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Abstract 18 

Emerging pathogens are a major threat to public health, however understanding how 19 

pathogens adapt to new niches remains a challenge. New methods are urgently required to 20 

provide functional insights into pathogens from the massive genomic data sets now being 21 

generated from routine pathogen surveillance for epidemiological purposes. Here, we 22 

measure the burden of atypical mutations in protein coding genes across independently 23 

evolved Salmonella enterica lineages, and use these as input to train a random forest 24 

classifier to identify strains associated with extraintestinal disease. Members of the species 25 

fall along a continuum, from pathovars which cause gastrointestinal infection and low 26 

mortality, associated with a broad host-range, to those that cause invasive infection and high 27 

mortality, associated with a narrowed host range. Our random forest classifier learned to 28 

perfectly discriminate long-established gastrointestinal and invasive serovars of Salmonella. 29 

Additionally, it was able to discriminate recently emerged Salmonella Enteritidis and 30 

Typhimurium lineages associated with invasive disease in immunocompromised populations 31 

in sub-Saharan Africa, and within-host adaptation to invasive infection. We dissect the 32 

architecture of the model to identify the genes that were most informative of phenotype, 33 

revealing a common theme of degradation of metabolic pathways in extraintestinal lineages. 34 

This approach accurately identifies patterns of gene degradation and diversifying selection 35 

specific to invasive serovars that have been captured by more labour-intensive 36 

investigations, but can be readily scaled to larger analyses. 37 

Introduction 38 

Understanding how bacteria adapt to new niches and hosts and thus emerge or re-emerge 39 

as a cause of infectious disease in human and animals is of critical importance to 40 

anticipating and preventing epidemic disease [1,2]. With the decreasing cost of genome 41 

sequencing, comparative genomics has become a rich source of insight into the origins and 42 
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movement of bacteria in new pathogenic niches. However, translating whole genome 43 

sequence databases into mechanistic and functional insights remains a challenge. 44 

 45 

Early expectations were that pathogen evolution would be driven primarily by the acquisition 46 

of virulence factors. However, as whole-genome sequencing has become increasingly 47 

routine, a decidedly more complex picture has emerged [3,4]. A pattern of bacterial entrance 48 

to a new niche followed by adaptation through the loss of antivirulence loci and reduced 49 

metabolic flexibility is now recognised as a paradigm of the emergence of important human 50 

pathogens from non-pathogenic bacterial species [5–8]. These new niches can be the result 51 

of virulence factor acquisition providing access to a previously inaccessible niche in a so-52 

called foothold moment [8], or the emergence of new host niches driven by chronic disease 53 

[9–11]. While pathogen and host requirements for infection vary, there is increasing 54 

evidence of parallel evolution in bacteria adapting to the same or similar host niche. This is 55 

perhaps nowhere more evident than in the species Salmonella enterica.   56 

 57 

Salmonella enterica strains that cause disease in warm-blooded mammals lie on a spectrum 58 

from those that have a broad host range and cause self-limiting gastrointestinal infection, to 59 

those that are more restricted in host range, but cause systemic disease and are typically 60 

associated with higher mortality [11,12]. Host-restricted, extraintestinal variants of 61 

Salmonella enterica have evolved independently multiple times from gastrointestinal 62 

ancestors [13], and show a greater degree of gene degradation compared to their generalist 63 

relatives [14–16]. There are common patterns in the genes that undergo pseudogenization in 64 

invasive Salmonella, most obviously an extensive network of genes required for anaerobic 65 

metabolism in the inflamed host [17,18], a pattern with parallels in other host-adapting 66 

enteropathogens [5].  67 

 68 

Identifying these signals of parallel evolution has been challenging, relying mainly on manual 69 

annotation and comparison of pseudogenes [17,18]. Detection of pseudogenes in particular 70 
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relies on ad-hoc criteria to identify large truncations, deletions, or frameshifts [19,20]. It is 71 

rare that the same genes or complete pathways are pseudogenized in host-adapted species; 72 

rather interpretation has relied on identifying overrepresentation of independent 73 

pseudogenization events clustered in certain pathways [17]. If pseudogenization leads to 74 

pathway attenuation or inactivation, it seems likely that reduced selective pressure will lead 75 

to a higher incidence of detrimental mutation fixation in other genes in these pathways. 76 

Indeed, we have previously shown that functional variant calling, based on sequence 77 

deviation from patterns of conservation observed in deep sequence alignments, shows a 78 

similar functional signal in host-restricted Salmonella enterica serovar Gallinarum to 79 

pseudogene analysis [21], identifying a larger cohort of genes where constraints on drift 80 

appear to have been lifted during host-adaptation. 81 

  82 

In previous work we developed DeltaBS, a profile hidden Markov model (HMM) based 83 

approach to functional variant calling [21]. The basic assumption of this approach is that 84 

variation in conserved positions of a protein sequence is more likely to affect protein function 85 

than variation in less conserved regions. This approach can integrate information about 86 

nonsynonymous mutations, indels, and truncations. We have previously shown that DeltaBS 87 

can successfully identify functional changes in genes that would be missed by standard 88 

pseudogene analysis [22], and that a subset of genes in host-adapted strains appear to 89 

accumulate large DeltaBS values [21]. Additionally, others have observed similar changes in 90 

DeltaBS distributions during adaptation of Salmonella to a single immunocompromised host 91 

[10].  We generally assume that a large DeltaBS value is indicative of a decay in protein 92 

function, however a modest increase in DeltaBS associated with a phenotype may instead 93 

be indicative of diversifying selection.  94 

 95 

Here, we have leveraged these previous observations to identify signatures of mutational 96 

burden consistent with adaptation to an invasive lifestyle. We have developed a random 97 

forest classifier using delta bitscore (DeltaBS) functional variant calling [21] that can perfectly 98 
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separate intestinal Salmonella serovars from host-adapted, extraintestinal serovars. We use 99 

random forest models because they perform well on datasets with few informative variables 100 

[23,24], and the decision tree structure they employ has the potential to detect functional 101 

relationships (i.e. epistasis) between genes [25,26]. They have been applied successfully in 102 

the past to predict microbial phenotype using gene presence/absence data [27], and SNPs 103 

already known to be associated with phenotype [28,29]. We show that these models 104 

produce interpretable signatures of host-adaptation, and furthermore that these signatures 105 

can be detected in strains of Salmonella associated with invasive disease in 106 

immunocompromised populations in sub-Saharan Africa. 107 

Results 108 

Constructing a random forest classifier for extraintestinal Salmonellae 109 

The approach taken in this investigation is summarised in Fig 1, and described below. We 110 

built our model using a collection of genomes from well-characterised reference strains of 111 

gastrointestinal and extraintestinal Salmonella serovars (S1 Table), drawing on the extensive 112 

curation of orthology relationships performed by Nuccio and Bäumler [17]. These strains 113 

were originally characterised as “gastrointestinal” or “extraintestinal” based on common 114 

patterns of gene degradation, host restriction and clinical characteristics observed among 115 

the extraintestinal strains [17], and we have employed this same categorisation our analysis. 116 

We scored the functional importance of sequence variation by comparing the protein coding 117 

genes of each serovar to profile HMMs from the eggNOG database [30], designed to capture 118 

patterns of sequence variation typically seen in the protein coding genes of 119 

Gammaproteobacteria (see Methods). 120 

 121 
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 122 

Fig 1 | Overview of the approach employed in this study 123 

For each genome, the functional significance of sequence variation within protein coding 124 

genes is quantified using the DeltaBS metric. Following scoring, a bootstrap sampling of 125 

genomes are used to train each decision tree. For each node in the tree, a random subset of 126 

genes are sampled, and the most informative gene from this set is chosen to split the data. 127 

For each node in the tree, the predictive utility of the selected gene (variable importance) is 128 

tested by calculating how well the gene separates the samples according to phenotype.  129 

 130 

We then employed random forests to identify the genes which were most informative of 131 

phenotype when viewed collectively. Random forests work by building an ensemble of 132 

decision trees designed to predict a characteristic of the samples [31], in this case 133 

adaptation to an extraintestinal, or invasive, niche. For each node in the decision tree, the 134 

best gene of a random sampling from the training gene set is selected according to its ability 135 

to separate a randomly selected subset of samples by phenotype based on DeltaBS values. 136 

The process of building a random forest produces measures of variable importance that can 137 

be used to assess the relative utility of different genes in classification of Salmonella strains 138 

based on lifestyle. 139 

A small subset of genes are strongly predictive of invasiveness in Salmonella 140 

To obtain an indication of the proportion of the genome that shows patterns of unusual 141 

sequence variation associated with an invasive phenotype, we trained a random forest 142 

model on a set of 6,438 orthologous genes. Accuracy of the model was assessed using out-143 
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of-bag accuracy. This out-of-bag (OOB) measure of accuracy gives us an indication of how 144 

well each decision tree in the forest performs at predicting phenotype in a serovar it has 145 

never encountered before, using information on DeltaBS differences collected from other 146 

serovars. Next, we performed iterative feature selection to improve the performance of the 147 

model. This process involved repeated rounds of selecting the top 50% of predictors and re-148 

training the model, until the model achieved perfect OOB predictive performance on the 149 

training dataset (Fig 2A). When the full set of filtered orthologous genes was used to build a 150 

model, a subset of genes ranked much higher than the others in variable importance (VI) 151 

(Fig 2B). We then saw a tailing off of VI, resulting in 4,721 orthologous groups either not 152 

being used in the model, or not improving classification accuracy (as indicated by VI = 0). 153 

This set of genes was discarded in the the first round of feature selection, and a subsequent 154 

1,521 genes were discarded in the subsequent three rounds. The final model used 196 of 155 

the original 6,438 genes for prediction (S2 Table). This model additionally achieved perfect 156 

classification accuracy on an independent set of genomes of the same serovars as our 157 

training data (Fig S1). We tested for overfitting using permutation tests, and for correlation 158 

bias [32] using a variety of alternative model building strategies, and found no evidence for 159 

either phenomenon in our model (File S1).  160 
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 161 

Fig 2 | A subset of Salmonella genes are strongly indicative of invasive potential 162 

A: Out-of-bag votes for phenotype of each serovar cast by each model. Model 1 is the model 163 

built using all predictor variables, then each successive model was built using sparsity 164 

pruning from the previous model’s predictor variables. Model 5 is the final model with 100% 165 

accuracy. Out-of-bag votes include only those votes cast by trees that were not trained on a 166 

given sample. The dashed grey line indicates the voting threshold to classify an isolate as 167 

invasive. Invasive serovars are coloured in red and gastrointestinal serovars are coloured in 168 

blue. 169 
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B: Of all genes used in the original training dataset, a small minority are given high 170 

importance in identifying invasive strains. Variable importance is shown for the top 1000 171 

genes used in the original training set. Variable importance was measured as average 172 

decrease in Gini index in a random forest model trained on all orthologous groups that met 173 

the inclusion criteria (N = 6,438).  174 

C: Functional categories associated with the top predictive genes.  175 

D: Mutations in mrcB (penicillin-binding protein 1b), one of the top three predictors. 176 

Mutations in different strains are colour-coded, with bars in red indicating a mutation in an 177 

extraintestinal strain and bars in blue indicating a mutation in a gastrointestinal strain. An 178 

estimate of the effect of the mutation on protein function (DeltaBS) is shown on the y-axis, 179 

with positive values indicating higher chance of a mutation impacting protein function. The x-180 

axis represents the length of the protein.  181 

Predictive genes are typically degraded or absent in invasive isolates 182 

We anticipated that the majority of informative genes identified in our study would be genes 183 

that showed functional degradation in invasive isolates but not in gastrointestinal isolates. Of 184 

the top predictors in our study (N = 196), 154 showed significantly greater mutational burden 185 

in extraintestinal strains compared to gastrointestinal strains (Mann-Whitney U test, adjusted 186 

P-value < 0.05), compared to 9 genes that showed significantly greater mutational burden in 187 

gastrointestinal strains. Of the genes that were more conserved in invasive isolates, one was 188 

the aldo-keto reductase yakC, which was deleted or truncated in all but one gastrointestinal 189 

strain and intact in all invasive strains. Another was the chaperone protein yajL, which 190 

appears to be important for oxidative stress tolerance [33,34].  191 

 192 

Among the top predictors were several sets of genes belonging to the same operon (S2 193 

Table). Examples included the ttr, cbi and pdu operons, which are all required for the 194 

anaerobic metabolism of 1,2-propanediol [35]. These operons have previously been 195 

identified as key degraded pathways in invasive isolates [16–18], and indicate the 196 
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agreement of this method with other studies linking loss of gene function to host niche. 197 

Overall, a large proportion of the identified genes were involved in metabolism (Fig 2C), 198 

consistent with the findings of similar studies [17,18]. Of the 167 central metabolism genes 199 

identified by Nuccio and Bäumler (2014) as truncated or deleted in at least one 200 

extraintestinal serovar, only one of these was previously reported to be truncated in > 4 201 

serovars. In contrast, we found that 20 of the 167 central metabolism genes were identified 202 

by our model as informative of phenotype, indicating that including signal from more subtle 203 

forms of loss of function improves our ability to detect parallelism across lineages of invasive 204 

Salmonella. Of the 13 genes reported to be frequently disrupted by Nuccio and Bäumler, our 205 

approach identified 9. The other 4 were either not a match to profile HMMs in our database, 206 

or the truncation did not fall within the span of the model. Other major categories affected 207 

include proteins involved in cell wall and membrane function, perhaps suggesting changes 208 

affecting recognition by the host immune system, and signal transduction, suggesting some 209 

degree of consistent regulatory rewiring during adaptation to an extraintestinal niche.  210 

 211 

Information provided by multiple genes was often more informative of phenotype than a 212 

single gene individually, as was the case for fimD and fimH (Fig S2). FimD and FimH 213 

constitute central components of type 1 pili, and both are required for expression of normal 214 

fimbriae [36]. This demonstrates that our approach is capable of identifying epistatic 215 

relationships between genes, where a modification in function of one gene masks the 216 

functional status of the other. 217 

Sequence changes in key indicator genes involve independent mutations in each 218 

serovar, contributing to similar functional outcomes 219 

When examining individual genes that showed differences in mutational burden between 220 

invasive and gastrointestinal isolates, we found that most of these mutations had occurred 221 

independently, and had occurred at different sites in the protein. Using a permissive 222 

threshold (DBS>3), or a conservative threshold (DBS>5), there were close to twice as many 223 
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deleterious, independent mutations in the genes of the invasive serovars than those of the 224 

gastrointestinal (476:910; 537:991, respectively, see Methods). This phenomenon was even 225 

more pronounced when only mutations with DBS over the upper quartile were counted 226 

(249:612, Table S3). While the majority of genes identified appeared to be cases of gene 227 

degradation in invasive lineages, some genes showed more subtle signs of mutational 228 

burden, restricted to nonsynonymous changes of modest predicted functional impact.   229 

 230 

An example of this, Fig 2D, illustrates mutation accumulation in one of the top candidate 231 

genes, mrcB, encoding penicillin-binding protein 1b (PBP1b). Not only does mrcB carry more 232 

mutations in invasive serovars compared to gastrointestinal serovars, the mutations have 233 

occurred independently in different positions within the protein. Penicillin-binding proteins are 234 

the major target of β-lactam antibiotics and are important for synthesis and maturation of 235 

peptidoglycan [37]. PBP1b in particular extends and crosslinks peptidoglycan chains during 236 

cell division. While PBP1b is not essential, it has been shown to be synthetically lethal when 237 

the partially redundant mrcA/PBP1a is deleted, and is important in E. coli for competitive 238 

survival of extended stationary phase, osmotic stress [38], and —  in Salmonella Typhi —  239 

growth in the presence of bile [39]. Bile is an important environmental challenge for 240 

Salmonella, particularly for extraintestinal serovars which colonize the gall bladder [40]. 241 

While there are more mutations in invasive than in gastrointestinal serovars, the mutations 242 

that occur in this protein are all amino acid substitutions of modest predicted impact. This 243 

suggests that sequence changes could result in a modification of protein function, rather 244 

than a loss, consistent with the importance of PBP1b for the survival of S. Typhi during a 245 

typical infection cycle [39].  246 

S. Dublin and S. Enteritidis serovars are more difficult to classify than others 247 

To anticipate the performance of our random forest model on new data we computed out-of-248 

bag (OOB) error. Because random forests train each decision tree on a random subset of 249 

the training data, OOB error can be computed by testing the performance of these trees on 250 
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data they have not been trained on, providing inbuilt cross-validation [31]. In our case, 251 

perfect OOB classifications were only achieved by the fifth iteration of the model. The need 252 

for iterative improvement of the model came from difficulty in correctly classifying the 253 

reference strains for serovars Enteritidis and Dublin. This is reflective of their relatively 254 

recent divergence and niche adaptation compared to other serovars in the study (Fig S3, 255 

Langridge et al. 2015). S. Gallinarum was classified much more readily than S. Enteritidis 256 

and S. Dublin, despite being closely related to both serovars, perhaps due to its host 257 

restriction.  258 

 259 

S. Enteritidis was initially mis-classified as invasive, indicating that it shares genomic trends 260 

with invasive lineages. Genomic analyses have indicated that the ancestor of S. Enteritidis 261 

previously possessed intact pathogenicity islands (SPI-6 and SPI-19), each encoding a type 262 

six secretion system [18,41]. These loci have been implicated in host-adaptation and survival 263 

during extraintestinal infection [42,43], and it has been speculated based on their loss and 264 

other evidence that classical S. Enteritidis has been adapting towards greater host 265 

generalism with respect to its ancestral state [18]. This could explain the greater number of 266 

disrupted and deleted genes relative to other gastrointestinal serovars used in this study, 267 

and the difficulty in classifying it correctly. Conversely, S. Dublin was initially mis-classified 268 

as gastrointestinal. In previous studies S. Dublin has been shown to possess fewer 269 

pseudogenes than related invasive isolates [17,18], suggesting a lower degree of host 270 

adaptation than other invasive isolates. Indeed, S. Dublin is more promiscuous in its host 271 

range, primarily infecting cattle [44] while still causing sporadic human disease [45]. It seems 272 

likely that a subset of informative genes identified in early iterations of the model may have 273 

been indicators of host restriction or generalism rather than broad extraintestinal adaptation.  274 
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Patterns of gene degradation identified in established invasive lineages are present in 275 

novel lineages of S. Typhimurium and S. Enteritidis associated with systemic 276 

infection 277 

In recent years there have been reports of novel S. Typhimurium and S. Enteritidis lineages 278 

associated with invasive disease in sub-Saharan Africa [46–48] in populations with a high 279 

prevalence of immunosuppressive illness such as HIV, malaria, and malnutrition [49]. These 280 

lineages contribute to a staggering burden of invasive non-typhoidal salmonella (iNTS) 281 

disease, which is responsible for an estimated 3.4 million cases and circa 680,000 deaths 282 

annually [50]. Based on epidemiological analysis, high-throughput metabolic screening of 283 

selected strains, and analysis of pseudogenes it has been suggested that these lineages 284 

may be rapidly adapting to cause invasive disease in the human niche created by 285 

widespread immunosuppressive illness [11,46–48,51].  286 

 287 

Two iNTS-associated lineages have recently been described within serovar Enteritidis [48], 288 

geographically restricted to West Africa and Central/East Africa, respectively. Initial 289 

observations have demonstrated that a representative isolate of the Central/East African 290 

clade has a reduced capacity to respire in the presence of metabolites requiring cobalamin 291 

for their metabolism and has lost the ability to colonize a chick infection model [48], 292 

suggesting adaptation to a new host niche. Similarly, two iNTS disease associated lineages 293 

have been described in serovar Typhimurium [47], both members of sequence type 313 294 

(ST313), generally referred to as Lineage I and II in the literature. Lineage II appears to have 295 

largely replaced Lineage I since 2004, and it has been suggested this is due to Lineage II 296 

possessing a gene encoding chloramphenicol resistance [47]. Laboratory characterization of 297 

Lineage II strains has shown that they are not host-restricted [52,53], but do appear to 298 

possess characteristics suggestive of adaptation to an invasive lifestyle [54–57], though it is 299 

important to note that this is a complex trait and not easily quantified.  300 

 301 
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Given the evidence of adaptation to an invasive niche in these lineages, we asked if 302 

genomics signatures of extraintestinal adaptation we had detected previously could be 303 

detected in iNTS disease associated lineages. To this end, we applied our predictive model 304 

trained on well-characterized extraintestinal strains to calculate an invasiveness index, the 305 

fraction of decision trees in the random forest voting for an invasive phenotype. First, we 306 

compared isolates from African iNTS-associated clades of S. Enteritidis (N=233) to a global 307 

collection of isolates generally associated with intestinal infection (N=100) [48].  308 

 309 

Our model gave iNTS-associated S. Enteritidis strains a higher invasiveness index than the 310 

globally distributed isolates (Fig 3A,B, Table S4), indicating the presence of genetic changes 311 

paralleling those that have occurred in extraintestinal serovars of Salmonella. Similar gene 312 

signatures were only rarely observed in the global epidemic clade (Fig 3C). These findings 313 

are consistent with the metabolic changes observed by Feasey et al. [48] in the 314 

Central/Eastern African clade compared to the global epidemic clade. In particular we found 315 

signs of gene sequence variation uncharacteristic of gastrointestinal Salmonella across a 316 

number of key genomic indicators, including tcuR, ttrA, pocR, pduW, eutH, SEN2509 (a 317 

putative anaerobic dimethylsulfoxide reductase) and SEN3188 (a putative tartrate 318 

dehydratase subunit), all in pathways previously identified by Nuccio and Bäumler [17] as 319 

being involved in the utilization of host-derived nutrients in the inflamed gut environment. 320 

This indicates that our model is able to identify early signatures of adaptation, even in these 321 

recently emerged strains that still retain some capacity to cause enterocolitis [48]. 322 
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323 
  324 

Fig 3 | Voting of the model on African iNTS and global gastrointestinal isolates 325 

A: Maximum likelihood phylogeny of all S. Enteritidis isolates included in the study, 326 

annotated with invasiveness ranking and clade (note: Outlier refers to the distinct sister 327 

clade of the global epidemic strains identified by [48], while Other refers to strains that don’t 328 

belong to a named clade).  329 

B: Invasiveness indices for African and non-African clades of Salmonella. Lower and upper 330 

boundaries of the boxplots correspond to the 25th and 75th quantiles.  331 

C: The proportion of isolates from each tested dataset carrying a hypothetically attenuated 332 

coding sequence (HAC, defined by a DeltaBS>3 relative to the reference serovar). Genes 333 
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are ordered by the amount of degradation observed in African clades. African strains are 334 

shown in the positive y-axis in darker grey, global strains are shown in the negative y-axis in 335 

lighter grey. 336 

 337 

To confirm this, we performed an additional comparison of S. Typhimurium ST313 isolates 338 

(N=208), to global isolates from other STs, predominantly ST19, associated with 339 

gastroenteritis (N=51) [51,58]. Similarly to iNTS associated S. Enteritidis isolates, S. 340 

Typhimurium ST313 isolates has a higher invasiveness index than isolates from other STs 341 

(Fig S4, Table S5). Within ST313, Lineage II scored higher than Lineage I, possibly 342 

suggesting differential adaptation to the extraintestinal niche. We found that there were in 343 

fact more degraded genes unique to Lineage I than Lineage II, but that these genes were 344 

assigned less weight in the model, so did not impact score as strongly (Figure S2  & S3). 345 

Interestingly, ST313 has recently been shown not to be entirely restricted to Africa, with 346 

isolation reported in Brazil [59] and the UK [58], associated primarily with gastrointestinal 347 

disease. We included a collection of UK ST313 strains [58] in our analysis, and found that 348 

their invasiveness index tended to be elevated compared to non-ST313 salmonellae, and 349 

intermediate between Lineage I and II, suggesting that this adaptation is not restricted to 350 

circulating African strains, as it can be seen in strains collected from other countries as well 351 

(Fig S5). This observation is consistent with the work of Ashton et al., who noted shared 352 

pseudogenes and phenotypic traits in UK and African ST313 isolates. This suggests our 353 

model is capturing features here associated with the ability to colonize an extraintestinal 354 

niche, rather than enter it in healthy individuals. 355 

 356 

In addition to the iNTS lineages we investigated, some other strains had unusually high 357 

invasiveness indices. Among the top scoring isolates outside of the African S. Enteritidis 358 

lineages are Ratin strains, a rodenticidal lineage used as commercial rat poison before the 359 

1960s [60]. In S. Typhimurium, a clade containing strains DT99, DT56 and U313 also scored 360 
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highly. These strains appear to be adapted to birds, and DT99 and DT56 have been 361 

reported to be highly virulent in pigeons [12,61–63]. 362 

 363 

While the above data suggests that our model is detecting genetic changes associated with 364 

extraintestinal survival, it is difficult to infer directionality from large isolate collections. We 365 

have addressed this using a unique case of accelerated adaptation over the course of a 366 

single infection (Fig 4). We scored the invasiveness index of a collection of hypermutator S. 367 

Enteritidis isolates collected over a ten year period that were adapting to chronic systemic 368 

infection of an immunocompromised patient [10]. We found a significant positive correlation 369 

between invasiveness index and duration of carriage (r=0.96, n=6, P=0.002). Additionally, 370 

there was  a significant shift over time in the DeltaBS distribution for the genes in our model 371 

as compared to the rest of the genome (P=7.576e-05, Mann Whitney U test). This suggests 372 

a specific change in selective pressure on genes inferred to be important for extraintestinal 373 

survival from established invasive serovars, and provides evidence for parallel adaptation. 374 

 375 
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Figure 4 | Invasiveness indices and DeltaBS (DBS) values for isolates collected during long 376 

term invasive infection of an immunocompromised patient (Klemm et al. 2016). Black points 377 

show the increase in the invasiveness index over time. Boxplots show a significant shift in 378 

DBS distribution over the duration of carriage for genes selected by our model built from 379 

well-characterised invasive serovars as compared to the rest of the proteome. Isolates from 380 

[10]. DBS distributions for 2001 have been pooled, but are representative for all three 381 

isolates individually. The y-axis for DBS values has been truncated for better visualisation.  382 

Discussion 383 

Parallel evolution appears to be common in niche adaptation, which allows us to identify 384 

genes that are important for survival in different environments [64]. Parallelism has been 385 

observed across vastly different time scales in adapting pathogens. Parallel evolution in the  386 

distantly related genuses Salmonella and Yersinia during adaptation to invasive infection of 387 

the human host has led to independent losses of the ttr, cbi and pdu genes, important for 388 

anaerobic metabolism during intestinal infection [5]. Within genuses, parallelism has been 389 

observed when distinct lineages acquire similar virulence factors leading to similar 390 

phenotypes, as with Yersinia pseudotuberculosis and enterocolitica [8], or the repeated 391 

emergence of the Shigella phenotype within the Escherichia [6]. Even on the scale of a 392 

single human lifetime, parallel adaptation has been observed in Pseudomonas aeruginosa 393 

lineages adapting to infection of the lungs of children with cystic fibrosis [9], or a 394 

hypermutator strain of Salmonella adapting to an immunocompromised host [10]. With 395 

pathogen sequencing for disease surveillance becoming increasingly routine [65–67], we 396 

have the opportunity to search for signals of parallel evolution as new pathogens emerge, or 397 

old pathogens expand into new niches.  398 

 399 

Here, we have developed an approach for automatically learning which genes contribute to 400 

this parallel adaptation. Leveraging the DeltaBS functional variant scoring approach we 401 

developed previously [21] allowed us to construct scores which integrate independent 402 
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mutations and indels that impact gene function. Using these scores, we were able to 403 

construct a classifier model which is able to separate Salmonella serovars adapted to an 404 

extraintestinal niche from gastrointestinal strains. Importantly, the random forest classifier 405 

that we used produces interpretable lists of genes involved in this adaptation, which agree 406 

with results in the literature attained through manual curation of pseudogenes. Additionally, 407 

we have shown that this classifier is able to identify nascent signatures of adaptation in 408 

strains of Salmonella which have been evolving in response to large populations of 409 

immunocompromised patients in resource-poor nations.  410 

 411 

Other automated approaches to detecting adaptation have been developed which search for 412 

SNPs [68] or words [69,70] associated with phenotype. These approaches, termed microbial 413 

genome-wide association studies (GWASs), have used techniques adapted from human 414 

GWASs, but better cater to methodological issues that arise due to the differences between 415 

human and bacterial inheritance patterns. Major differences impacting analyses are stronger 416 

linkage disequilibrium (LD) between genetic variants in bacterial genomes, greater 417 

population stratification, and often stronger selection for traits [71]. Greater LD and 418 

population stratification often result in traits being linked closely with particular lineages, and 419 

a large number of variants unique to a lineage being spuriously associated with phenotype. 420 

Correction for population stratification allows greater discrimination of true and false positive 421 

associations, but results in a substantial loss of power to detect true positives [71], 422 

particularly in phenotypes that are highly polygenic and are not under strong positive 423 

selection [72]. This can be corrected by increasing the sample size of the study, but 424 

increasing sample size can make measurement of complex phenotypes infeasible [23].  425 

 426 

A number of machine learning approaches to predicting phenotype from genotypic 427 

information have also been recently developed. A notable example is a Support Vector 428 

Machine (SVM) based approach to predicting host range in Salmonella enterica and 429 

Escherichia coli [73], as it has a similar aim of predicting strains with a higher probability of 430 
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causing severe disease. We have taken a markedly different approach to other machine 431 

learning based studies, primarily in our use of few, distantly related training examples, rather 432 

than densely sampled strains across a narrower phylogenetic distance. This is because we 433 

wanted to prevent over-fitting of the model through the inclusion of predictors that were 434 

informative of phylogeny rather than phenotype, and we wanted an accurate estimation of 435 

predictive error, which cannot be achieved using traditional cross-validation when there is a 436 

strong correlation structure in a dataset [74]. We have also taken additional steps to examine 437 

the genes and criteria used by the model to make predictions, and have presented these in 438 

Supplemental Table S2, in order to aid the reader’s understanding of how the model makes 439 

predictions, and what this teaches us about the biology of this phenotype. 440 

  441 

The use of DeltaBS output as training variables differs from current approaches by allowing 442 

the estimation of the combined effects of variants, both common and rare, on gene function. 443 

The weighting scheme can also combine data on gene presence/absence, indels and SNPs 444 

into a single metric. It significantly reduces the number of association tests that need to be 445 

performed to comprehensively capture much of the genetic diversity in a species, increasing 446 

power to detect associations, and reducing the requirement for such large sample sizes. The 447 

approach also aids in identifying genetic variants that are most likely to have a phenotypic 448 

effect within LD blocks. The DeltaBS variant scoring approach can be readily applied to large 449 

datasets, and could be employed in a linear mixed model (LMM) based association testing 450 

framework [68], or used in a hybrid LMM-random forest based approach [75] to preserve the 451 

ability of the metric to detect epistasis between genes [26].  452 

Conclusions 453 

In this study, we have demonstrated the insight to be gained by the layering of machine 454 

learning approaches to better understand niche adaptation in a bacterial pathogen. Firstly, 455 

profile hidden Markov models allow us to capture information on common patterns of 456 
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sequence variation in protein families in order to understand the functional significance of 457 

specific mutations. Using data on the accumulation of functionally impactful mutations across 458 

the proteome as input, random forests then allow us to identify genes that display a 459 

difference in selective pressures between lineages with different phenotypes. Not only has 460 

this approach proved effective at identifying biological mechanisms behind bacterial niche 461 

adaptation, it has also allowed us to detect the emergence of new extraintestinal lineages by 462 

searching for these recurrent patterns of mutation accumulation in a way that allows the 463 

recognition of novel mutations as cases of the same underlying shift away from the 464 

sequence constraints a gene is usually subjected to. We believe this general approach will 465 

be broadly applicable to any pathogen where multiple lineages are adapting to the same 466 

niche, and will be able to detect signatures of adaptation that are missed by other methods. 467 

Methods 468 

Genome data and identification of orthologs 469 

High quality genomes for 13 well-characterised Salmonella enterica serovars were retrieved 470 

from the NCBI database (accessions and serovar information can be found in S1 Table). 471 

The serovars were divided into gastrointestinal and extraintestinal serovars according to the 472 

classifications made by Nuccio and Bäumler [17]. Ortholog calls were also taken from the 473 

Supplementary Material of Nuccio and Bäumler [17]. A core gene phylogeny for the strains 474 

used to build the model was produced using RAxML [76], based on a core gene alignment 475 

created in Roary [77].  476 

Measuring the divergence of genes from predicted sequence constraints 477 

Profile hidden Markov models (HMMs) for Gammaproteobacterial proteins were retrieved 478 

from the eggNOG database [30]. We chose this source of HMMs because it is publicly 479 

available, allowing for better reproduction of analyses, and we feel it provides a good 480 

balance between collecting enough sequence diversity to capture typical patterns of 481 
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sequence variation in a protein, without sacrificing sensitivity in the detection of deleterious 482 

mutations, as we have observed with Pfam HMMs [21]. Each protein sequence was 483 

searched against the HMM database using hmmsearch from the HMMER3.0 package 484 

(http://hmmer.org). The top scoring model corresponding to each protein was used for 485 

analysis (N = 8,060 groups). Orthologous groups (OGs) with no corresponding eggNOG 486 

HMM, or more than one top model hit were excluded from further analysis (N = 1,524). If 487 

most genes in an OG had a significant hit (E-value<0.0001) to the same eggNOG model, 488 

any genes within this OG that did not were assigned a score of zero, reflecting a loss of the 489 

function of that protein. These cases typically reflected a truncation that had occurred early 490 

in the protein sequence. Additionally, genes with no variation in bitscore for the match 491 

between protein sequences and their respective eggNOG HMM across isolates were 492 

excluded (N = 188). After this filtering process, 6,439 orthologous groups remained for 493 

analysis. Residue-specific DeltaBS (as in Fig 2D) was calculated by aligning orthologous 494 

sequences, choosing a reference sequence (from S. Typhimurium), and substituting each 495 

variant match state and any accompanying insertions into the reference sequence and 496 

calculating the difference in bitscore caused by the substitution.  497 

Training a random forest classifier 498 

The R package “randomForest” [78] was used to build random forest classifiers using a 499 

variety of parameters to assess which were best for accuracy. We used out-of-bag (OOB) 500 

error rate to measure the performance of the model [31]. Out-of-bag error is calculated 501 

automatically by the randomForest R package as the model is built. Briefly, calculations are 502 

performed as follows: as each decision tree is trained using a bootstrap sampling of the 503 

training genomes, a small number of samples are left aside to test the predictive accuracy of 504 

each decision tree on previously unseen samples. For each serovar, votes are collated and 505 

accuracy is calculated from only those decision trees that did not include the serovar in their 506 

training set. In this application, this step tests whether the genomic signatures of 507 

invasiveness captured by the decision trees based on some serovars are present in other 508 
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serovars, and thus whether the model can detect adaptation to an invasive lifestyle in 509 

previously unseen lineages. OOB error rate, stabilised at 10,000 trees, so we chose this as a 510 

parameter for optimising the number of genes sampled per node (mtry). mtry values of 1, 511 

p/10, p/5, p/3, p/2 and p (where p = the number of predictors) were tested, and we found that 512 

at mtry=p/10, the number of genes that were either not incorporated into trees, or did not 513 

improve the homogeneity of daughter nodes when they were incorporated into trees (as 514 

measured by mean decrease in Gini index, [79]) stabilised at ~92%. Training the random 515 

forest classifier over five iterations took 55 seconds on a laptop computer. In order to assess 516 

how well this method would scale, we trained another model on a larger dataset of S. 517 

Enteritidis strains (N=677) using the same workflow and site of isolation as a proxy for 518 

phenotype, which took 28 minutes.  519 

 520 

To improve the performance of the model, we performed five model building and sparsity 521 

pruning cycles. For the first cycle, we built a random forest model using all genes that met 522 

the inclusion criteria, and performed sparsity pruning by eliminating all variables that had a 523 

mean Gini index (variable importance) of zero or lower (meaning the gene was either not 524 

included in the model or did not improve model accuracy when it was). Four successive 525 

rounds of model building and sparsity pruning involved building a new model with the pruned 526 

dataset, then pruning the genes with the lowest 50% of variable importances. The resulting 527 

model had 100% out-of-bag classification accuracy. We also tested the accuracy of the full 528 

model on a collection of alternative strains related to the training dataset (see Table S1). 529 

Orthologs to the top genes identified by our model were identified using phmmer from the 530 

HMMER3.0 package (http://hmmer.org). Additional notes on model building and testing are 531 

provided in File S1.  532 

 533 

We tested the top 196 genes for the presence of independent mutations in each serovar by 534 

aligning each sequence to the profile HMM representing that protein family. Variation in each 535 

sequence with respect to a designated reference sequence from the set (as selected by 536 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 21, 2018. ; https://doi.org/10.1101/204669doi: bioRxiv preprint 

https://doi.org/10.1101/204669
http://creativecommons.org/licenses/by/4.0/


 

Nuccio and Bäumler, 2014) at each site in the HMM was identified and classified as either a 537 

mutation unique to a single serovar, or one shared among mutliple serovars. Consecutive 538 

deletions or insertions with respect to the HMM consensus sequence were collapsed into 539 

single mutational events.  540 

Invasive non-typhoidal Salmonella analysis 541 

Read data from Feasey et al. [48] and Klemm et al [10] was mapped to the reference 542 

genome S. Enteritidis P125109. Reads from Okoro et al. [51] and Ashton et al. [58] were 543 

mapped to the reference genome S. Typhimurium LT2. For samples in the Okoro study, if an 544 

isolate was sequenced using multiple runs, the most recent run was chosen for analysis. All 545 

reads were mapped using BWA mem [80] and regions near indels were realigned using 546 

GATK [81]. Picard (http://broadinstitute.github.io/picard) was used to identify and flag optical 547 

duplicates generated during library preparation. SNPs and indels were called using samtools 548 

v1.2 mpileup [82], and were filtered to exclude those variants with coverage <10 or quality 549 

<30. For tree building, a pseudogenome was constructed by substituting high confidence 550 

(coverage >4, quality >50) variant sites in the reference genome, and masking any sites with 551 

low confidence with an “N”. Insertions relative to the reference genome were ignored, and 552 

deletions were filled with an “N”. Pseudogenome alignments were then used as input to 553 

produce trees using Gubbins [83] to exclude recombination events, and RAxML v8.2.8 [76] 554 

to build maximum likelihood trees using a GTR + Gamma model. Samples with >10% 555 

missing base calls were excluded from the analysis. 556 

 557 

Sequences for the 196 genes of interest used in the random forest model were retrieved for 558 

each isolate and translated. These were then scored using their respective profile HMMs. 559 

Score data was collated, and any missing values were marked as ‘NA’ and imputed using 560 

the na.roughfix function from the randomForest R package [78]. This is a different approach 561 

used to that of the training dataset, due to the potentially lower quality of the sequenced 562 

genomes leading to gene absence due to low coverage rather than true deletion or severe 563 
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truncation. The relationship between invasiveness ranking and phylogeny were visualised 564 

using Phandango [84].  565 

Data availability 566 

All genome sequence data are publicly available, and accessions are provided in the 567 

appropriate Supplemental Tables. Code and data for reproducing this analysis, performing 568 

an equivalent analysis using new data, and assessing the invasiveness index of other 569 

Salmonella strains is publicly available at 570 

http://www.github.com/UCanCompBio/invasive_salmonella.  571 

Funding information 572 

NEW was supported by a PhD scholarship from the University of Canterbury, a Biomolecular 573 

Interaction Centre Postdoctoral Fellowship, and the Wellcome Trust grant 206194. LB was 574 

supported in part by a Research Fellowship from the Alexander von Humboldt 575 

Stiftung/Foundation. NEW and PPG are supported by a Rutherford Discovery Fellowship 576 

administered by the Royal Society of New Zealand, the Bioprotection Research Centre and 577 

the National Science Challenge “NZ’s Biological Heritage”. 578 

Acknowledgements 579 

We are grateful to Sean Eddy for useful discussions and providing fast, accurate and free 580 

software, and to Simon Harris for developing the pipeline used for mapping reads and calling 581 

SNPs for the iNTS portion of our analysis. We also thank Julian Parkhill, Nick Feasey, Nick 582 

Thomson, Alexander Westermann, Stan Gorski, and John Crump for their helpful feedback. 583 

References 584 

1.  Frank SA, Schmid-Hempel P. Mechanisms of pathogenesis and the evolution of 585 
parasite virulence. J Evol Biol. 2008;21: 396–404. 586 

2.  Fauci AS, Morens DM. The perpetual challenge of infectious diseases. N Engl J Med. 587 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 21, 2018. ; https://doi.org/10.1101/204669doi: bioRxiv preprint 

https://doi.org/10.1101/204669
http://creativecommons.org/licenses/by/4.0/


 

2012;366: 454–461. 588 

3.  Pallen MJ, Wren BW. Bacterial pathogenomics. Nature. nature.com; 2007;449: 835–589 
842. 590 

4.  Loman NJ, Pallen MJ. Twenty years of bacterial genome sequencing. Nat Rev 591 
Microbiol. 2015;13: 787–794. 592 

5.  McNally A, Thomson NR, Reuter S, Wren BW. “Add, stir and reduce”: Yersinia spp. as 593 
model bacteria for pathogen evolution. Nat Rev Microbiol. 2016;14: 177–190. 594 

6.  The HC, Thanh DP, Holt KE, Thomson NR, Baker S. The genomic signatures of 595 
Shigella evolution, adaptation and geographical spread. Nat Rev Microbiol. nature.com; 596 
2016; doi:10.1038/nrmicro.2016.10 597 

7.  Merhej V, Georgiades K, Raoult D. Postgenomic analysis of bacterial pathogens 598 
repertoire reveals genome reduction rather than virulence factors. Brief Funct 599 
Genomics. 2013;12: 291–304. 600 

8.  Reuter S, Connor TR, Barquist L, Walker D, Feltwell T, Harris SR, et al. Parallel 601 
independent evolution of pathogenicity within the genus Yersinia. Proc Natl Acad Sci U 602 
S A. 2014;111: 6768–6773. 603 

9.  Marvig RL, Sommer LM, Molin S, Johansen HK. Convergent evolution and adaptation 604 
of Pseudomonas aeruginosa within patients with cystic fibrosis. Nat Genet. 2015;47: 605 
57–64. 606 

10.  Klemm EJ, Gkrania-Klotsas E, Hadfield J, Forbester JL, Harris SR, Hale C, et al. 607 
Emergence of host-adapted Salmonella Enteritidis through rapid evolution in an 608 
immunocompromised host. Nat Microbiol. 2016;1: 15023. 609 

11.  Feasey NA, Dougan G, Kingsley RA, Heyderman RS, Gordon MA. Invasive non-610 
typhoidal salmonella disease: an emerging and neglected tropical disease in Africa. 611 
Lancet. 2012;379: 2489–2499. 612 

12.  Rabsch W, Andrews HL, Kingsley RA, Prager R, Tschäpe H, Adams LG, et al. 613 
Salmonella enterica serotype Typhimurium and its host-adapted variants. Infect Immun. 614 
2002;70: 2249–2255. 615 

13.  Bäumler A, Fang FC. Host specificity of bacterial pathogens. Cold Spring Harb 616 
Perspect Med. 2013;3: a010041. 617 

14.  Parkhill J, Dougan G, James KD, Thomson NR, Pickard D, Wain J, et al. Complete 618 
genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18. 619 
Nature. 2001;413: 848–852. 620 

15.  McClelland M, Sanderson KE, Clifton SW, Latreille P, Porwollik S, Sabo A, et al. 621 
Comparison of genome degradation in Paratyphi A and Typhi, human-restricted 622 
serovars of Salmonella enterica that cause typhoid. Nat Genet. 2004;36: 1268–1274. 623 

16.  Thomson NR, Clayton DJ, Windhorst D, Vernikos G, Davidson S, Churcher C, et al. 624 
Comparative genome analysis of Salmonella Enteritidis PT4 and Salmonella 625 
Gallinarum 287/91 provides insights into evolutionary and host adaptation pathways. 626 
Genome Res. 2008;18: 1624–1637. 627 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 21, 2018. ; https://doi.org/10.1101/204669doi: bioRxiv preprint 

https://doi.org/10.1101/204669
http://creativecommons.org/licenses/by/4.0/


 

17.  Nuccio S-P, Bäumler AJ. Comparative Analysis of Salmonella Genomes Identifies a 628 
Metabolic Network for Escalating Growth in the Inflamed Gut. MBio. 2014;5: e00929–629 
14–e00929–14. 630 

18.  Langridge GC, Fookes M, Connor TR, Feltwell T, Feasey N, Parsons BN, et al. 631 
Patterns of genome evolution that have accompanied host adaptation in Salmonella. 632 
Proc Natl Acad Sci U S A. 2015;112: 863–868. 633 

19.  Lerat E, Ochman H. Recognizing the pseudogenes in bacterial genomes. Nucleic Acids 634 
Res. 2005;33: 3125–3132. 635 

20.  Kuo C-H, Ochman H. The extinction dynamics of bacterial pseudogenes. PLoS Genet. 636 
2010;6. doi:10.1371/journal.pgen.1001050 637 

21.  Wheeler NE, Barquist L, Kingsley RA, Gardner PP. A profile-based method for 638 
identifying functional divergence of orthologous genes in bacterial genomes. 639 
Bioinformatics. 2016;32: 3566–3574. 640 

22.  Kingsley RA, Kay S, Connor T, Barquist L, Sait L, Holt KE, et al. Genome and 641 
transcriptome adaptation accompanying emergence of the definitive type 2 host-642 
restricted Salmonella enterica serovar Typhimurium pathovar. MBio. 2013;4: e00565–643 
13. 644 

23.  Dutilh BE, Backus L, Edwards RA, Wels M, Bayjanov JR, van Hijum SAFT. Explaining 645 
microbial phenotypes on a genomic scale: GWAS for microbes. Brief Funct Genomics. 646 
2013;12: 366–380. 647 

24.  Pappu V, Pardalos PM. High-Dimensional Data Classification. In: Aleskerov F, 648 
Goldengorin B, Pardalos PM, editors. Clusters, Orders, and Trees: Methods and 649 
Applications. Springer New York; 2014. pp. 119–150. 650 

25.  Touw WG, Bayjanov JR, Overmars L, Backus L, Boekhorst J, Wels M, et al. Data 651 
mining in the Life Sciences with Random Forest: a walk in the park or lost in the jungle? 652 
Brief Bioinform. 2013;14: 315–326. 653 

26.  Wei W-H, Hemani G, Haley CS. Detecting epistasis in human complex traits. Nat Rev 654 
Genet. 2014;15: 722–733. 655 

27.  Bayjanov JR, Molenaar D, Tzeneva V, Siezen RJ, van Hijum SAFT. PhenoLink--a web-656 
tool for linking phenotype to ~omics data for bacteria: application to gene-trait matching 657 
for Lactobacillus plantarum strains. BMC Genomics. 2012;13: 170. 658 

28.  Laabei M, Recker M, Rudkin JK, Aldeljawi M, Gulay Z, Sloan TJ, et al. Predicting the 659 
virulence of MRSA from its genome sequence. Genome Res. 2014;24: 839–849. 660 

29.  Alam MT, Petit RA 3rd, Crispell EK, Thornton TA, Conneely KN, Jiang Y, et al. 661 
Dissecting vancomycin-intermediate resistance in staphylococcus aureus using 662 
genome-wide association. Genome Biol Evol. 2014;6: 1174–1185. 663 

30.  Huerta-Cepas J, Szklarczyk D, Forslund K, Cook H, Heller D, Walter MC, et al. 664 
eggNOG 4.5: a hierarchical orthology framework with improved functional annotations 665 
for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res. 2016;44: D286–93. 666 

31.  Breiman L. Random Forests. Mach Learn. Kluwer Academic Publishers; 2001;45: 5–32. 667 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 21, 2018. ; https://doi.org/10.1101/204669doi: bioRxiv preprint 

https://doi.org/10.1101/204669
http://creativecommons.org/licenses/by/4.0/


 

32.  Tolosi L, Lengauer T. Classification with correlated features: unreliability of feature 668 
ranking and solutions. Bioinformatics. 2011;27: 1986–1994. 669 

33.  Kthiri F, Gautier V, Le H-T, Prère M-F, Fayet O, Malki A, et al. Translational defects in a 670 
mutant deficient in YajL, the bacterial homolog of the parkinsonism-associated protein 671 
DJ-1. J Bacteriol. 2010;192: 6302–6306. 672 

34.  Le H-T, Gautier V, Kthiri F, Malki A, Messaoudi N, Mihoub M, et al. YajL, prokaryotic 673 
homolog of parkinsonism-associated protein DJ-1, functions as a covalent chaperone 674 
for thiol proteome. J Biol Chem. 2012;287: 5861–5870. 675 

35.  Roth JR, Lawrence JG, Bobik TA. Cobalamin (coenzyme B12): synthesis and biological 676 
significance. Annu Rev Microbiol. 1996;50: 137–181. 677 

36.  Phan G, Remaut H, Wang T, Allen WJ, Pirker KF, Lebedev A, et al. Crystal structure of 678 
the FimD usher bound to its cognate FimC-FimH substrate. Nature. 2011;474: 49–53. 679 

37.  Typas A, Banzhaf M, Gross CA, Vollmer W. From the regulation of peptidoglycan 680 
synthesis to bacterial growth and morphology. Nat Rev Microbiol. ncbi.nlm.nih.gov; 681 
2011;10: 123–136. 682 

38.  Pepper ED, Farrell MJ, Finkel SE. Role of penicillin-binding protein 1b in competitive 683 
stationary-phase survival of Escherichia coli. FEMS Microbiol Lett. 2006;263: 61–67. 684 

39.  Langridge GC, Phan M-D, Turner DJ, Perkins TT, Parts L, Haase J, et al. Simultaneous 685 
assay of every Salmonella Typhi gene using one million transposon mutants. Genome 686 
Res. 2009;19: 2308–2316. 687 

40.  Crawford RW, Rosales-Reyes R, Ramírez-Aguilar M de la L, Chapa-Azuela O, 688 
Alpuche-Aranda C, Gunn JS. Gallstones play a significant role in Salmonella spp. 689 
gallbladder colonization and carriage. Proc Natl Acad Sci U S A. 2010;107: 4353–4358. 690 

41.  Blondel CJ, Jiménez JC, Contreras I, Santiviago CA. Comparative genomic analysis 691 
uncovers 3 novel loci encoding type six secretion systems differentially distributed in 692 
Salmonella serotypes. BMC Genomics. 2009;10: 354. 693 

42.  Blondel CJ, Jiménez JC, Leiva LE, Alvarez SA, Pinto BI, Contreras F, et al. The type VI 694 
secretion system encoded in Salmonella pathogenicity island 19 is required for 695 
Salmonella enterica serotype Gallinarum survival within infected macrophages. Infect 696 
Immun. 2013;81: 1207–1220. 697 

43.  Mulder DT, Cooper CA, Coombes BK. Type VI secretion system-associated gene 698 
clusters contribute to pathogenesis of Salmonella enterica serovar Typhimurium. Infect 699 
Immun. Am Soc Microbiol; 2012;80: 1996–2007. 700 

44.  Kingsley RA, Bäumler AJ. Host adaptation and the emergence of infectious disease: 701 
the Salmonella paradigm. Mol Microbiol. 2000;36: 1006–1014. 702 

45.  Harvey RR, Friedman CR, Crim SM, Judd M, Barrett KA, Tolar B, et al. Epidemiology of 703 
Salmonella enterica Serotype Dublin Infections among Humans, United States, 1968–704 
2013. Emerging Infectious Disease journal. 2017;23: 1493. 705 

46.  Kingsley RA, Msefula CL, Thomson NR, Kariuki S, Holt KE, Gordon MA, et al. Epidemic 706 
multiple drug resistant Salmonella Typhimurium causing invasive disease in sub-707 
Saharan Africa have a distinct genotype. Genome Res. 2009;19: 2279–2287. 708 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 21, 2018. ; https://doi.org/10.1101/204669doi: bioRxiv preprint 

https://doi.org/10.1101/204669
http://creativecommons.org/licenses/by/4.0/


 

47.  Okoro CK, Kingsley RA, Connor TR, Harris SR, Parry CM, Al-Mashhadani MN, et al. 709 
Intracontinental spread of human invasive Salmonella Typhimurium pathovariants in 710 
sub-Saharan Africa. Nat Genet. 2012;44: 1215–1221. 711 

48.  Feasey NA, Hadfield J, Keddy KH, Dallman TJ, Jacobs J, Deng X, et al. Distinct 712 
Salmonella Enteritidis lineages associated with enterocolitis in high-income settings and 713 
invasive disease in low-income settings. Nat Genet. 2016;48: 1211–1217. 714 

49.  Uche IV, MacLennan CA, Saul A. A Systematic Review of the Incidence, Risk Factors 715 
and Case Fatality Rates of Invasive Nontyphoidal Salmonella (iNTS) Disease in Africa 716 
(1966 to 2014). PLoS Negl Trop Dis. 2017;11: e0005118. 717 

50.  Ao TT, Feasey NA, Gordon MA, Heddy KH, Angulo FJ, Crump JA. Global Burden of 718 
Invasive Nontyphoidal Salmonella Disease, 20101. Emerging Infectious Disease 719 
journal. 2015;21: 941. 720 

51.  Okoro CK, Barquist L, Connor TR, Harris SR, Clare S, Stevens MP, et al. Signatures of 721 
Adaptation in Human Invasive Salmonella Typhimurium ST313 Populations from Sub-722 
Saharan Africa. PLoS Negl Trop Dis. 2015;9: e0003611. 723 

52.  Parsons BN, Humphrey S, Salisbury AM, Mikoleit J, Hinton JCD, Gordon MA, et al. 724 
Invasive non-typhoidal Salmonella typhimurium ST313 are not host-restricted and have 725 
an invasive phenotype in experimentally infected chickens. PLoS Negl Trop Dis. 726 
journals.plos.org; 2013;7: e2487. 727 

53.  Ramachandran G, Panda A, Higginson EE, Ateh E, Lipsky MM, Sen S, et al. Virulence 728 
of invasive Salmonella Typhimurium ST313 in animal models of infection. PLoS Negl 729 
Trop Dis. 2017;11: e0005697. 730 

54.  Ramachandran G, Perkins DJ, Schmidlein PJ, Tulapurkar ME, Tennant SM. Invasive 731 
Salmonella Typhimurium ST313 with naturally attenuated flagellin elicits reduced 732 
inflammation and replicates within macrophages. PLoS Negl Trop Dis. 2015;9: e3394. 733 

55.  Carden S, Okoro C, Dougan G, Monack D. Non-typhoidal Salmonella Typhimurium 734 
ST313 isolates that cause bacteremia in humans stimulate less inflammasome 735 
activation than ST19 isolates associated with gastroenteritis. Pathog Dis. 2015;73. 736 
doi:10.1093/femspd/ftu023 737 

56.  Singletary LA, Karlinsey JE, Libby SJ, Mooney JP, Lokken KL, Tsolis RM, et al. Loss of 738 
Multicellular Behavior in Epidemic African Nontyphoidal Salmonella enterica Serovar 739 
Typhimurium ST313 Strain D23580. MBio. 2016;7. doi:10.1128/mBio.02265-15 740 

57.  Carden SE, Walker GT, Honeycutt J, Lugo K, Pham T, Jacobson A, et al. 741 
Pseudogenization of the Secreted Effector Gene sseI Confers Rapid Systemic 742 
Dissemination of S. Typhimurium ST313 within Migratory Dendritic Cells. Cell Host 743 
Microbe. 2017;21: 182–194. 744 

58.  Ashton PM, Owen SV, Kaindama L, Rowe WPM, Lane C, Larkin L, et al. Salmonella 745 
enterica Serovar Typhimurium ST313 Responsible For Gastroenteritis In The UK Are 746 
Genetically Distinct From Isolates Causing Bloodstream Infections In Africa [Internet]. 747 
bioRxiv. 2017. p. 139576. doi:10.1101/139576 748 

59.  Almeida F, Seribelli AA, da Silva P, Medeiros MIC, Dos Prazeres Rodrigues D, Moreira 749 
CG, et al. Multilocus sequence typing of Salmonella Typhimurium reveals the presence 750 
of the highly invasive ST313 in Brazil. Infect Genet Evol. 2017;51: 41–44. 751 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 21, 2018. ; https://doi.org/10.1101/204669doi: bioRxiv preprint 

https://doi.org/10.1101/204669
http://creativecommons.org/licenses/by/4.0/


 

60.  Painter JA, Mølbak K, Sonne-Hansen J, Barrett T, Wells JG, Tauxe RV. Salmonella-752 
based rodenticides and public health. Emerg Infect Dis. 2004;10: 985–987. 753 

61.  Pasmans F, Van Immerseel F, Hermans K, Heyndrickx M, Collard J-M, Ducatelle R, et 754 
al. Assessment of virulence of pigeon isolates of Salmonella enterica subsp. enterica 755 
serovar typhimurium variant copenhagen for humans. J Clin Microbiol. 2004;42: 2000–756 
2002. 757 

62.  Lawson B, Hughes LA, Peters T, de Pinna E, John SK, Macgregor SK, et al. Pulsed-758 
field gel electrophoresis supports the presence of host-adapted Salmonella enterica 759 
subsp. enterica serovar Typhimurium strains in the British garden bird population. Appl 760 
Environ Microbiol. 2011;77: 8139–8144. 761 

63.  Mather AE, Lawson B, de Pinna E, Wigley P, Parkhill J, Thomson NR, et al. Genomic 762 
Analysis of Salmonella enterica Serovar Typhimurium from Wild Passerines in England 763 
and Wales. Appl Environ Microbiol. 2016;82: 6728–6735. 764 

64.  Barrick JE, Lenski RE. Genome dynamics during experimental evolution. Nat Rev 765 
Genet. 2013;14: 827–839. 766 

65.  Quick J, Loman NJ, Duraffour S, Simpson JT, Severi E, Cowley L, et al. Real-time, 767 
portable genome sequencing for Ebola surveillance. Nature. 2016;530: 228–232. 768 

66.  Aanensen DM, Feil EJ, Holden MTG, Dordel J, Yeats CA, Fedosejev A, et al. Whole-769 
Genome Sequencing for Routine Pathogen Surveillance in Public Health: a Population 770 
Snapshot of Invasive Staphylococcus aureus in Europe. MBio. 2016;7. 771 
doi:10.1128/mBio.00444-16 772 

67.  Schürch AC, Schaik W. Challenges and opportunities for whole-genome sequencing--773 
based surveillance of antibiotic resistance. Ann N Y Acad Sci. Wiley Online Library; 774 
2017;1388: 108–120. 775 

68.  Lippert C, Listgarten J, Liu Y, Kadie CM, Davidson RI, Heckerman D. FaST linear 776 
mixed models for genome-wide association studies. Nat Methods. 2011;8: 833–835. 777 

69.  Lees JA, Vehkala M, Välimäki N, Harris SR, Chewapreecha C, Croucher NJ, et al. 778 
Sequence element enrichment analysis to determine the genetic basis of bacterial 779 
phenotypes. Nat Commun. 2016;7: 12797. 780 

70.  Earle SG, Wu C-H, Charlesworth J, Stoesser N, Gordon NC, Walker TM, et al. 781 
Identifying lineage effects when controlling for population structure improves power in 782 
bacterial association studies. Nat Microbiol. 2016;1: 16041. 783 

71.  Chen PE, Shapiro BJ. The advent of genome-wide association studies for bacteria. 784 
Curr Opin Microbiol. 2015;25: 17–24. 785 

72.  Power RA, Parkhill J, de Oliveira T. Microbial genome-wide association studies: 786 
lessons from human GWAS. Nat Rev Genet. 2017;18: 41–50. 787 

73.  Lupolova N, Dallman TJ, Holden NJ, Gally DL. Patchy promiscuity: machine learning 788 
applied to predict the host specificity of Salmonella enterica and Escherichia coli. 789 
Microbial Genomics. Microbiology Society; 2017; doi:10.1099/mgen.0.000135 790 

74.  Roberts DR, Bahn V, Ciuti S, Boyce MS, Elith J, Guillera-Arroita G, et al. Cross-791 
validation strategies for data with temporal, spatial, hierarchical, or phylogenetic 792 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 21, 2018. ; https://doi.org/10.1101/204669doi: bioRxiv preprint 

https://doi.org/10.1101/204669
http://creativecommons.org/licenses/by/4.0/


 

structure. Ecography . Blackwell Publishing Ltd; 2017;40: 913–929. 793 

75.  Stephan J, Stegle O, Beyer A. A random forest approach to capture genetic effects in 794 
the presence of population structure. Nat Commun. 2015;6: 7432. 795 

76.  Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of 796 
large phylogenies. Bioinformatics. 2014;30: 1312–1313. 797 

77.  Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MTG, et al. Roary: rapid 798 
large-scale prokaryote pan genome analysis. Bioinformatics. 2015;31: 3691–3693. 799 

78.  Liaw A, Wiener M. Classification and regression by randomForest. R news. 2002;2: 18–800 
22. 801 

79.  Breiman L, Friedman J, Stone CJ, Olshen RA. Classification and Regression Trees. 802 
Chapman and Hall/CRC; 1984. 803 

80.  Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler 804 
transform. Bioinformatics. 2009;25: 1754–1760. 805 

81.  McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The 806 
Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA 807 
sequencing data. Genome Res. 2010;20: 1297–1303. 808 

82.  Li H. A statistical framework for SNP calling, mutation discovery, association mapping 809 
and population genetical parameter estimation from sequencing data. Bioinformatics. 810 
2011;27: 2987–2993. 811 

83.  Croucher NJ, Page AJ, Connor TR, Delaney AJ, Keane JA, Bentley SD, et al. Rapid 812 
phylogenetic analysis of large samples of recombinant bacterial whole genome 813 
sequences using Gubbins. Nucleic Acids Res. 2015;43: e15. 814 

84.  Hadfield J, Croucher NJ, Goater RJ, Abudahab K, Aanensen DM, Harris SR. 815 
Phandango: an interactive viewer for bacterial population genomics. Bioinformatics. 816 
2017; doi:10.1093/bioinformatics/btx610 817 

 818 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 21, 2018. ; https://doi.org/10.1101/204669doi: bioRxiv preprint 

https://doi.org/10.1101/204669
http://creativecommons.org/licenses/by/4.0/

	Abstract
	Introduction
	Results
	Constructing a random forest classifier for extraintestinal Salmonellae
	Fig 1 | Overview of the approach employed in this study

	A small subset of genes are strongly predictive of invasiveness in Salmonella
	Fig 2 | A subset of Salmonella genes are strongly indicative of invasive potential

	Predictive genes are typically degraded or absent in invasive isolates
	Sequence changes in key indicator genes involve independent mutations in each serovar, contributing to similar functional outcomes
	S. Dublin and S. Enteritidis serovars are more difficult to classify than others
	Patterns of gene degradation identified in established invasive lineages are present in novel lineages of S. Typhimurium and S. Enteritidis associated with systemic infection
	Fig 3 | Voting of the model on African iNTS and global gastrointestinal isolates


	Discussion
	Conclusions

	Methods
	Genome data and identification of orthologs
	Measuring the divergence of genes from predicted sequence constraints
	Training a random forest classifier
	Invasive non-typhoidal Salmonella analysis
	Data availability

	Funding information
	Acknowledgements
	References

