

2.7 Instrumentation for validating putative inhibitory
connections

Identification of single cell contributions to a neuronal circuit requires precise access to
and control over functionally identified cells. To accomplish this goal we built a neural
circuit probe (NCP) consisting of (1) a head unit that accepts various probes, (2) an
integrated perfusion chamber plus light ring illumination system, (3) a probe control
system with computer interface which implements a simple feedback system for an
automated approach, and (4) a commercial MEA (MEA2100, Multi Channel Systems)
mounted to a custom X-Y translation stage (Fig 2).

The NCP controller uses proportional and integral feedback control to position the
various probes, and can accept a variety of input signals, such as ion current used here.
An amplifier is located on the head unit that amplifies the current signal before going to
the controller. The NCP software allows the operator to engage and disengage the
probe using feedback. It is also used to control the location of the MEA stage beneath
the probe, allowing the operator to position the probe above neurons of interest. A
pneumatic control system attached to the probe regulates a pressure line for chemical
delivery (Fig 2a, Fig 2b). An integrated pressure sensor, connected to the MEA data
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acquisition system, measures the duration and magnitude of pressure for temporal
alignment with the MEA signal.

Local targeted drug delivery with the NCP can be used to modify their electrical
behavior. This was done with small pipettes typically with inner diameters of 1-2
microns. In this example (Fig 2c, Fig 2d) we applied the Na+ channel blocker
tetrodotoxin (TTX, 500 nM) to induce a temporary and reversible cessation of activity
from that cell. Thus with the NCP we can do targeted drug delivery with high spatial
resolution.

Fig 2. Illustration of the Neural Circuit Probe (NCP) and real drug delivery
experiments to validate putative inhibitory connections. (a) Schematic drawing of the
key components. The probe is positioned in x and y to center it in the field of view of
the microscope. Then the MEA is translated in x and y to bring a target neuron
directly under the probe. Finally the probe is automatically lowered, with ion
conductance feedback, to just above, but not touching, the neuron. (b) Overview of the
NCP situated on an inverted microscope. (c) The changes of firing rates at all
electrodes before and after TTX application. Gray dots are electrodes with no spiking
activities recorded. Black dots are electrodes with no spiking rate changes. When we
blocked spiking at the specific electrode (red circle) it had widespread secondary effects
on the firing rates observed at other MEA electrodes. Though the firing rate decreased
for many electrodes (blue dots), for two electrodes it increased (green dots). (d) A
transient increase of probe pressure delivered TTX (500 nM), which reversibly blocked
spiking activity, with high spatial resolution. This process was repeated 3 times.

3 Results

3.1 Identifying Putative Inhibitory Connections

Following the aforementioned procedure, a recording with spontaneous activity from 17
units over a duration of 20 seconds divided into one millisecond time bins was used to

8/17

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 19, 2017. ; https://doi.org/10.1101/204594doi: bioRxiv preprint 

https://doi.org/10.1101/204594


fit the GLM model (Fig 3a). Each unit corresponded to a spike train after spike sorting
and removal of the redundancy inherent in propagation signals [12]. Then unit 10 was
chosen as the in silico interventional target, i.e. it was fixed in a silent state (no spikes
at all times) for 10 seconds and then fixed for 10 seconds in an active state (continuous
spiking). Simulations with the fitted GLM identified five units with the highest
probability to be inhibited by unit 10 (Fig 3c). The strongest candidate for inhibition
by unit 10 was unit 8. Note that the filters from the fitted GLM also suggested that the
connection from unit 10 to unit 8 was predominantly inhibitory (Fig 3b).

Additional in silico experiments on another cell culture were also conducted to
identify putative inhibitory connections by following the aforementioned procedure. For
these experiments, we used a 60 second recording of spontaneous firing events (Fig 3d)
to fit a GLM. The GLM parameters for the connections from unit 12 to five units are
shown in Fig 3e. We calculated the Pearson correlation coefficients between the in silico
intervention on unit 12 and simulated responses of every other neuron. The top five
negatively correlated units were chosen and investigated (Fig 3f). In another example,
we chose unit 23 as the in silico interventional target. Similarly, Fig 3h shows the GLM
parameters for the connections from unit 23 to five other units and Fig 3i shows the top
five units that were identified as candidates for inhibition by unit 23.

3.2 Validation of Inhibitory Connections

Given putative inhibitory connections identified in the first example (Fig 3c), to
validate experimentally that unit 8 was an inhibitory target of unit 10, TTX was
delivered four times on unit 10 (Fig 4a) using the neural circuit probe as a delivery tool.
The instrument delivered TTX in a manner highly localized to a single electrode and in
sufficiently low concentration that its potency dropped below threshold once it diffused
beyond a single electrode. Each TTX delivery resulted in the rapid onset of complete
silencing of the neuron to which it was applied. Delivery of TTX to the electrode
corresponding to unit 10 resulted in the activation of unit 8 and activation of the target
neuron for a duration that approximated the time of TTX-induced silencing. These
experimental data clearly demonstrated that the top inhibitory connection (from 10 to
8) predicted by our simulated experiment was validated by the actual TTX delivery
experiment.

In the second example, 92 was a strong candidate for inhibition by unit 12. To
validate this inferred connection experimentally, we delivered TTX to unit 12 and, as
predicted, observed an inhibitory effect from unit 12 to unit 92 (Fig 4b). It’s also worth
mentioning that even though unit 92 is not the top 1 candidate predicted by our in
silico interventional experiments, it’s within the top 5 predictions out of 120 possible
units. This shows that the in silico interventional experiments could give accurate
predictions of putative inhibitory connections. In the final example, we also delivered
TTX to unit 23 and observed rebound of firing on unit 92 (Fig 4c) which was predicted
by the in silico interventional experiments (Fig 3i).

3.3 Indirect connections

The inhibitory connections identified in this study may not be direct. A unit could be
causing inhibitory effects on another unit through a third unit. To study the
possibilities of inhibitory connections, we have revisited the three examples of inhibitory
connections validated in Fig 4. For each example, we introduced a third unit and
convolved the GLM filters of the two connections in a potential inhibitory connection.
Fig 5 shows the convolution outputs that exhibited inhibitory effects. To understand
the inhibitory effects from unit 10 to unit 8, we show three possible cases where unit 10
could cause an inhibitory effect on unit 8 through a third unit (Fig 6a).
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The second example shown in Fig 3 and Fig 4 illustrates an important feature that
the in silico experiments offers in describing how signals propagate in the network. In
this example the inhibitory effects from 12 to 92 is not obviously manifested in the
filters shown in Fig 3e, i.e. the magnitude of the curve representing the connection from
12 to 92 is not as significant as others. However, this inhibitory effect is ranked high
according to the negative Pearson correlation score given the simulated experimental
results. One explanation for this is the indirect connections among units. It may be the
case that unit 12 is not directly inhibiting unit 92, but it could cause an inhibitory
effect through other units.

To explore this possibility further, we show three possible indirect inhibitory
connections from unit 12 to unit 92 (Fig 6b). Each indirect connection consists of a
predominantly excitatory connection and a predominantly inhibitory connection, which
could cause a net inhibitory effect. Therefore, it supports the idea that the inhibitory
effect from unit 12 to unit 92 were caused by indirect inhibitory connections.

As a final example, Fig 4c shows another inhibitory effect between pairs of neurons,
in this case unit 23 to unit 92, as discovered from the in silico experiments on the fitted
GLM and then validated by experiments. Similarly, we show three indirect inhibitory
connections from 23 to 92 (Fig 6c).

4 Discussion

Understanding how neuronal signals propagate in local network is a prerequisite to
understanding information processing in those networks. The ‘gold standard’ way to
predict how the activity of one neuron influences another is through intracellular paired
recordings along with pharmacologic probes. Using such intracellular recordings, one
can establish the presence or absence of direct or indirect connections between pairs of
neurons and thus to some degree predict how activity in one neuron affects the others.
Inspired by the successes of this technology, we show here how it can be extended to
larger networks of neurons using advanced mechatronic positioning of a probe over an
array of electrodes with the Neural Circuit Probe. As a demonstration of the potential
power of this device, we demonstrated its utility in testing the predictions of in silico
modeling.

We first fitted a GLM model to spikes recorded from a culture using MEAs, then
performed in silico experiments in which we silenced one of the units, and identified
what other units will change their activity upon this inactivation. We then went back to
the culture and silenced the same unit using TTX and observed that the inhibitory
effects predicted by the in silico experiments showed up when TTX was applied.

The results presented here thus opened the door to using statistical models not only
to characterize the statistics of neural spike trains or functional connectivity between
neurons, but to make predictions about the response of the network to changes.
Although using GLM to study the circuitry of a neuronal network is never going to be
as accurate as intracellular recordings, the simplicity of fitting the model to data, and
performing in silico experiments with this model, are great advantages that support the
idea of using this approach to make educated guesses about the likely outcomes of
manipulations to the network, i.e. offering a virtual culture, similar to a previous
attempt to use GLMs to build a virtual retina. [15].

In using the GLM in neural data analysis, one typically assumes that a single neuron
generates spikes via e.g. a Poisson process. The rate of this process is determined by
the spikes from other neurons filtered by interactions that are inferred from data using
convex optimization. The inferred model is then used for a variety of purposes that
include evaluating the role of correlations in shaping population activity, for example, in
the retina [14], the motor cortex [16,17], the functional connectivity between grid
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cells [18], or the relative influence of task related covariates on shaping neural responses
in the parietal cortex [19]. Despite the widespread use of the GLM in neural data
analyses, a potentially very powerful aspect of this class of models has been left
unexplored: the ability of the GLM to make predictions about how a neuronal network
responds to interventions. At the microcircuit level, this amounts to identifying
meaningful interactions between pairs of neurons and using them to make predictions
about how external manipulations of one or more neurons can affect the others. The
main reason for the fact that GLMs have not been used for this purposes so far is that,
in general, the ground truth about connectivity is not known and, therefore, it is not
possible to compare the interactions inferred by GLM with the real ones. The results
presented in this paper add a new dimension to how these statistical models can be
used in neuroscience by showing that, although the relationship between individual
synaptic interactions and those inferred by the GLM may not be known, the inferred
connections can still be employed to make specific predictions about the functional
connectivity of a neuronal network. Our results thus demonstrate how statistical models
can be used to infer neuronal microcircuitry at a detailed level without using more
complicated experimental techniques such as multi-unit intracellular recordings.

Supplementary materials

S1 Appendix. Choosing the regularization constant The performance of the
GLM was evaluated using a Receiver Operating Characteristic (ROC) curve, which
plots true and false positive rates on different axes. The extent to which true positive
rates exceed false positive rates is given by the area under the curve (AUC) and was our
performance metric to evaluate how well the fitted model could predict future spikes
given previous spiking histories. As we can see from Fig 7, the AUC-ROC stops
increasing as we increase the regularization constant r to a certain point. We chose r
(2.5 in our case) that gave us the best AUC-ROC.

S2 Appendix. Additional functionality of the NCP The NCP also
incorporates a mobile electrode to measure extracellular potentials anywhere on the
array, providing a higher spatial resolution of the signal versus the standard MEA (Fig
8). The mobile electrode consists of a 20 micron inner diameter micropipette with a 75
micron platinum electrode inserted in the top [20]. A single channel from the
commercial MEA preamp is repurposed to measure and record from the mobile
electrode. To use the commercial system, the repurposed channel was tapped into using
a small piece of conductive film with an insulating layer on the backside, bypassing the
electrode on the MEA, and inserting the mobile signal. This technique was necessary to
validate the specific neuron that gave rise to the MEA signal of interest.
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Fig 3. Real data examples of the procedure that we used to identify putative inhibitory
connections. (a) A training recording of 17 units for a duration of 20 seconds which
were divided into 1 millisecond time bins. The black bars represent spikes. (b) Filters of
the GLM inferred from the training recording. Note that at different time lags, the
strength of the connection between two units is also different. (c) Simulated data for
top 5 units that were negatively correlated with the intervened unit 10. The red and
blue lines represent the instantaneous firing rates for the simulated recordings. The
labels on the left of the y-axis represent the unit numbers and the labels on the right
represent the range of the instantaneous firing rates (0 to 1). Note that when unit 10
was changed from silent state to active state, conversely, unit 8 changed to silent state
from active state, which implied a putative inhibitory connection. (d) A training
recording of 120 electrodes for a duration of 60 seconds which were divided into 1
millisecond time bins. (e) Filters of the GLM inferred from the training recording. (f)
Simulated data for top 5 units that were negatively correlated with the intervened unit
12. (g) A training recording of 120 electrodes for a duration of 60 seconds which were
divided into 1 millisecond time bins. (h) Filters of the GLM inferred from the training
recording. (i) Simulated data for top 5 units that were negatively correlated with the
intervened unit 23.
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Fig 4. Real TTX experiments to validate putative inhibitory connections. (a) Real
TTX experimental recording where unit 10 was silenced 4 times by delivering TTX.
Unit 8 rebounded every time unit 10 was silenced, which indicated an inhibitory
connection from 10 to 8. (b) Real TTX experimental recording where unit 12 was
intervened. (c) Real TTX experimental recording where unit 23 was intervened.

a b c

Fig 5. Convolutions of the GLM filters from indirect connections. (a) Convolution of
the GLM filters from the connection 10→ m and m→ 8, where m (y-axis) is an
intermediate unit. The convolutions when m is 10 or 8, which indicates a direct
connection, are omitted. (b) Convolution of the GLM filters from the connection
12→ m and m→ 92, where m (y-axis) is an intermediate unit. (c) Convolution of the
GLM filters from the connection 23→ m and m→ 92, where m (y-axis) is an
intermediate unit.
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Fig 6. Indirect inhibitory connections. (a) Three possible cases where unit 10 has an
inhibitory influence on unit 8 through a third unit. The first case consists of an
excitatory connection (10→ 7) and an inhibitory connection (7→ 8). The second case
consists of an excitatory connection (10→ 6) and an inhibitory connection (6→ 8).
The third case consists of an inhibitory connection (10→ 3) and an excitatory
connection (3→ 8). (b) Three possible cases where unit 12 has an inhibitory influence
on unit 92 through a third unit. The first case consists of a predominantly inhibitory
connection (12→ 97) and an excitatory connection (97→ 92). The second case consists
of an excitatory connection (12→ 104) and an inhibitory connection (104→ 92). The
third case consists of an inhibitory connection (12→ 119) and an excitatory connection
(119→ 92). (c) Three possible cases where unit 23 has an inhibitory influence on unit
92 through a third unit. The first case consists of an excitatory connection (23→ 104)
and an inhibitory connection (104→ 92). The second case consists of an excitatory
connection (23→ 50) and an inhibitory connection (50→ 92). The third case consists
of a predominantly inhibitory connection (23→ 97) and an excitatory connection
(97→ 92).
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Fig 7. The AUC-ROCs with respect to r. For each value the regularization term has
taken, we do a 10-fold cross validation and report the mean and variance.

Fig 8. Monitoring electrical activity of a selected neuron. (a, b) No spiking activity
was detected on the MEA for the neuron (arrow) closest to the MEA electrode (black
circle) whereas a simultaneous recording from the mobile electrode shows robust spiking
behavior (compare labelled traces in b). (c, d) The MEA electrode (black circle) closest
to the neuron (c, arrow) showed spiking (d, top trace) but when the mobile electrode
probe was positioned directly over the cell, the corresponding recording had a higher
signal-to-noise ratio.
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