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Abstract	

Biological	interpretation	of	GWAS	data	frequently	involves	analyzing	unsigned	genomic	

annotations	comprising	SNPs	involved	in	a	biological	process	and	assessing	enrichment	for	

disease	signal.	However,	it	is	often	possible	to	generate	signed	annotations	quantifying	whether	

each	SNP	allele	promotes	or	hinders	a	biological	process,	e.g.,	binding	of	a	transcription	factor	

(TF).	Directional	effects	of	such	annotations	on	disease	risk	enable	stronger	statements	about	

causal	mechanisms	of	disease	than	enrichments	of	corresponding	unsigned	annotations.	Here	

we	introduce	a	new	method,	signed	LD	profile	regression,	for	detecting	such	directional	effects	

using	GWAS	summary	statistics,	and	we	apply	the	method	using	382	signed	annotations	

reflecting	predicted	TF	binding.	We	show	via	theory	and	simulations	that	our	method	is	well-

powered	and	is	well-calibrated	even	when	TF	binding	sites	co-localize	with	other	enriched	

regulatory	elements,	which	can	confound	unsigned	enrichment	methods.	We	further	validate	

our	method	by	showing	that	it	recovers	known	transcriptional	regulators	when	applied	to	

molecular	QTL	in	blood.	We	then	apply	our	method	to	eQTL	in	48	GTEx	tissues,	identifying	651	

distinct	TF-tissue	expression	associations	at	per-tissue	FDR < 5%,	including	30	associations	
with	robust	evidence	of	tissue	specificity.	Finally,	we	apply	our	method	to	46	diseases	and	

complex	traits	(average	! = 289,617)	and	identify	77	annotation-trait	associations	at	per-
trait	FDR < 5%	representing	12	independent	TF-trait	associations,	and	we	conduct	gene-set	
enrichment	analyses	to	characterize	the	underlying	transcriptional	programs.	Our	results	

implicate	new	causal	disease	genes	(including	causal	genes	at	known	GWAS	loci),	and	in	some	

cases	suggest	a	detailed	mechanism	for	a	causal	gene’s	effect	on	disease.	Our	method	provides	a	

new	way	to	leverage	functional	data	to	draw	inferences	about	disease	etiology.	

Introduction	

Mechanistic	interpretation	of	GWAS	data	sets	has	become	a	central	challenge	for	efforts	to	learn	

about	the	biological	underpinnings	of	disease.	One	successful	paradigm	for	such	efforts	has	been	

GWAS	enrichment,	in	which	a	genome	annotation	containing	SNPs	that	affect	some	biological	

process	is	shown	to	be	enriched	for	GWAS	signal1–7.	However,	there	are	instances	in	which	

experimental	data	allow	us	not	only	to	identify	SNPs	that	affect	a	biological	process,	but	also	to	

predict	which	SNP	alleles	promote	the	process	and	which	SNP	alleles	hinder	it,	thereby	enabling	

us	to	assess	whether	there	is	a	systematic	association	between	SNP	alleles’	direction	of	effect	on	

the	process	and	their	direction	of	effect	on	a	trait.	Transcription	factor	(TF)	binding,	which	plays	

a	major	role	in	human	disease1,8–12,	represents	an	important	case	in	which	such	signed	

functional	annotations	are	available:	because	TFs	have	a	tendency	to	bind	to	specific	DNA	

sequences,	it	is	possible	to	estimate	whether	the	sequence	change	introduced	by	a	SNP	allele	

will	increase	or	decrease	binding	of	a	TF1,13–19.	

Detecting	genome-wide	directional	effects	of	TF	binding	on	disease	would	constitute	a	

significant	advance	in	terms	of	both	evidence	for	causality	and	understanding	of	biological	

mechanism.	Regarding	causality,	this	is	because	directional	effects	are	not	confounded	by	simple	

co-localization	in	the	genome	(e.g.,	of	TF	binding	sites	with	other	regulatory	elements),	and	thus	

provide	stronger	evidence	for	causality	than	is	available	using	unsigned	enrichment	methods.	

Regarding	biological	mechanism,	it	is	currently	unknown	whether	disease-associated	TFs	affect	

only	a	few	disease	genes	or	whether	transcriptional	programs	comprising	many	target	genes	are	

responsible	for	TF	associations;	a	genome-wide	directional	effect	implies	the	latter	model	(see	

Discussion).	

Here	we	introduce	a	new	method,	signed	LD	profile	(SLDP)	regression,	for	quantifying	the	

genome-wide	directional	effect	of	a	signed	functional	annotation	on	polygenic	disease	risk,	and	
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apply	it	in	conjunction	with	382	annotations	each	reflecting	predicted	binding	of	a	particular	TF	

in	a	particular	cell	line.	Our	method	requires	only	GWAS	summary	statistics20,	accounts	for	

linkage	disequilibrium	and	untyped	causal	SNPs,	and	is	computationally	efficient.	We	validate	

the	method	via	extensive	simulations,	including	null	simulations	confounded	by	unsigned	

enrichment	as	might	arise	from	the	co-localization	of	TF	binding	sites	with	other	regulatory	

elements5,13.	We	further	validate	the	method	by	applying	it	to	molecular	QTL	in	blood21	and	

showing	that	it	recovers	known	transcriptional	regulators.	We	then	apply	the	method	to	eQTL	in	

48	tissues	from	the	GTEx	consortium22	and	to	46	diseases	and	complex	traits,	demonstrating	

genome-wide	directional	effects	of	TF	binding	in	both	settings.	We	further	characterize	the	

transcriptional	programs	underlying	our	complex	trait	associations	via	gene-set	enrichment	

analyses	using	gene	sets	from	the	Molecular	Signatures	Database23,24	(MSigDB).	

Results	

Overview	of	methods	

Our	method	for	quantifying	directional	effects	of	signed	functional	annotations	on	disease	risk,	

signed	LD	profile	regression,	relies	on	the	fact	that	the	signed	marginal	association	of	a	SNP	to	

disease	includes	signed	contributions	from	all	SNPs	tagged	by	that	SNP.	Given	a	signed	

functional	annotation	with	a	directional	linear	effect	on	disease	risk,	the	vector	of	marginal	SNP	

effects	on	disease	risk	will	therefore	be	proportional	(in	expectation)	to	a	vector	quantifying	

each	SNP’s	aggregate	tagging	of	the	signed	annotation,	which	we	call	the	signed	LD	profile	of	the	
annotation.	Thus,	our	method	detects	directional	effects	by	assessing	whether	the	vector	of	

marginal	SNP	effects	and	the	signed	LD	profile	are	systematically	correlated	genome-wide.	

More	precisely,	under	a	polygenic	model25	in	which	true	causal	SNP	effects	are	correlated	with	a	

signed	functional	annotation,	we	show	that	

! ! ! = !! ℎ!!!"	
(1)	

where	!	is	the	vector	of	marginal	correlations	between	SNP	alleles	and	a	trait,	!	is	the	signed	
functional	annotation	(re-scaled	to	norm	1)	reflecting,	e.g.,	the	signed	effect	of	a	SNP	on	TF	

binding,	!	is	the	LD	matrix,	ℎ!!	is	the	SNP-heritability	of	the	trait,	and	!!	is	the	correlation	
between	the	vector	!	and	the	vector	of	true	causal	effects	of	each	SNP,	which	we	call	the	
functional	correlation.	(!!	can	be	interpreted	as	a	form	of	genetic	correlation;	the	value	of	!!!	
cannot	exceed	the	proportion	of	SNP-heritability	explained	by	SNPs	with	non-zero	values	of	!.)	
Equation	(1),	together	with	an	estimate	of	ℎ!!,	allows	us	to	estimate	!!	by	regressing	!	on	the	
signed	LD	profile	!"	of	!.	We	assess	statistical	significance	by	randomly	flipping	the	signs	of	
entries	of	!,	with	consecutive	SNPs	being	flipped	together	in	large	blocks	(e.g.,	~300	blocks	
total),	to	obtain	a	null	distribution	and	corresponding	P-values	and	false	discovery	rates	(FDRs).	

To	improve	power,	we	use	generalized	least-squares	regression,	incorporating	weights	to	

account	for	the	fact	that	SNPs	in	linkage	disequilibrium	(LD)	provide	redundant	information	due	

to	their	correlated	values	of	!.	We	remove	the	major	histocompatibility	complex	(MHC)	region	
from	all	analyses	due	to	its	unusual	LD	patterns.	We	perform	a	multiple	regression	that	

explicitly	conditions	on	a	“signed	background	model”	corresponding	to	directional	effects	of	

minor	alleles	in	five	equally	sized	minor	allele	frequency	(MAF)	bins,	which	could	reflect	

confounding	due	to	genome-wide	negative	selection	or	population	stratification.	We	note	that	

signed	LD	profile	regression	requires	signed	effect	size	estimates	!	and	quantifies	directional	
effects,	in	contrast	to	stratified	LD	score	regression	5,	which	analyzes	unsigned	!!	statistics	and	
quantifies	unsigned	heritability	enrichment.	Details	of	the	method	are	described	in	the	Online	
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Methods	section	and	the	Supplementary	Note;	we	have	released	open-source	software	

implementing	the	method	(see	URLs).	

We	applied	signed	LD	profile	regression	using	a	set	of	382	signed	annotations	!,	each	
quantifying	the	predicted	effects	of	SNP	alleles	on	binding	of	a	particular	TF	in	a	particular	cell	

line.	We	constructed	the	annotations	by	training	a	sequence-based	neural	network	predictor	of	

ChIP-seq	peak	calls,	using	the	Basset	software19,	to	predict	the	results	of	382	TF	binding	ChIP-

seq	experiments	from	ENCODE26	and	comparing	the	neural	network’s	predictions	for	the	major	

and	minor	allele	of	each	SNP	in	the	ChIP-seq	peaks.	The	382	experiments	spanned	75	distinct	

TFs	and	84	distinct	cell	lines.	Because	each	annotation	contained	non-zero	entries	only	for	SNPs	

lying	inside	ChIP-seq	peaks	of	the	corresponding	ChIP-seq	experiment,	the	resulting	annotations	

were	sparse,	with	only	0.2%	of	SNPs	having	nonzero	entries	on	average	(see	Online	Methods	
and	Table	S1).	

Simulations	

We	performed	simulations	with	real	genotypes,	simulated	phenotypes,	and	our	382	signed	TF	

binding	annotations	to	assess	null	calibration,	robustness	to	confounding,	and	power.	All	

simulations	used	well-imputed	genome-wide	genotypes	from	the	GERA	cohort27,	corresponding	

to	! = 2.7	million	SNPs	and	! = 47,360	individuals	of	European	ancestry.	We	simulated	traits	
using	normally	distributed	causal	effect	sizes	(with	annotation-dependent	mean	and	variance	in	

some	cases),	with	ℎ!! = 0.5.	Further	details	of	the	simulations	are	provided	in	the	Online	
Methods	section.	

We	first	performed	null	simulations	involving	a	heritable	trait	with	no	unsigned	enrichment	or	

directional	association	to	any	of	our	382	annotations.	In	1,000	independent	simulations,	we	

applied	signed	LD	profile	regression	to	test	each	of	our	382	annotations	for	a	directional	effect.	

The	resulting	P-values	were	well-calibrated	(see	Figure	1a	and	Table	S2).	Analyses	of	the	P-

value	distribution	for	each	annotation	in	turn	confirmed	correct	calibration	for	these	

annotations	(see	Figure	S1a).	

We	next	performed	null	simulations	involving	a	trait	with	unsigned	enrichment	but	no	

directional	effects;	these	simulations	were	designed	to	mimic	unsigned	genomic	confounding	in	

which	the	binding	sites	of	some	TF	lie	in	or	near	regulatory	regions	that	are	enriched	for	

heritability	for	reasons	other	than	binding	of	that	TF.	In	1,000	independent	simulations,	we	

randomly	selected	an	annotation,	simulated	a	trait	in	which	the	annotation	had	a	20x	unsigned	

enrichment5	(but	no	directional	effect),	and	applied	signed	LD	profile	regression	to	test	the	

annotation	for	a	directional	effect.	We	again	observed	well-calibrated	P-values	(see	Figure	1b).	It	

is	notable	that	our	method	is	well-calibrated	even	though	it	has	no	knowledge	of	the	unsigned	

genomic	confounder;	this	contrasts	with	unsigned	enrichment	approaches	such	as	heritability	

partitioning,	in	which	unsigned	genomic	confounders	must	be	carefully	accounted	for	and	

modeled5.	

We	next	performed	null	simulations	to	assess	whether	our	method	remains	well-calibrated	in	

the	presence	of	confounding	due	to	genome-wide	directional	effects	of	minor	alleles	on	both	

disease	risk	and	TF	binding,	which	could	arise	due	to	genome-wide	negative	selection	or	

population	stratification.	We	simulated	a	trait	for	which	10%	of	heritability	is	explained	by	
directional	effects	of	minor	alleles	in	the	bottom	fifth	of	the	MAF	spectrum	(roughly	MAF< 5%).	
In	1,000	independent	simulations,	we	applied	signed	LD	profile	regression	to	test	each	of	our	

382	annotations	for	a	directional	effect.	P-values	were	well-calibrated	for	the	default	version	of	

the	method,	which	conditions	on	the	5-MAF-bin	signed	background	model,	but	were	not	well-

calibrated	without	conditioning	on	this	model	(see	Figure	1c).	(We	note	that	this	represents	a	

best-case	scenario	in	which	the	background	model	exactly	matches	the	confounding	being	
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simulated,	up	to	differences	in	MAF	between	the	reference	panel	and	the	GWAS	sample,	and	we	

caution	that	our	method	may	not	be	appropriate	for	annotations	with	much	stronger	

correlations	to	minor	alleles	than	the	annotations	that	we	analyze	here;	see	Figure	S1b.)	The	

incorrect	calibration	that	we	observe	when	we	do	not	include	our	signed	background	model	

could	potentially	be	explained	by	genome-wide	negative	selection	against	decreased	TF	

binding28,	which	would	result	in	a	bias	in	the	sign	of	the	entries	of	our	annotations.	Indeed,	most	

of	our	annotations	show	a	small	but	highly	significant	bias	of	minor	alleles	toward	decreasing	TF	

binding	(see	Figure	S2)	that	is	consistent	with	this	explanation;	however,	it	is	also	possible	that	

this	bias	is	a	result	of	our	procedure	for	constructing	the	annotations,	and	we	do	not	explore	it	

further	in	this	work.	To	ameliorate	potential	confounding	by	directional	effects	of	minor	alleles,	

we	condition	on	the	signed	background	model	in	all	analyses	in	this	paper	unless	stated	

otherwise.	

Finally,	we	performed	causal	simulations	with	true	directional	effects	to	assess	the	power	and	

establish	the	unbiasedness	of	signed	LD	profile	regression.	At	default	parameter	settings,	the	

method	is	well-powered	to	detect	directional	effects	corresponding	to	a	functional	correlation	of	

2-6%	(see	Figure	2a	and	Table	S3),	similar	to	values	observed	in	analyses	of	real	traits	(see	

below).	Notably,	the	power	of	the	method	is	improved	dramatically	by	our	use	of	generalized	

least-squares	to	account	for	redundant	information	(see	Figure	2a).	Our	method	is	also	much	

more	powerful	than	a	naive	method	that	regresses	the	vector	of	GWAS	summary	statistics	on	

the	annotation	rather	than	its	signed	LD	profile,	an	approach	that	does	not	model	untyped	

causal	SNPs	in	linkage	disequilibrium	with	typed	SNPs	(see	Figure	S3).	The	power	of	our	

method	increases	with	sample	size	and	SNP-heritability	(see	Figure	S4),	and	is	only	minimally	

affected	by	within-Europe	reference	panel	mismatch	(see	Figure	S5).	In	all	instances,	our	

method	produced	either	unbiased	or	nearly	unbiased	estimates	of	functional	correlation	and	

related	quantities	(see	Figure	2b	and	Figure	S6).	

Analysis	of	molecular	traits	in	blood	

TF	binding	is	known	to	affect	gene	expression	and	other	molecular	traits29,	and	regulatory	

relationships	in	blood	are	particularly	well-characterized30.	We	therefore	applied	signed	LD	

profile	regression	to	12	molecular	traits	in	blood	with	an	average	sample	size	of	! = 149,	to	
further	validate	the	method.	We	first	analyzed	cis-eQTL	data	based	on	RNA-seq	experiments	in	

three	blood	cell	types	from	the	BLUEPRINT	consortium21	(see	Online	Methods).	For	each	cell	

type,	we	collapsed	eQTL	summary	statistics	across	15,023-17,081	genes	into	a	single	vector	of	

summary	statistics	for	aggregate	expression	by	meta-analyzing,	for	each	SNP,	the	marginal	effect	

sizes	of	that	SNP	for	the	expression	of	all	nearby	genes	(within	500kb;	see	Online	Methods	and	

Table	S4).	

We	tested	each	of	our	382	TF	binding	annotations	for	a	directional	effect	on	aggregate	

expression	in	each	of	the	three	blood	cell	types.	We	detected	a	total	of	409	significant	

associations	at	a	per-trait	FDR	of	5%	(36%	of	annotation-blood	cell	type	expression	pairs	

tested)	representing	107	distinct	TF-blood	cell	type	expression	associations	(see	Figure	3a	and	

Table	S5a;	P-values	from		≤ 10!!	to	2.0×10!!).	All	of	the	detected	associations	were	positive,	
implying	that	greater	binding	of	these	TFs	leads	to	greater	expression	(in	aggregate	across	

genes)	and	matching	the	known	tendency	of	TF	binding	to	promote	rather	than	repress	

transcription	for	many	TFs29.	Indeed,	170	of	our	382	annotations	(45%)	correspond	to	TFs	

annotated	as	having	activating	activity	and	no	repressing	activity	in	UniProt31	(“activating")	and	

174	(46%)	correspond	to	TFs	annotated	as	having	either	both	activating	and	repressing	activity	

(“ambiguous”);	in	contrast,	only	38	(10%)	correspond	to	TFs	annotated	as	having	repressing	

activity	and	no	activating	activity	(“repressing”).	
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As	expected,	many	of	the	associations	that	we	detected	recapitulate	known	aspects	of	

transcriptional	regulation.	For	example,	the	most	strongly	associated	TF	binding	annotations	

included	RNA	polymerase	II	in	many	cell	lines,	along	with	the	two	other	profiled	members	of	the	

transcription	pre-initiation	complex	(PIC),	TATA-associated	Factor	1	(TAF1)	and	TATA	Binding	

Protein	(TBP).	We	also	detected	associations	for	TFs	unrelated	to	the	PIC	but	known	to	have	

activating	activity,	such	as	the	ETS	family	members	GABPA,	ELF1,	and	ELK132,	as	well	as	the	

immune-	and	cancer-related	transcriptional	activators	interferon	regulatory	factor	1	(IRF1)	and	

promyelocytic	leukemia	protein	(PML)33,34.	Overall,	the	majority	of	the	positive	associations	

(318	out	of	409;	78%)	involved	(unambiguously)	activating	TFs	(compared	with	170	of	our	382	

(45%)	annotations;		! = 7.0×10!!"	for	difference	using	one-sided	binomial	test;	see	Figure	3a	
and	Online	Methods).	196	of	the	409	associations	replicated	(same	direction	of	effect	with	

nominal	! < 0.05)	in	an	independent	set	of	whole-blood	eQTL	summary	statistics	based	on	
expression	array	experiments	from	the	Netherlands	Twin	Registry	(NTR)35,	including	all	of	the	

examples	mentioned	above	except	IRF1	(see	Figure	3b	and	Table	S5b).	Across	all	382	

annotations	analyzed,	we	observed	a	correlation	of		! = 0.65	between	z-scores	for	signed	
annotation	effects	in	the	BLUEPRINT	neutrophil	and	NTR	data	sets	(see	Figure	3c	and	

Table	S5c).	

We	next	conducted	a	similar	analysis	using	histone	QTL	(H3K27me1	and	H3K27ac)	and	

methylation	QTL	from	the	BLUEPRINT	data	set.	We	detected	645	significant	associations	at	a	

per-trait	FDR	of	5%	(28%	of	annotation-blood	cell	type	QTL	pairs	tested),	four	of	which	were	

negative.	These	results	included	286	significant	associations	for	H3K27me1	QTL,	359	for	

H3K27ac	QTL,	and	0	for	methylation	QTL	(79,	98,	and	0	distinct	TF-cell	type	QTL	associations,	

respectively;	see	Figure	3d,e	and	Table	S5d,e;	P-values	from	≤ 10!!	to		1.9×10!!).	Once	again,	
many	of	the	detected	associations	recover	known	aspects	of	histone	mark	biology,	as	expected.	

For	example,	the	TFs	most	strongly	associated	to	H3K4me1	included	PU.1	and	CEBPB,	both	of	

which	act	to	increase	H3K4me1	in	blood	cells	and	play	strong	roles	in	differentiation	of	those	

cell	types36–39,	and	binding	of	MYC,	which	has	a	known	role	as	a	chromatin	modifier40,41,	

including	of	H3K4	methylation42.	We	also	observed	a	strong	positive	association	between	

H3K27ac	and	CREB1,	a	binding	partner	of	the	lysine	acetyltransferase	EP300,	as	well	as	a	

weaker	positive	association	for	EP300	itself,	matching	the	well-documented	role	of	both	factors	

in	creation	and	maintenance	of	this	mark43,44.	Several	of	our	positive	associations,	such	as	the	

associations	detected	for	the	ETS	TFs	(including	PU.1),	are	also	consistent	with	a	prior	study45	

that	detected	correlations	between	changes	in	position-weight	matrix	scores	induced	by	SNPs	

and	allelic	imbalance	at	those	SNPs	in	ChIP-seq	data	for	these	marks.	The	four	negative	

associations	that	we	detected	involved	MAFK	and	MAFF,	both	of	which	lack	a	transactivation	

domain46,	as	well	as	CTCF,	which	is	known	to	act	as	an	insulator47,48.	Once	again,	the	majority	of	

the	positive	associations	(528	out	of	641;	82%)	involved	(unambiguously)	activating	TFs31	(one-

sided	binomial	! = 1.9×10!!).	

Analysis	of	gene	expression	across	48	GTEx	tissues	

We	next	applied	signed	LD	profile	regression	to	GTEx	eQTL	across	48	tissues22	(average	

! = 214)	in	order	to	draw	inferences	about	transcriptional	regulation	across	these	tissues,	
including	tissue-specific	regulatory	effects.	We	first	tested	each	of	our	382	TF	binding	

annotations	for	a	directional	effect	on	expression	in	each	of	the	48	tissues	in	turn,	analogous	to	

our	previous	analysis	of	molecular	traits	in	blood.	For	each	significant	association	that	we	

detected,	we	then	assessed	the	association	for	tissue	specificity	by	checking	whether	it	remained	

at	least	as	significant	when	conditioning	on	average	eQTL	effects	across	tissues	(see	Online	

Methods	and	Table	S6).	This	criterion	for	tissue-specificity	is	conservative	and	stands	in	

contrast	to,	e.g.,	reporting	associations	that	remain	significant	at	a	specified	threshold	after	

conditioning.	The	latter	approach	is	susceptible	to	the	fact	that	conditioning	on	a	noisily	
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measured	confounder	can	produce	false	positives49;	associations	meeting	the	former	criterion	

are	likely	to	be	robustly	tissue-specific.	

Our	analysis	yielded	2,330	annotation-tissue	expression	associations	at	a	per-trait	FDR	of	5%	

(13%	of	annotation-tissue	expression	pairs	tested),	representing	651	distinct	TF-tissue	

expression	associations	of	which	30	were	robustly	tissue-specific	in	our	conditional	analysis	

(see	Figure	4	and	Table	S7).	We	detected	both	known	and	novel	associations.	The	known	TF-

tissue	associations	that	we	detected	include:	activating	roles	for	FOXA1	and	FOXA2	in	pancreas	

and	other	gastrointestinal	tissues,	recapitulating	the	well-known	master	regulatory	function	

played	by	these	factors	in	these	tissues50–52;	an	activating	role	for	early	B-cell	factor	1	(EBF-1)	in	

lymphocytes53,54;	an	activating	role	for	hepatocyte	nuclear	factor	4!	(HNF4G)	—	and	a	tissue-

specific	activating	role	for	the	related	protein	HNF4A	—	in	liver55,56;	a	tissue-specific	activating	

role	for	PU.1	in	spleen,	an	organ	that	is	hyperplastic	when	the	PU.1	gene	is	virally	perturbed	in	
mice57;	and	tissue-specific	activating	roles	for	FOS	in	fibroblasts,	the	animal	tissue	in	which	FOS	

was	originally	discovered58,	as	well	as	in	nerve	tissue,	a	tissue	in	which	FOS	deficiency	causes	

numerous	abnormalities59–61.	Our	results	for	these	transcription	factors	contrast	with	the	

ubiquitous	activating	signatures	detected	for	the	three	profiled	transcription	factors	comprising	

the	transcription	pre-initiation	complex	(PIC;	see	above),	POL2,	TAF1,	and	TBP,	for	which	we	

detected	significant	positive	associations	in	33	of	the	48	tissues	(69%)	and	89%	of	the	28	tissues	

with	a	sample	size	above	150.	Our	results	were	concordant	with	absolute	gene	expression	

measurements	of	the	detected	TFs	in	the	associated	GTEx	tissue	samples:	the	proportion	of	

significant	TF	associations	in	which	the	TF	was	expressed	above	a	minimum	threshold	in	the	

associated	GTEx	tissue	(see	Online	Methods)	was	greater	than	the	corresponding	proportion	for	

non-significant	TFs	in	32	out	of	the	34	tissues	for	which	we	could	perform	the	comparison	

(! = 2.1×10!!"	for	trend	across	tissues;	see	Figure	S7	for	breakdown	by	tissue).	
Our	analysis	also	uncovered	many	previously	unknown	associations	in	less	well-studied	tissues	

that	support	emerging	theories	of	disease.	For	example,	the	most	significant	association	that	we	

detected	in	aorta	is	a	previously	unreported	activating	role	for	GABPA.	Though	the	regulatory	

role	of	this	transcription	factor	in	aorta	has	not	been	experimentally	studied	in	detail,	it	is	one	of	

several	related	TFs	whose	binding	sites	were	reported	to	be	enriched	near	genes	that	were	

differentially	expressed	in	aortic	aneurysm	samples	vs.	control	samples62.	Our	association	

therefore	provides	direct	evidence	for	the	relevance	of	this	TF	to	in	vivo	aortic	gene	regulation,	
as	well	as	potential	insight	into	the	underlying	mechanism	behind	aortic	aneurysm.	In	addition,	

our	top	—	and	only	—	association	in	the	brain	tissue	substantia	nigra	is	TAF1.	

Neurodegeneration	in	the	substantia	nigra	is	a	hallmark	of	Parkinson’s	disease63	and	TAF1	was	

proven	earlier	this	year	(through	detailed	experimental	work)	to	be	the	causal	gene	in	a	rare	

form	of	Parkinsonism	called	X-linked	dystonia	Parkinsonism	(XDP)64.	The	mechanism	by	which	

altered	function	of	such	a	broadly	important	TF	—	TAF1	is	part	of	the	transcription	pre-

initiation	complex	—	can	result	in	this	particular	phenotype	has	remained	mysterious;	our	

analysis,	by	suggesting	that	TAF1	has	a	particularly	strong	regulatory	role	in	substantia	nigra,	

sheds	light	on	this	question.	

Our	tissue-specific	results	also	suggest	new	master-regulatory	relationships	for	further	

exploration	(see	Figure	4).	For	example,	while	we	recovered	the	known	roles	of	CEBPB	in	liver65	

and	blood66,	we	also	detected	a	robust	tissue-specific	activating	role	for	this	TF	in	pancreas,	

where	it	was	our	top	result.	It	has	been	pointed	out	that,	though	CEBPB	is	not	a	classic	

pancreatic	TF65,	it	is	expressed	in	pancreatic	beta	cells	specifically	when	they	are	under	

metabolic	stress65;	our	result	therefore	suggests	an	in	vivo	pancreatic	regulatory	role	for	this	TF	
that	may	be	more	easily	detected	using	our	eQTL-based	analysis	than	using	model	systems	that	

do	not	necessarily	incorporate	this	environmental	stimulus.	Similarly,	in	addition	to	the	roles	we	

detected	for	HNF4A	and	HNF4G	in	liver,	we	also	detected	robust	tissue-specific	activating	effects	

for	both	TFs	in	stomach,	a	less	well-known	association	that	has	only	recently	been	
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suggested67,68.	We	also	identified	a	robust	tissue-specific	activating	role	for	MAFF	in	skeletal	

muscle.	This	is	interesting	because,	while	the	regulatory	role	of	this	TF	in	muscle	is	not	well-

studied,	its	expression	is	increased	by	an	order	of	magnitude	in	muscle	tissue	after	exercise69.	

MAFF	is	typically	considered	a	transcriptional	repressor,	and	indeed	we	observed	a	negative	

association	between	MAFF	and	activating	histone	marks	in	our	previous	analysis	of	molecular	

QTL	in	blood;	the	positive	association	we	observe	here	therefore	suggests	that	MAFF’s	function	

in	skeletal	muscle	may	differ	from	its	function	in	other	tissues,	perhaps	via	tissue-specific	

recruitment	of	an	as-yet	uncharacterized	transcriptional	activator.	Finally,	we	also	identified	a	

robust	tissue-specific	negative	role	for	CTCF	in	putamen	(a	brain	tissue)	and	a	robust	tissue-

specific	activating	role	for	the	same	TF	in	tibial	artery.	While	CTCF	is	known	to	be	capable	of	

both	repressive	activity	via	insulation47,48	and	activating	activity70,	this	analysis	suggests	that	its	

repressive/activating	role	varies	meaningfully	from	tissue	to	tissue.	

In	addition	to	demonstrating	how	signed	LD	profile	regression	can	be	used	to	dissect	

transcriptional	regulation	in	individual	tissues,	our	results	also	demonstrate	how	our	method	

can	offer	insights	into	aspects	of	transcriptional	regulation	that	are	not	tissue-specific.	For	

example,	the	transcription	factor	YY1	is	a	pioneer	factor	that	has	recently	attracted	considerable	

interest71–74.	This	TF	has	been	theorized	via	detailed	experimental	work	to	mediate	enhancer-

promoter	interaction75,	but	of	the	thousands	of	genes	differentially	expressed	following	YY1	
knockdown,	approximately	as	many	increase	as	decrease	in	their	expression	level75,	presumably	

due	to	downstream	regulatory	cascades.	In	contrast,	our	analysis,	which	due	to	its	use	of	eQTLs	

is	able	to	focus	primarily	on	cis-regulatory	effects	rather	than	downstream	responses,	shows	a	

robust,	predominantly	activating	role	for	YY1	across	25	tissues.	

Analysis	of	46	diseases	and	complex	traits	

We	applied	signed	LD	profile	regression	to	46	diseases	and	complex	traits	with	an	average	

sample	size	of	289,617,	including	16	traits	with	publicly	available	summary	statistics	and	30	UK	

Biobank	traits	for	which	we	have	previously	publicly	released	summary	statistics	computed	

using	BOLT-LMM	v2.376	(see	URLs	and	Table	S8).	We	first	tested	each	of	our	382	TF	binding	

annotations	for	a	directional	effect	on	each	of	the	46	traits	in	turn	(Table	1a	and	Table	S9).	For	

each	significant	association	that	we	detected,	we	then	evaluated	10,325	gene	sets	from	the	
Molecular	Signatures	Database23,24	(MSigDB;	see	URLs)	for	enrichment	among	the	genomic	

regions	driving	the	association	(controlling	for	LD	and	co-localizing	genes;	see	Online	Methods),	

in	order	to	better	understand	the	transcriptional	programs	mediating	the	association	(Table	1b	

and	Table	S10).	

Our	analysis	yielded	77	significant	annotation-trait	associations	at	a	per-trait	FDR	of	5%,	
spanning	six	diseases	and	complex	traits	(see	Figure	5	and	Table	S9a).	(Following	standard	

practice,	we	report	per-trait	FDR,	but	we	estimated	the	global	FDR	of	this	procedure	to	be	9.4%,	

which	is	larger	than	the	per-trait	FDR	of	5%;	see	Online	Methods).	The	77	significant	

associations	represent	12	independent	TF-trait	associations	after	pruning	correlated	

annotations	(Table	1;	see	Online	Methods).	Of	the	12	independent	TF-trait	associations,	9	

involve	an	auto-immune	disease	as	the	phenotype,	representing	a	4.3x	enrichment	(! =
1.9×10!!	using	one-sided	binomial	test)	and	providing	additional	evidence	for	the	relevance	of	
TF	binding	to	these	phenotypes	in	particular77.	To	verify	empirically	that	our	results	were	not	

driven	by	confounding	due	to	directional	effects	of	minor	alleles,	we	re-analyzed	our	data	using	

an	alternate	set	of	382	annotations	defined	using	the	same	set	of	SNPs	with	non-zero	effects	but	

with	the	directionality	of	effect	determined	by	minor	allele	coding	rather	than	predicted	TF	

binding,	for	SNPs	in	the	bottom	quintile	of	the	MAF	spectrum.	This	analysis	yielded	only	4	

significant	annotation-trait	associations	at	per-trait	FDR< 5%,	implying	that	minor-allele-driven	
confounding	is	unlikely	to	explain	our	results.	(Due	to	the	small	number	of	associations	relative	

to	the	number	of	traits,	these	4	minor-allele	associations	have	a	global	FDR	of	92.9%	after	
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accounting	for	46	traits.)	Furthermore,	none	of	these	4	minor-allele	associations	overlapped	

with	our	set	of	77	significant	associations	(see	Online	Methods	and	Table	S9b).	We	also	

examined,	for	each	annotation,	the	estimated	covariance	between	the	GWAS	summary	statistics	

and	the	signed	LD	profile	in	each	of	300	independent	genomic	blocks,	finding	agreement	with	

the	genome-wide	direction	of	association	in	59%	of	the	blocks	on	average	across	our	12	

independent	associations,	and	in	85%	of	the	blocks	with	estimated	covariances	of	large	

magnitude	(see	Figure	S8).	We	used	a	related	approach	to	compute	a	lower	bound	on	the	

number	of	independent	TF	binding	sites	contributing	to	each	association	(Table	1a;	see	Online	

Methods).	This	lower	bound	ranged	from	19	to	114,	with	an	average	value	of	74	across	the	12	

independent	TF-trait	associations.	

Some	of	the	TF-trait	associations	that	we	detected	deepen	our	understanding	of	well-established	

associations	or	support	and	refine	emerging	theories	of	disease	(Figure	6	and	Table	S11),	while	

others	were	previously	unknown	(Figure	7	and	Table	S12).	We	begin	by	discussing	three	

selected	TF-trait	associations	that	build	on	previous	knowledge	(Figure	6).	First,	we	detected	a	

positive	association	between	genome-wide	binding	of	BCL11A	and	years	of	education	(see	

Figure	6a)	that	aligns	well	with	existing	evidence	from	educational	attainment	GWAS78,	rare-

variant	studies	of	intellectual	disability79–82,	and	experimental	work	showing	that	heterozygous	

knockout	of	Bcl11a	in	mice	leads	to	microcephaly	and	cognitive	impairment82.	(Additionally,	our	
fine-mapping	of	the	BCL11A	GWAS	locus	using	CAVIAR83	identified	a	putatively	causal	SNP	in	an	

intron	of	the	BCL11A	gene;	see	Table	S13.)	This	association	thus	represents	a	case	in	which	our	
method	provides	insight	into	the	mechanism	of	a	known	relationship:	specifically,	we	establish	

that	BCL11A	causes	intellectual	disability	via	binding	throughout	the	genome	—	likely	

modulating	(in	cis)	genes	comprising	a	transcriptional	program	relevant	to	brain	function	or	

development	—	rather	than	regulation	of	a	single	key	disease	gene	(see	Discussion).	

Furthermore,	our	MSigDB	gene-set	enrichment	analysis	of	the	genomic	regions	driving	the	

genome-wide	signal	allows	us	to	characterize	this	putative	transcriptional	program.	Specifically,	

we	observed	that	these	genomic	regions	are	significantly	enriched	for	an	mTOR	signaling	gene	

set	as	well	as	for	genes	involved	in	cholesterol	metabolism	(see	Figure	6a	and	Table	S10).	

Regarding	the	mTOR	gene	set,	the	MTOR	gene	is	itself	an	intellectual	disability	gene	that	has	
been	intimately	linked	to	brain	development84,85.	Regarding	the	cholesterol	metabolism	gene	

set,	the	brain	contains	approximately	25%	of	the	body’s	cholesterol	(mostly	as	a	component	of	

the	myelin	sheaths	that	surround	axons)86,87	with	defects	in	brain	cholesterol	metabolism	being	

linked	to	central	nervous	system	disease88,89,	and	BCL11A	has	recently	been	shown	to	influence	

(and	be	influenced	by)	lipid	levels90–92.	Furthermore,	the	cholesterol	metabolism	and	mTOR	

gene-set	enrichments	may	be	related,	as	mTOR	has	been	linked	to	cholesterol	metabolism93,	

including	in	the	developing	brain94.	Because	these	gene-set	enrichments	characterize	the	genes	

putatively	regulated	in	cis	by	BCL11A	to	affect	brain	function,	this	raises	the	possibility	that	

mTOR	exerts	part	of	its	effect	on	intellectual	disability	either	by	regulating	or	acting	in	concert	

with	BCL11A	to	influence	cholesterol	metabolism	in	the	developing	brain.	

Second,	we	detected	a	positive	association	between	genome-wide	binding	of	interferon	

regulatory	factor	1	(IRF1)	and	Crohn’s	disease	(CD)	(see	Figure	6b),	a	case	in	which	existing	

GWAS	evidence	has	been	suggestive	but	not	conclusive.	Although	IRF1	is	located	inside	a	locus	
associated	with	CD	and	inflammatory	bowel	disease	in	multiple	GWAS95–97	(one	of	the	earliest	

CD	associations98),	this	locus	remains	mysterious	(it	is	known	as	the	“IBD5	locus”99,	named	after	
the	IBD5	gene).	Strong	LD	makes	it	challenging	to	determine	which	variant(s)	are	causal,	and	
high	gene	density	at	the	locus	(23	protein-coding	genes	within	500kb	of	IRF1)	complicates	the	
task	of	determining	which	gene	is	affected	by	any	putative	causal	variant,	resulting	in	several	

genes95,100	(including	IBD5101)	being	previously	nominated	as	potentially	causal.	For	example,	a	
recent	large-scale	fine-mapping	study102	narrowed	down	the	causal	signal	to	a	set	of	8	SNPs	

including	rs2188962,	an	eQTL	for	SLC22A5	in	immune	and	gut	epithelial	cells22,102	but	also	for	
IRF1	in	blood35.	The	transcriptome-wide	association	study	(TWAS)	approach103	for	prioritizing	
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genes	has	also	been	inconclusive:	it	assigns	highly	significant	scores	to	both	IRF1	and	SLC22A5,	
as	well	as	five	other	genes	at	the	locus	whose	predicted	expression	is	positively	associated	to	

CD.104,105	Our	result	provides	genome-wide	evidence	for	a	genuine	causal	link	between	IRF1	and	

CD	that,	unlike	single-locus	approaches,	is	not	fundamentally	limited	by	LD	and	pleiotropy	near	

the	IRF1	gene	(see	Discussion).	The	top	results	in	our	MSigDB	gene-set	enrichment	analysis	
strengthen	our	finding:	the	regions	driving	this	association	are	most	significantly	enriched	for	

genes	involved	in	production	of	type	I	interferon	and	for	genes	involved	in	regulation	of	nuclear	

division	(see	Figure	6b	and	Table	S10),	matching	well-known	regulatory	roles	of	IRF1106,107	and	

suggesting	that	IRF1	may	affect	CD	via	production	of	type-I	interferon	and	concomitant	cell-

cycle	regulation.	We	note	that	several	other	TF-trait	associations	from	our	analysis	implicate	a	

causal	gene	at	an	established	GWAS	locus,	including	ELF1-CD	and	ETS1-CD,	with	gene-set	

enrichments	suggesting	connections	to	existing	CD	drugs	and	to	the	role	of	autophagy	in	CD	

pathogenesis,	respectively	(see	Table	1	and	Supplementary	Note).	

Third,	we	detected	a	negative	association	between	genome-wide	binding	of	CCCTC-binding	

factor	(CTCF)	and	risk	of	systemic	lupus	erythematosus	(see	Figure	6c)	that	supports	an	

emerging	theory	of	disease.	Although	there	exists	anecdotal	evidence	linking	CTCF	binding	to	

lupus	risk	at	a	few	isolated	loci108–110,	these	results	are	once	again	susceptible	to	the	effects	of	LD	

and	pleiotropy,	whereas	our	approach	is	able	to	provide	stronger	evidence	for	a	causal	

relationship	using	genome-wide	evidence	involving	TF	binding	at	many	concordant	loci	(at	least	

100;	see	Table	1a).	We	note	that	we	do	not	observe	a	GWAS	signal	for	lupus	at	the	CTCF	locus.	
This	could	be	because	the	CTCF	gene	is	under	strong	selective	constraint	(probability	of	loss-of-
function	intolerance111	= 1.00,	greater	than	99.9%	of	genes),	and/or	because	of	the	small	
sample	size	of	the	lupus	GWAS.	This	association	therefore	demonstrates	that	signed	LD	profile	

regression	can	yield	gene-disease	associations	in	cases	when	GWAS	is	under-powered	near	the	

gene	in	question	due	to	selection	or	small	sample	size.	Our	MSigDB	gene-set	enrichments	shed	

additional	light	on	this	relationship:	though	CTCF	has	many	diverse	regulatory	functions	

throughout	the	genome,	the	genomic	regions	driving	the	CTCF-Lupus	association	are	most	

significantly	enriched	in	immune	gene	sets,	with	the	two	strongest	enrichments	being	targets	of	

NF-!B	and	genes	differentially	expressed	between	two	different	stages	of	myeloid	
differentiation	under	knockout	of	the	gene	IKZF1	(but	not	in	the	presence	of	IKZF1)	(see	
Figure	6c	and	Table	S10).	The	latter	gene-set	enrichment,	because	it	pertains	to	genes	putatively	

regulated	in	cis	by	CTCF,	suggests	a	detailed	mechanism	whereby	IKZF1	(itself	a	transcription	

factor)	regulates	or	acts	in	concert	with	CTCF	to	activate	a	broader	transcriptional	program	that	

opposes	myeloid	differentiation	and	reduces	lupus	risk.	This	hypothesis	makes	three	

predictions,	each	of	which	has	evidence	in	the	literature	and/or	publicly	available	data	that	we	

analyzed:	(i)	It	predicts	that	IKZF1	affects	Lupus	risk;	indeed,	the	IKZF1	gene	lies	inside	a	Lupus	
GWAS	locus112,113.	(ii)	It	predicts	that	CTCF	affects	myeloid	development;	indeed,	CTCF	has	been	

experimentally	shown	to	slow	myeloid	differentiation114,115.	(iii)	It	predicts	that	IKZF1	

modulates	CTCF	activity;	indeed,	we	determined	that	IKZF1	has	ChIP-seq	peaks	in	the	vicinity	of	

the	CTCF	promoter116,117	(see	Table	S14),	consistent	with	a	direct	effect	of	IKZF1	binding	on	
CTCF	expression,	and	IKZF1	ChIP-seq	peaks	have	also	been	shown	to	be	enriched	for	the	CTCF	
motif118,	suggesting	that	these	two	TFs	may	also	work	in	concert	at	binding	sites	throughout	the	

genome.	Thus,	the	association	between	CTCF	binding	and	lupus	that	we	detected,	together	with	

the	associated	MSigDB	gene-set	enrichments,	enhances	our	understanding	of	the	lupus	GWAS	

signal	at	the	IKZF1	locus	by	providing	evidence	for	IKZF1	as	the	causal	gene	(out	of	7	total	
protein	coding	genes	within	500kb);	suggests	a	mechanism	to	explain	the	effect	of	IKZF1	on	
lupus;	and	proposes	a	regulatory	relationship	between	IKZF1	and	CTCF	that	unifies	disparate	
molecular	evidence	for	the	effects	of	both	of	these	genes	on	myeloid	development	and	ties	them	

jointly	to	lupus	risk.	

We	next	discuss	three	selected	TF-trait	associations	that	were	previously	unknown	(Figure	7).	

First,	we	detected	a	positive	association	between	genome-wide	binding	of	CTCF	and	eczema	(see	
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Figure	7a)	that	contrasts	with	the	negative	association	that	we	detected	between	CTCF	and	

lupus.	The	association	with	eczema	exhibits	gene-set	enrichments	that	are	very	different	from	

lupus.	Moreover,	the	top	two	significant	MSigDB	gene-set	enrichments	for	CTCF-Eczema	are	

convergent:	genes	up-regulated	in	Treg	cells	upon	knockout	of	the	inflammatory	regulator	BCL6;	
and	genes	up-regulated	in	response	to	stimulation	by	the	immune	signaling	molecule	IL21,	

which	is	a	known	regulator	of	BCL6	activity119,120	(see	Figure	7a	and	Table	S10).	As	with	the	

CTCF-Lupus	example,	these	enrichments	suggest	a	detailed	cascade	that	we	hypothesize	to	

modulate	eczema	risk:	IL21	signaling	regulates	BCL6,	which	in	turn	regulates	or	acts	in	concert	

with	CTCF	to	activate	a	broad	transcriptional	program	that	increases	eczema	risk.	This	

hypothesis	makes	three	predictions:	(i)	It	predicts	that	BCL6	modulates	CTCF	activity;	indeed,	

we	determined	that	BCL6	has	many	binding	sites	near	the	CTCF	promoter	in	publicly	available	
ChIP-seq	data121–124	(see	Table	S15).	(ii),(iii)	It	predicts	that	IL21	and	BCL6	each	affect	eczema	

risk;	indeed,	the	IL21	and	BCL6	genes	each	fall	in	eczema	GWAS	loci76,125,126	(in	each	case	along	
with	7	other	protein-coding	genes	within	500kb).	Thus,	the	association	between	CTCF	binding	

and	eczema	that	we	detected	nominates	causal	genes	at	two	different	existing	eczema	GWAS	loci	

and	provides	a	parsimonious	mechanism	for	how	both	causal	genes	exert	their	effect	on	eczema	

via	a	regulatory	cascade	that	drives	a	CTCF-mediated	transcriptional	program.	

Second,	we	detected	a	negative	association	between	genome-wide	binding	of	SP1	and	anorexia	

(Figure	7b),	a	heritable	trait	for	which	no	single	locus	reaches	genome-wide	significance	in	the	

GWAS	data	that	we	analyzed127.	SP1	levels	have	been	shown	observationally	to	correlate	

negatively	with	psychiatric	conditions	such	as	bipolar	disorder128	and	schizophrenia129,130	

(which	is	significantly	positively	genetically	correlated	with	anorexia131),	but	this	association	

has	not	been	shown	to	be	causal	and	has	not	previously	been	observed	in	GWAS	of	psychiatric	

traits.	Our	MSigDB	gene-set	enrichment	results	for	this	association	yielded	significant	

enrichments	for	an	androgen	response	gene	set	and	an	mTOR	signaling	gene	set	(see	Figure	7a	

and	Table	S10).	(Years	of	education,	for	which	an	mTOR	signaling	gene-set	was	also	among	the	

top	two	MSigDB	enrichments,	is	also	significantly	positively	genetically	correlated	with	

anorexia131;	the	median	rank	of	the	top-scoring	mTOR	gene	set	across	the	10	other	independent	

TF-complex	trait	associations	was	1,123,	of	10,325	MSigDB	gene	sets	tested.)	The	androgen	
response	result	is	intriguing	given	the	sex-imbalanced	nature	of	this	phenotype132.	The	mTOR	

signaling	result	is	noteworthy	given	the	well-established	connections	between	mTOR,	caloric	

restriction,	and	growth133;	it	also	raises	the	possibility	that	a	link	between	SP1	and	mTOR	could	

explain	prior	observations	that	SP1	can	be	regulated	by	insulin	levels134,135,	modulate	expression	

in	the	hypothalamus	of	the	appetite	regulator	POMC136,137,	and	play	a	role	in	the	induction	of	

leptin	following	insulin-stimulated	glucose	metabolism	in	adipocytes138.	In	addition,	mTOR	has	

been	shown	to	play	an	important	role	in	androgen	signaling139,	suggesting	a	potential	unification	

of	these	two	signals.	

Third,	we	detected	a	positive	association	between	binding	of	RNA	polymerase	II	(POL2)	and	

Crohn’s	disease	(CD)	(Figure	7c).	This	association	is	surprising	given	the	very	broad	role	of	

POL2	throughout	the	genome.	However,	our	MSigDB	gene-set	enrichments	shed	some	light	on	

the	biology	underlying	this	association,	with	many	significant	enrichments	in	immune	and	

immune-related	gene	sets	(see	Table	S10).	In	particular,	the	top	two	significant	gene	sets	are	

genes	down-regulated	upon	immunosuppression	and	genes	involved	in	cell-cycle	regulation	

(see	Figure	7c	and	Table	S10).	Because	of	the	central	role	of	POL2	in	gene	transcription,	these	

results	suggest	that	there	may	exist	a	large	set	of	immune-	or	proliferation-related	genes	whose	

increased	expression	contributes	to	CD	risk.	Indeed,	CD	is	an	auto-immune	disease,	and	it	has	

been	hypothesized	that	increased	expression	is	a	prominent	component	of	many	immune	

responses	since	it	can	be	enacted	more	quickly	than	decreased	expression140–142.	Furthermore,	

acute	inflammation	has	been	associated	in	observational	studies	with	CD	onset143,144,	and	recent	

experimental	work145	has	shown	that	the	acute	inflammatory	response	in	mice	is	greatly	

attenuated	by	non-specific	inhibition	of	the	general-purpose	transcriptional	machinery	

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 4, 2018. ; https://doi.org/10.1101/204685doi: bioRxiv preprint 

https://doi.org/10.1101/204685
http://creativecommons.org/licenses/by-nd/4.0/


	 12	

containing	POL2.	Our	result	potentially	links	these	two	findings,	providing	evidence	that	the	

observational	association	between	acute	inflammation	and	CD	is	causal	and	suggesting	that	

there	exists	a	polygenic	liability	for	acute	inflammation	that	acts	via	increased	transcription	of	a	

large	set	of	immune-	or	proliferation-related	genes	and	contributes	to	CD	risk.	To	better	

understand	the	POL2-CD	association,	we	investigated	whether	any	of	the	14	genes	comprising	

the	RNA	polymerase	II	protein	complex	lie	inside	a	CD	GWAS	locus.	We	identified	a	CD	GWAS	

peak	located	28kb	from	one	of	these	genes,	POLR2E.	This	locus	is	quite	gene-dense	(28	protein-
coding	genes	within	500kb;	3	protein-coding	genes	within	28kb),	and	a	recent	large-scale	CD	

fine-mapping	effort102	was	unable	to	nominate	any	gene	as	potentially	causal.	Thus,	our	POL2-

CD	association	also	nominates	a	potential	causal	gene	for	the	CD	GWAS	association	at	this	gene-

dense	locus.	

We	provide	additional	discussion	of	other	TF-trait	associations	in	the	Supplementary	Note.	

Discussion	

We	have	introduced	a	method,	signed	LD	profile	regression,	for	identifying	genome-wide	

directional	effects	of	signed	functional	annotations	on	diseases	and	complex	traits.	We	first	

applied	this	method,	in	conjunction	with	382	annotations	describing	predicted	effects	of	SNPs	

on	TF	binding,	to	12	molecular	traits	in	blood	(average	! = 149)	and	confirmed	that	it	recovers	
classical	aspects	of	transcriptional	regulation,	including	the	pro-transcriptional	effect	of	RNA	

polymerase	and	activating	TFs	as	well	as	associations	between	chromatin	modifiers	and	their	

respective	chromatin	marks.	We	then	applied	the	method	to	gene	expression	eQTLs	in	48	GTEx	

tissues	from	the	GTEx	consortium	(average	! = 214),	yielding	2,330	significant	annotation-
tissue	expression	associations	representing	651	distinct	TF-tissue	expression	pairs,	30	of	which	

showed	strong	evidence	of	tissue	specificity.	These	included	many	previously	unknown	

associations	that	support	emerging	theories	of	disease	in	less	well-studied	tissues	and	new	

tissue-specific	master-regulatory	relationships.	Finally,	we	applied	the	method	to	46	diseases	

and	complex	traits	(average	! = 289,617),	identifying	77	annotation-trait	associations,	
representing	12	independent	TF-trait	associations.	Some	of	these	findings	confirm	previously	

well-established	associations,	others	provide	insight	into	known	GWAS	loci	containing	the	

associated	TF	(in	addition	to	other	protein-coding	genes),	and	others	have	not	been	detected	in	

prior	GWAS.	Because	the	detected	associations	involve	genome-wide	TF	binding,	they	implicate	

broad	disease-relevant	transcriptional	programs.	Our	characterization	of	these	programs	via	

gene-set	enrichment	analyses	using	gene	sets	from	MSigDB23,24	yielded	detailed	hypotheses	

about	disease	mechanisms	that	in	several	cases	mechanistically	link	existing	GWAS	loci	and	

disparate	molecular	evidence	into	a	parsimonious	mechanism	mediated	by	the	associated	TF.	

Our	method	differs	from	unsigned	GWAS	enrichment	methods1–7	by	assessing	whether	there	is	a	

systematic	genome-wide	correlation	between	a	signed	functional	annotation	and	the	(signed)	

true	causal	effects	of	SNPs	on	disease,	rather	than	assessing	whether	a	set	of	SNPs	have	large	

effects	on	a	disease	without	regard	to	the	directions	of	those	effects.	A	substantial	advantage	of	

this	approach	is	reduced	susceptibility	to	confounding:	for	example,	an	unsigned	GWAS	

enrichment	for	binding	of	an	immune	TF	could	indicate	a	causal	role	for	that	TF	in	the	

associated	disease,	or	could	instead	be	a	side	effect	of	a	generic	enrichment	among	cell-type-

specific	regulatory	elements	in	immune	cells5.	Unsigned	enrichments	can	also	be	complicated	by	

LD,	as	functional	elements	in	LD	with	binding	sites	of	a	TF	may	contribute	to	its	enrichment	if	

not	properly	modeled5.	In	contrast,	if	alleles	that	increase	binding	of	the	TF	tend	to	increase	

disease	risk	and	alleles	that	decrease	binding	of	the	TF	tend	to	decrease	disease	risk,	the	set	of	

potential	confounders	is	smaller	because	a	confounding	process	has	not	only	to	co-localize	in	the	

genome	with	binding	of	the	TF	but	also	to	have	the	property	that	alleles	that	increase	the	

process	have	a	consistent	directional	effect	on	binding	of	the	TF.	
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Our	method	differs	from	existing	single-locus	GWAS	methods11,12,103	in	that	it	enables	stronger	

statements	about	causality	and	mechanism.	Regarding	causality,	this	is	because	a	consistent	

genome-wide	directional	effect	of	SNPs	predicted	to	affect	TF	binding	due	to	sequence	change	

(across	a	large	set	of	TF	binding	sites;	see	Table	1a)	is	less	susceptible	to	pleiotropy,	LD,	and	
allelic	heterogeneity103,105.	The	robustness	of	our	method	to	these	potential	confounders	is	also	

greater	than	that	of	genetic	correlation	and	Mendelian	randomization131	(MR)	analyses,	which	

can	be	confounded	by	reverse	causality	and	pleiotropic	effects146–148	(and	which	would	scale	

poorly	because	they	would	require	TF	ChIP-seq	in	many	individuals	for	every	TF/cell-type	pair	

studied).	The	reason	that	our	method	is	not	confounded	by	reverse	causality	is	that	each	of	our	

annotations	is	produced	in	a	cell	population	that	is	isogenic	and	therefore	does	not	have	

variance	in	genetic	liability	for	any	trait.	In	other	words,	our	annotations	provide	ideal	

instrumental	variables	for	the	effect	of	TF	binding	on	the	trait	of	interest	because	they	are	

created	not	by	naively	correlating	SNPs	with	TF	binding	but	rather	by	examining	the	effect	of	

each	SNP	on	local	DNA	sequence.	

Regarding	mechanism,	our	method	sheds	light	on	the	question	of	whether	TFs	affect	traits	via	

coordinated	regulation	of	gene	expression	throughout	the	genome149	(a	“genome-wide”	model)	

or	via	regulation	of	one	or	a	small	number	of	key	disease	genes150	(a	“local”	model).	Since	the	

associations	we	find	involve	a	consistent	net	direction	of	effect	of	TF	binding	on	a	trait	

throughout	the	genome,	they	cannot	be	explained	by	a	local	model	and	therefore	represent	

evidence	for	the	existence	of	transcriptional	programs	and	their	relevance	to	complex	traits.	

This	is	of	basic	interest,	but	it	also	has	therapeutic	relevance:	if	a	TF	causally	affects	a	trait	but	

the	TF	is	not	druggable	due	to	its	nuclear	localization	or	large	DNA-	and	protein-binding	

domains151,152,	then	the	local	model	suggests	targeting	a	downstream	gene,	whereas	the	

genome-wide	model	instead	suggests	targeting	an	upstream	regulator	since	the	causal	link	

between	TF	and	trait	is	mediated	through	a	large	number	of	downstream	genes.	(We	emphasize	

that	a	significant	result	for	our	method	does	not	imply	that	all	binding	events	of	the	TF	in	

question	affect	disease	via	activation	of	a	single	transcriptional	program;	rather,	it	implies	that	

there	exists	a	program	that	is	widespread	enough	that	we	observe	its	effect	on	disease	in	a	large	

number	of	locations	in	the	genome;	see	Table	1a	and	Figure	S8.)	Moreover,	as	we	have	shown,	

the	genome-wide	nature	of	the	putative	transcriptional	programs	identified	by	our	method	

allows	us	to	characterize	and	interpret	these	programs	by	aligning	them	with	existing	gene	sets,	

leading	in	some	cases	to	detailed	mechanistic	hypotheses.	

We	note	that	although	we	constructed	our	predicted	TF	binding	annotations	using	the	neural-

network	predictor	Basset19,	there	exist	many	other	effective	methods	for	making	such	signed	

predictions1,13–16,18,153,154	and	many	other	data	sets	on	which	to	train	them155–157.	In	an	initial	

effort	to	assess	these,	we	repeated	our	analyses	of	molecular	traits	in	blood,	gene	expression	in	

48	GTEx	tissues,	and	46	diseases	and	complex	traits	using	annotations	generated	via	three	other	

approaches:	382	annotations	generated	using	the	DeepSEA	neural-network	predictor15	applied	

to	the	same	ENCODE	ChIP-seq	data	that	we	analyzed	using	Basset;	184	annotations	generated	

using	the	Basset	predictor	trained	on	a	larger	but	noisier	set	of	meta-analyzed	ChIP-seq	data	

from	the	Gene	Transcription	Regulation	Database4	(GTRD)	followed	by	our	Basset	QC	

procedures;	and	276	annotations	generated	using	position-weight	matrices	(PWMs)	from	the	

Homo	sapiens	Comprehensive	Model	Collection156	(HOCOMOCO),	which	are	based	in	part	on	
data	from	the	GTRD	(see	Online	Methods).	Results	are	reported	in	Tables	S16,	S17,	and	S18,	

respectively,	and	summarized	in	Table	S19.	For	the	382	DeepSEA	annotations,	we	obtained	

results	similar	to	our	primary	set	of	382	Basset	annotations,	including	replication	of	many	of	our	

top	results	(see	Figures	S9	and	S10	and	Table	S16);	intriguingly,	we	also	determined	that	the	

concordance	between	signed	LD	profile	regression	results	using	Basset	and	DeepSEA	was	

greater	than	the	concordance	between	Basset	and	DeepSEA	at	the	level	of	annotations	(see	

Figure	S11),	suggesting	that	the	signal	that	is	shared	between	the	predictions	made	by	the	two	

methods	is	indeed	biological.	The	DeepSEA	annotations	produced	fewer	significant	associations	
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in	total	(see	Table	S19),	although	this	comparison	was	restricted	to	annotations	passing	our	

Basset	QC	procedures,	including	a	filter	on	Basset	prediction	accuracy	(see	Figure	S10).	The	184	

GTRD	annotations	produced	fewer	significant	annotations	than	either	set	of	annotations	created	

using	ENCODE	data,	though	they	did	identify	new	associations,	especially	in	GTEx	eQTL	data	

(see	Tables	S17	and	S19).	For	the	276	PWM-based	annotations	from	HOCOMOCO,	we	again	

observed	correlation	between	results	using	PWMs	and	results	using	Basset	(see	Figures	S12	and	

S13),	though	this	correlation	was	weaker	than	the	correlation	between	the	DeepSEA	results	and	

the	Basset	results.	We	identified	fewer	significant	associations	overall	using	the	PWM-based	

annotations	than	we	did	using	the	more	sophisticated	neural-network	based	annotations	(see	

Tables	S18	and	S19),	providing	evidence	that	the	latter	methods	can	provide	a	scientifically	

meaningful	increase	in	performance.	

Our	method	could	be	used	to	link	disease	to	biological	processes	beyond	TF	binding.	For	

example,	sequence-based	models	can	also	produce	signed	predictions	of	DNase	I	

hypersensitivity14,15,19,	histone	modifications15,19,	splicing16,158,	and	transcription	initiation159.	

Additionally,	allele-specific	molecular	assays,	massively	parallel	assays,	and	CRISPR	screens	are	

increasingly	yielding	high-resolution	experimental	information	about	the	effects	of	genetic	

variation	on	gene	expression29,45,160–163	as	well	as	cellular	processes	such	as	growth164–166	and	

inflammation167.	Finally,	perturbational	differential	expression	experiments	can	yield	signed	

predictions	for	the	relationships	of	genes	to	a	variety	of	biological	processes	such	as	drug	

response168,	immune	stimuli169,	and	many	others170.	Though	converting	such	data	to	signed	

functional	annotations	will	require	care,	doing	so	could	allow	us	to	leverage	them	to	make	

detailed	statements	about	disease	mechanism.	

We	note	several	limitations	of	signed	LD	profile	regression.	First,	though	our	results	are	less	

susceptible	to	confounding	due	to	their	signed	nature,	they	are	not	immune	to	it:	in	particular,	

our	method	cannot	distinguish	between	two	TFs	that	are	close	binding	partners	and	thus	share	

sequence	motifs,	and	it	likewise	cannot	distinguish	between	binding	of	the	same	TF	in	different	

cell	types,	as	the	resulting	annotations	could	be	highly	correlated.	Second,	although	we	have	

shown	our	method	to	be	robust	in	a	wide	range	of	scenarios,	we	cannot	rule	out	the	possibility	

of	un-modeled	directional	effects	of	minor	alleles	on	both	trait	and	TF	binding	as	a	confounder;	

however,	our	empirical	analysis	of	real	traits	with	minor-allele-based	signed	annotations	

suggests	that	directional	effects	of	minor	alleles	are	very	unlikely	to	explain	our	results	(see	

Table	S9b).	Third,	our	results	are	limited	by	the	quality	of	the	annotations	we	are	able	to	

produce.	For	example,	TF	binding	is	easier	to	measure	in	open	chromatin	and	so	it	may	be	the	

case	that	our	annotations	for	activating	TFs	are	more	representative	of	underlying	biology	—	

and	therefore	better	powered	—	than	our	annotations	for	repressing	TFs.	Fourth,	our	method	is	

not	well-powered	to	detect	instances	in	which	a	TF	affects	trait	in	different	directions	via	

multiple	heterogeneous	programs.	Fifth,	the	effect	sizes	of	the	associations	to	diseases	and	

complex	traits	that	we	report	are	small	in	terms	of	the	estimated	values	of	!! ,	which	range	in	
magnitude	from	2.4%	to	8.9%	(recall	that	!!	is	analogous	to	a	genetic	correlation;	see	
Table	S9a),	although	signals	of	this	size	for	predicted	TF	binding	could	be	indicative	of	much	

stronger	associations,	e.g.,	with	true	TF	binding,	TF	expression,	TF	phosphorylation,	or	TF	

binding	in	specific	subsets	of	the	genome.	We	further	note	that	the	magnitude	of	the	signals	that	

we	detect	is	commensurate	with	the	very	small	number	of	SNPs	in	our	annotations.	Specifically,	

!!!	divided	by	the	proportion	of	SNPs	in	an	annotation	quantifies	how	much	heritability	the	
signed	TF	binding	signal	that	we	detect	explains	as	compared	to	the	total	heritability	explained	

by	a	random	set	of	SNPs	of	the	same	size.	This	ratio	is	as	large	as	3.5x	(see	Table	S9c),	implying	

that	our	signed	TF	binding	signals	can	account	—	in	a	signed	fashion	—	for	substantial	trait	

heritability	relative	to	the	proportion	of	SNPs.	Sixth,	we	used	annotations	constructed	using	

ChIP-seq	data	from	cell	lines,	which	is	non-ideal	both	because	chromatin	dynamics	in	cell	lines	

do	not	necessarily	match	those	in	real	tissue	and	because	cell	lines	often	have	structural	
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duplications	and	deletions	that	complicate	sequence-based	analysis	of	TF	binding.	We	note,	

however,	that	though	these	difficulties	reduce	our	power	and	so	are	promising	topics	for	future	

work,	they	would	not	be	expected	to	introduce	false	positives	into	our	results	due	to	the	signed	

nature	of	our	analysis.	Seventh,	our	annotations	are	constructed	by	testing	each	minor	allele	in	

the	context	of	the	reference	genome	and	separately	from	variation	at	all	other	SNPs,	rather	than	

taking	into	account	potential	non-linear	interactions	between	nearby	SNPs1;	this	too	is	a	source	

of	reduced	power	but	not	increased	false	positive	rates.	Eighth,	the	interpretability	of	our	

MSigDB	gene-set	enrichment	analysis	is	limited	by	the	potential	for	distinct	gene	sets	to	have	

overlapping	membership	as	well	as	the	possibility	for	co-expressed	genes	to	be	in	the	same	gene	

sets	more	often	than	expected	by	chance;	however,	we	believe	this	is	somewhat	ameliorated	by	

that	fact	that	we	treat	blocks	of	genes	together	in	our	empirical	null	(see	Online	Methods).	Ninth,	

though	we	detected	many	significant	associations	overall,	there	were	many	diseases	and	

complex	traits,	including	schizophrenia,	height,	and	blood	cell	traits,	for	which	we	did	not	detect	

any	significant	associations	using	our	TF	annotations.	We	believe	that	three	factors	may	

contribute	to	this:	(i)	As	we	observed	here	and	as	others	have	noted	as	well77,	auto-immune	

traits	appear	to	have	a	stronger	association	to	TFs	than	other	traits,	at	least	for	the	TFs	on	which	

we	have	systematic,	high-quality	ChIP-seq	data,	and	these	traits	comprised	only	8	out	of	47	

(17%)	of	the	diseases	and	complex	traits	in	our	study;	it	may	be	that	genome-wide	directional	

effects	of	these	TFs	are	not	as	prominent	a	mechanism	for	other	traits.	(ii)	We	construct	our	

annotations	by	annotating	all	SNPs	in	the	ChIP-seq	peaks	for	the	TF	in	question;	it	could	be	that	

in	many	cases	these	annotations	represent	multiple	opposing	or	unrelated	transcriptional	

programs,	and	that	restricting	them	to	more	specific	sets	of	SNPs	would	reveal	additional	

genome-wide	directional	effects.	(iii)	Genome-wide	directional	effects	may	be	contingent	on	

annotations	constructed	using	data	generated	in	the	“correct"	cellular	context	(beyond	the	

narrow	set	of	cell	lines	analyzed	in	this	paper).	It	is	possible	that	additional	signed	TF-trait	

associations	will	be	identified	as	higher-quality	functional	data	sets	become	more	available	and	

molecular	hypotheses	become	more	detailed.	

Despite	these	limitations,	signed	LD	profile	regression	is	a	powerful	new	way	to	leverage	

functional	genomics	data	to	draw	causal	and	mechanistic	conclusions	from	GWAS	about	both	

diseases	and	underlying	cellular	processes.	
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URLs	

Signed	LD	profile	regression:	open-source	software	is	available	at	

http://www.github.com/yakirr/sldp	

Plink2:	https://www.cog-genomics.org/plink2/	

BLUEPRINT	consortium	data:	
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ftp://ftp.ebi.ac.uk/pub/databases/blueprint/blueprint_Epivar/qtl_as/QTL_RESULTS/	

TWAS	weights	for	NTR	data:	

https://data.broadinstitute.org/alkesgroup/FUSION/WGT/NTR.BLOOD.RNAARR.tar.bz2	

GTEx	eQTL	data:	https://www.gtexportal.org/home/datasets	

MSigDB	data:	http://software.broadinstitute.org/gsea/msigdb	

GTRD	data:	http://gtrd.biouml.org/	

HOCOMOCO	motif	data:	http://hocomoco11.autosome.ru/	

Online	Methods	

Signed	LD	profile	regression	

We	first	describe	the	method	intuitively,	then	present	a	formal	derivation	and	discuss	other	

technical	details.	

Intuition	

Our	method	for	quantifying	directional	effects	of	signed	functional	annotations	on	disease	risk,	

signed	LD	profile	regression,	relies	on	the	following	intuition.	Suppose	there	are	!	SNPs	and	we	
are	given	a	signed	functional	annotation,	specified	by	a	length-!	vector	!,	with	a	directional	
linear	effect	on	disease	risk.	For	example,	!	might	be	a	vector	whose	!-th	entry	is	the	effect	of	
SNP	!	on	binding	of	some	TF.	If	we	knew	the	length-!	vector	!	of	the	true	causal	effects	of	the	
same	SNPs	on	a	trait,	we	could	simply	regress	!	on	!	to	evaluate	whether	there	is	a	non-trivial	
signed	association	across	SNPs	!	between	!!	and	!!.	In	reality,	we	cannot	do	this	because	we	
do	not	observe	!;	instead	we	observe	a	vector,	denoted	!,	of	GWAS	summary	statistics	
describing	the	marginal	correlation	of	every	SNP	to	our	trait	of	interest.	This	vector	differs	from	

!	because	it	includes	both	causal	and	tagging	effects,	plus	statistical	noise.	Specifically,	it	can	be	
shown	mathematically	that,	in	expectation,	!	will	equal	the	matrix-vector	product	!"	where	!	is	
the	!×!	LD	matrix.	Therefore,	just	as	!	would	be	proportional	to	!	in	the	presence	of	a	signed	
effect,	! (≈ !")	would	likewise	be	proportional	to	!",	which	is	a	vector	capturing	each	SNP’s	
aggregate	tagging	of	the	signed	annotation.	This	means	that	instead	of	regressing	!	on	!	(which	
is	impossible	since	we	do	not	observe	!),	we	can	regress	!	on	!".	We	call	the	vector	!!	the	
signed	LD	profile	of	!,	and	thus	our	method	is	called	signed	LD	profile	regression.	The	remainder	
of	our	technical	material	is	oriented	toward	i)	weighting	this	regression	to	achieve	optimal	

power,	ii)	being	able	to	efficiently	perform	the	required	computations,	iii)	determining	the	

proper	way	to	test	the	null	hypothesis	of	no	signed	effect,	and	iv)	controlling	for	potential	

confounding	due	to	directional	effects	of	minor	alleles.	

Model	and	estimands	

Let	!	be	the	number	of	SNPs	in	the	genome.	We	assume	a	linear	model:	
!|!, ! ∼ !(!!!,!!!)	 (2)	

where	! ∈ ℝ!	and	! ∈ ℝ	are	the	standardized	genotype	vector	and	phenotype,	respectively,	of	a	
randomly	chosen	individual	from	some	population,	! ∈ ℝ!	is	a	vector	of	true	causal	effects	of	
each	SNP	on	phenotype,	and	!!!	represents	environmental	noise.	Given	a	signed	functional	
annotation	! ∈ ℝ! ,	we	then	model	

!|! ∼ [!",!!!]	 (3)	
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where	the	scalar	!	represents	the	genome-wide	directional	effect	of	!	on	!,	!!	represents	other	
sources	of	heritability	unrelated	to	!,	and	the	notation	[⋅,⋅]	is	used	to	specify	the	mean	and	
covariance	of	the	distribution	without	specifying	any	higher	moments.	

Though	we	can	estimate	!,	its	value	depends	on	the	units	of	the	annotation	and	the	heritability	
of	the	trait.	Because	of	this,	we	focus	instead	on	the	functional	correlation	!! ,	which	re-scales	!	to	
be	dimensionless	and	is	defined	as	

!! ∶= corr !!!, !!! = ! !!!"
ℎ!!

	 (4)	

where	ℎ!! = var(!!!)	is	the	SNP-heritability	of	the	phenotype	and	! = !(!!!) ∈ ℝ!×!	is	the	
(signed)	population	LD	matrix	of	the	genotypes.	(Note	that	!!	can	also	be	defined	as	a	correlation	
between	!	and	!;	this	definition	is	approximately	equivalent	in	expectation	under	our	random	
effects	model,	provided	!!!" ≈ |!|!.)	We	additionally	estimate	ℎ!! = !!!ℎ!!,	the	total	phenotypic	
variance	explained	by	the	signed	contribution	of	!	to	!,	as	well	as	ℎ!!/ℎ!! = !!!.	For	annotations	
with	small	support,	these	quantities	are	expected	to	be	small	in	magnitude.	To	see	this,	notice	

that	ℎ!!	cannot	exceed	the	total	(unsigned)	phenotypic	variance	explained	by	SNPs	with	non-
zero	values	of	!.	It	follows	that	!!!	cannot	exceed	the	proportion	of	(unsigned)	SNP-heritability	
explained	by	SNPs	with	non-zero	values	of	!.	For	more	detail	on	the	model	and	estimands,	see	
the	Supplementary	Note.	

Main	derivation	

Let	! ∈ ℝ!×!	be	the	genotype	matrix	in	a	GWAS	of	!	individuals,	with	standardized	columns,	
and	let	! ∈ ℝ!	be	the	phenotype	vector.	In	the	Supplementary	Note,	we	show	that	under	the	
above	model	the	following	identity	approximately	holds:	

!|! ~  !"#,!!!! + !
!" 	 (5)	

where	! := !!!/!	is	a	vector	whose	!-th	entry	contains	the	marginal	correlation	of	SNP	!	to	
the	phenotype	and	! ∈ ℝ!×!	is	the	population	LD	matrix.	Equation	(1)	from	the	main	text	can	
be	derived	from	Equation	(5)	by	re-scaling	!	so	that	!!!" = 1,	then	substituting	for	!.	

We	call	!"	the	signed	LD	profile	of	!.	Equation	(5)	means	that	we	can	estimate	!	by	regressing	!	
on	the	signed	LD	profile	using	generalized	least-squares	with	!:= !!!! + !/!	as	the	inverse	
weight	matrix.	It	can	be	shown	that	if	a)	all	causal	SNPs	are	typed,	b)	sample	size	is	infinite,	and	

c)	!	is	invertible,	this	method	is	equivalent	to	estimating	!	via	!!! !	and	then	regressing	this	
estimate	on	!	to	obtain	!,	which	is	the	optimal	regression-based	approach	in	that	setting.	Note	
that	because	we	generate	P-values	for	hypothesis	testing	empirically	(see	below),	we	are	

guaranteed	that	our	generalized	least-squares	scheme	will	remain	well-calibrated	even	if	our	

estimate	of	the	matrix	!	is	inaccurate	due	to,	e.g.,	mis-match	between	the	reference	panel	and	
the	study	population.	Once	we	have	estimated	!,	we	re-scale	this	estimate	to	yield	an	estimate	
of	!!	and	other	estimands	of	interest.	For	more	detail	on	derivations	and	computational	
considerations,	see	the	Supplementary	Note.	

Null	hypothesis	testing	

To	test	the	null	hypothesis	!!: ! = 0	(or,	equivalently,	!!: !! = 0),	we	split	the	genome	into	
approximately	300	blocks	of	approximately	the	same	size	with	the	block	boundaries	

constrained	to	fall	on	estimated	recombination	hotspots171.	We	then	define	the	null	distribution	
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of	our	statistic	as	the	distribution	arising	from	independently	multiplying	!	by	one	independent	
random	sign	per	block.	We	perform	this	empirical	sign-flipping	many	times	to	obtain	an	

approximation	of	the	null	distribution	and	corresponding	P-values.	Our	use	of	sign-flipping	

ensures	that	any	true	positives	found	by	our	method	are	the	result	of	genuine	first-moment	

effects;	if	in	contrast	we	estimated	standard	errors	using	least-squares	theory	or	a	re-sampling	

method	such	as	the	jackknife	or	bootstrap,	our	method	might	inappropriately	reject	the	null	

hypothesis	only	because	the	variance	of	!	is	higher	in	parts	of	the	genome	where	!"	is	large	in	
magnitude.	This	would	make	our	method	susceptible	to	confounding	due	to	unsigned	

enrichments,	as	might	arise	from	the	co-localization	of	TF	binding	sites	with	enriched	regulatory	

elements	such	as	enhancer	regions.	Additionally,	the	fact	that	we	flip	the	signs	of	SNPs	in	each	

block	together	ensures	that	our	null	distribution	preserves	any	potential	association	of	our	

annotation	to	the	LD	structure	of	the	genome.	In	choosing	how	many	blocks	to	use	for	this	

procedure,	we	took	into	account	that	i)	the	fewer	blocks	we	use	the	fewer	assumptions	we	make	

about	LD	structure	and	the	faster	we	can	compute	P-values,	and	ii)	the	more	blocks	we	use	the	

higher	the	precision	of	the	P-values	that	we	can	obtain.	Our	choice	to	use	300	blocks	is	a	

compromise	between	these	two	considerations.	

Controlling	for	covariates	and	the	signed	background	model	

Given	a	signed	covariate	! ∈ ℝ! ,	we	can	perform	inference	on	the	signed	effect	of	!	conditional	
on	!	by	first	regressing	!"	out	of	!	and	out	of	!"	using	the	generalized	least-squares	method	
outlined	above,	and	then	proceeding	as	usual	with	the	residuals	of	!	and	!".	This	can	be	done	
simultaneously	for	multiple	covariates	!.	
Unless	stated	otherwise,	all	analyses	in	this	paper	are	done	controlling	in	this	fashion	for	a	

“signed	background	model”	consisting	of	5	annotations	!!,… , !!,	defined	by	

!!! = ! MAF! is in !-th quintile 2MAF!(1 −MAF!)!!!! 	 (6)	

where	MAF!	is	the	minor	allele	frequency	of	SNP	!	and		!!	is	a	parameter	describing	the	MAF-
dependence	of	the	signed	effect	of	minor	alleles	on	phenotype.	Based	on	the	literature	on	MAF-

dependence	of	the	unsigned	effects	var(!!),	we	set	!! = −0.3172.	

382	TF	annotations	

We	downloaded	every	ChIP-seq	and	DNase	I	hypersensitivity	experiment	in	ENCODE	and	

trained	the	sequence-based	predictor	of	peak	presence/absence,	Basset19,	to	jointly	predict	each	

downloaded	track	on	a	set	of	held-out	genomic	segments.	(We	included	tracks	other	than	TF	

binding	tracks	because	training	predictions	using	all	tracks	slightly	improved	prediction	

accuracy	for	the	TF	binding	tracks.)	After	training	the	joint	predictor,	we	retained	the	

predictions	for	every	TF	binding	track	for	which	a)	the	number	of	SNPs	in	the	set	of	ChIP-seq	

peaks	with	non-zero	difference	in	Basset	predictions	between	the	major	and	minor	allele	was	at	

least	5,000	in	our	1000G	reference	panel,	and	b)	Basset’s	estimated	area	under	the	precision-

recall	curve	(AUPRC)	was	at	least	0.3.	This	yielded	a	set	of	382	TF	ChIP-seq	experiments.	For	

each	experiment,	we	constructed	an	annotation	via	

!! = ! ! ∈ ! !!! − !!! 	 (7)	

where	!	is	the	set	of	SNPs	in	the	ChIP-seq	peaks	arising	from	the	experiment,	!!!	is	the	Basset	
prediction	for	the	1,000	base-pair	sequence	around	SNP	!	when	the	minor	allele	is	placed	at	
SNP	!,	and	!!!	is	the	Basset	prediction	for	the	1,000	base-pair	sequence	around	SNP	!	when	
the	major	allele	is	placed	at	SNP	!.	(We	always	used	the	minor	allele	as	the	reference	allele	in	
both	our	TF	binding	annotations	and	our	GWAS	summary	statistics.)	
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Simulations	

All	simulations	were	carried	out	using	real	genotypes	from	the	GERA	cohort27	(! = 47,360).	The	
set	of	! = 2.7	million	causal	SNPs	was	defined	as	the	set	of	very	well	imputed	SNPs	(INFO	≥
0.97)	that	had	very	low	missingness	(< 0.5%)	and	non-negligible	MAF	(MAF	≥ 0.1%)	in	the	
GERA	data	set,	and	were	represented	in	our	1000G	Phase	3	European	reference	panel146,173.	

Null	simulations	

For	the	simulations	in	Figure	1a,	we	simulated	1,000	independent	null	phenotypes	with	the	

architecture	!! ∼!!" !(0,!!)	with	!! = ℎ!!/!	and	ℎ!! = 0.5.	For	each	phenotype,	we	computed	
GWAS	summary	statistics	using	plink2174	(see	URLs),	adjusting	for	3	principal	components	as	

well	as	GERA	chip	type	as	covariates.	For	each	of	our	382	TF	annotations,	we	then	ran	signed	LD	

profile	regression	on	each	of	these	1,000	phenotypes,	yielding	a	set	of	382,000	P-values.	For	the	

simulations	in	Figure	1b,	we	simulated	1,000	independent	traits	in	which	each	trait	had	an	

unsigned	enrichment	for	a	randomly	chosen	annotation:	after	choosing	an	annotation	!,	we	
set	!! ∼!!" !(0,!! + !!!{!! ≠ 0})	where	!!	and	!!	were	set	to	achieve	ℎ!! = 0.5	and	a	20x	
unsigned	enrichment	for	the	SNPs	with	non-zero	values	of	!.	We	then	computed	summary	
statistics	as	above	and	ran	signed	LD	profile	regression	to	assess	!	for	a	genome-wide	
directional	effect.	This	procedure	yielded	1,000	P-values.	For	the	simulations	in	Figure	1c,	we	

simulated	1,000	independent	phenotypes	with	a	directional	effect	of	minor	alleles:	we	

set	!! ∼!!" !(!!!! ,!!)	where	!!! 	is	non-zero	if	SNP	!	is	in	the	bottom	quintile	of	the	MAF	
spectrum	of	the	GERA	sample	and	0	otherwise,	as	in	the	signed	background	model.	We	set	!	
such	that	10%	of	heritability	would	be	explained	by	this	directional	effect,	and	then	set	!!	to	
achieve	ℎ!! = 0.5.	We	then	computed	summary	statistics	as	above	and	ran	signed	LD	profile	
regression	to	assess	for	a	directional	effect	of	each	of	our	382	annotations	on	each	of	the	1,000	

phenotypes,	yielding	a	set	of	382,000	P-values.	Finally,	we	repeated	the	same	computation	but	

running	signed	LD	profile	regression	without	the	5-MAF-bin	signed	background	model	to	obtain	

an	additional	set	of	382,000	P-values.	

Causal	simulations	

For	the	simulations	in	Figure	2,	we	fixed	a	representative	annotation	!	(binding	of	IRF4	in	
GM12878),	and	simulated	traits	using	!! ∼!!" !(!!!,!!),	with	!	set	to	
achieve	!! = {0,0.005,0.01,… ,0.05}	and	!!	set	to	achieve	ℎ!! = 0.5	in	each	case.	For	each	value	
of	!! ,	we	simulated	100	independent	traits,	computed	summary	statistics	using	plink2,	and	then	
ran	each	of	the	methods	under	consideration	using	the	annotation	!.	

Analysis	of	molecular	traits	in	blood	

We	downloaded	BLUEPRINT	consortium	QTL	data	for	gene	expression,	H3K4me1,	H3K27ac,	

and	methylation	in	three	different	blood	cell	types	with	sample	sizes	of	! = 158,	165,	and	125	
for	monocytes,	neutrophils,	and	T	cells,	respectively21	(see	Table	S4	and	URLs).	For	each	of	the	3	

gene	expression	traits,	we	constructed	one	summary	statistics	vector	!	by	setting	

!! = 1
|!!|

!!(!)
!∈!!

	 (8)	

where	!!	is	the	set	of	all	genes	within	500kb	of	SNP	!,	and	!!
(!)
	is	the	marginal	correlation	of	

SNP	!	to	the	expression	of	gene	!.	Assuming	independence	of	expression	across	genes	this	is	
analogous	to	a	fixed-effects	meta-analysis	across	genes	at	every	SNP	to	determine	that	SNP’s	
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effect	on	aggregate	expression,	though	our	results	do	not	rely	on	this	theoretical	

characterization	because	of	the	empirical,	signed	nature	of	our	null	hypothesis	testing	

procedure.	Since	in	practice	gene	expression	is	not	independent	across	genes,	the	scale	of	the	

resulting	vector	!	is	arbitrary.	Therefore,	we	placed	all	such	vectors	on	the	same	scale	by	scaling	
them	so	that	they	have	an	estimated	SNP-heritability	of	0.5.	(This	scaling	step	only	affects	the	
regression	weights	used	by	signed	LD	profile	regression.)	Applying	the	same	procedure	to	the	

two	histone	marks	and	to	methylation	in	addition	to	gene	expression	yielded	a	total	of	12	sets	of	

summary	statistics	(see	Table	S4).	We	ran	signed	LD	profile	regression	using	each	of	our	382	TF	

annotations	for	each	of	these	12	traits.	We	obtained	results	at	FDR< 5%	using	the	Benjamini-
Hochberg	procedure175	within	each	of	the	12	traits	(see	discussion	of	Benjamini-Hochberg	

versus	other	alternatives	below),	and	reported	the	union	of	significant	results	across	cell	types	

for	each	trait.	We	determined	the	top	100	associations	to	display	in	Figure	3a	by	choosing	the	

significant	associations	with	the	highest	estimated	values	of	!! .	

For	our	replication	analysis,	we	used	expression	array-based	whole	blood	eQTL	data	from	the	

NTR35,	which	we	obtained	by	downloading	the	set	of	TWAS	weights103	computed	for	that	data	

set	(see	Table	S4	and	URLs).	We	then	proceeded	as	above.	We	note,	however,	that	because	

TWAS	weights	were	only	available	for	genes	with	a	significantly	heritable	cis-expression	in	NTR,	

we	only	had	data	for	2,454	genes	compared	with	15,023 − 17,081	genes	for	the	BLUEPRINT	
traits,	thereby	lowering	our	power	in	this	analysis.	

Enrichment	analysis	for	activating	TFs	

For	each	TF	represented	in	our	annotations,	we	queried	the	UniProt	database31	to	establish	

whether	the	TF	was	(unambiguously)	“activating",	“ambiguous”,	or	(unambiguously)	

“repressing”	(see	Results).	To	estimate	whether	the	set	of	significant	positive	signed	LD	profile	

associations	with	gene	expression	were	enriched	for	(unambiguously)	“activating”	TFs	

compared	to	the	set	of	annotations	as	a	whole,	we	conducted	a	one-sided	binomial	test.	To	

account	for	the	correlated	nature	of	our	annotations,	we	assumed	independence	only	among	

distinct	TFs	but	not	among	distinct	annotations	for	the	same	TF.	We	used	the	same	scheme	to	

test	for	enrichment	of	(unambiguously)	“activating”	TFs	among	the	positive	associations	

detected	by	signed	LD	profile	regression	in	our	analysis	of	histone	marks.	

Analysis	of	gene	expression	across	48	GTEx	tissues	

We	downloaded	GTEx	v7	eQTLs	for	all	48	tissues	for	which	data	were	available	and	processed	

them	using	the	same	procedure	described	for	the	blood	molecular	traits,	resulting	in	one	vector	

of	summary	statistics	per	GTEx	tissue	(see	Table	S6	and	URLs).	We	ran	signed	LD	profile	

regression	using	each	of	our	382	TF	annotations	for	each	of	these	tissues.	We	obtained	results	at	

FDR< 5%	using	the	Benjamini-Hochberg	procedure175	within	each	of	the	48	tissues	(see	
discussion	of	Benjamini-Hochberg	versus	other	alternatives	below).	

Conditional	analysis	for	tissue-specific	effects	

We	obtained	a	set	of	eQTL	summary	statistics	for	a	fixed-effect	meta-analysis	across	the	GTEx	

tissues	from	ref.176	and	processed	these	via	the	procedure	described	above	into	a	single	vector	

!(!).	For	each	tissue	!,	we	then	residualized	!(!)	out	of	the	vector	!(!)	of	eQTL	data	for	tissue	!	to	
obtain	a	residualized	vector	!(!

!)
.	This	simply	amounts	to	subtracting	a	scalar	multiple	of	!(!)	

from	!(!),	with	the	scalar	determined	to	remove	as	much	signal	as	possible	from	!(!).	For	each	
significant	association	between	an	annotation	!	and	a	vector	!(!)	from	our	main	GTEx	analysis,	
we	then	compared	the	p-value	of	that	association	to	the	p-value	obtained	for	the	association	
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between	!	and	the	residualized	vector	!(!
!)
,	declaring	as	tissue-specific	any	association	for	

which	the	latter	was	at	least	as	significant	as	the	former.	For	cases	in	which	a	P-value	for	

association	to	either	!(!)	or	!(!
!)
	was	≤ 10!!	(one	order	of	magnitude	greater	than	the	maximal	

resolution	of	of	our	empirical	null	hypothesis	testing	procedure),	we	replaced	that	p-value	by	a	

closed-form	p-value	computed	by	constructing	a	z-score	out	of	the	estimated	value	of	!!	and	its	
jackknife-based	standard	error.	

Assessment	for	concordance	with	absolute	expression	levels	in	GTEx	tissues	

We	obtained	raw	gene	expression	levels	across	the	GTEx	samples	as	in	ref.177	and	filtered	both	

the	raw	expression	levels	and	our	382	TF	binding	annotations	to	the	set	of	68	TFs	that	were	

represented	in	both	data	sets.	(This	procedure	excluded,	e.g.,	POL2,	which	does	not	correspond	

to	a	single	gene.)	For	each	of	the	34	GTEx	tissues	!	in	which	we	detected	significant	
association(s)	among	these	68	TFs,	we	then	computed	!! ,	the	proportion	of	the	significant	TFs	in	
that	tissue	with	a	median	transcripts	per	million	(TPM)	value	greater	than	5	across	the	GTEx	

samples	for	that	tissue	(following	ref.75),	and	!! ,	the	proportion	of	the	remaining	TFs	in	that	
tissue	with	a	median	TPM	value	greater	than	5	across	the	GTEx	samples	for	that	tissue.	

Figure	S7	contains	a	plot	of	!!	against	!!	across	tissues	!.	To	evaluate	the	significance	of	the	
trend	across	tissues	that	!! > !! ,	we	compared	!! = !!!!! / !!! 	to	!! = !!!!! / !!! 	where	

!!	and	!!	are	the	numbers	of	TFs	with	significant	associations	and	without	significant	
associations,	respectively,	in	tissue	!.	We	then	rejected	the	null	hypothesis	that	!! ≤ !! 	using	a	
one-sided	two-sample	z-test	for	difference	in	means.	

Analysis	of	46	diseases	and	complex	traits	

We	applied	signed	LD	profile	regression	to	46	diseases	and	complex	traits	with	an	average	

sample	size	of	289,617,	including	16	traits	with	publicly	available	summary	statistics	and	30	UK	

Biobank	traits	for	which	we	have	publicly	released	summary	statistics	computed	using	BOLT-

LMM76	(see	Table	S8	and	URLs).	We	ran	signed	LD	profile	regression	using	each	of	our	382	TF	

annotations	for	each	of	these	traits.	We	obtained	results	at	per-trait	FDR< 5%	using	the	
Benjamini-Hochberg	procedure175.	We	chose	to	use	the	Benjamini-Hochberg	procedure	rather	

than	more	sophisticated	procedures	such	as	the	Storey-Tibshirani	procedure178	because	the	

latter	procedure,	while	more	powerful,	is	more	difficult	to	analyze	in	a	multi-trait	setting	(see	

below)	and	controls	FDR	more	noisily	when	applied	in	situations	with	only	hundreds	(rather	

than	thousands)	of	tests.	

MSigDB	gene-set	enrichment	analysis	of	results	on	diseases	and	complex	traits	

We	downloaded	all	10,325	MSigDB	gene	sets,	which	are	organized	into	eight	distinct	tranches	
based	on	their	origin,	from	the	MSigDB	online	portal.	We	also	downloaded	a	set	of	LD	blocks	in	

Europeans	derived	from	estimated	recombination	hotspots171	and	converted	each	gene	set	into	

a	length-1693	vector	!	with	one	entry	per	LD	block	whose	!-th	entry	equaled	the	number	of	
genes	from	the	set	that	are	present	in	the	!-th	LD	block.	We	then	converted	each	significant	
signed	LD	profile	regression	association	between	an	annotation	!	and	a	trait	summary	statistics	
vector	!	into	a	length-1693	vector	!	whose	!-th	entry	equaled	the	covariance	between	!	and	the	
signed	LD	profile	!"	within	the	!-th	LD	block.	To	assess	the	signed	LD	profile	result	for	
enrichment	of	a	gene-set	vector	!,	we	computed	a	weighted	mean	of	the	!! 	whose	weights	were	
given	by	!.	That	is,	we	computed	!(!,! , !) = !!!!!

!!!
	The	idea	is	that	if	the	LD	blocks	in	which	!	is	

large	correspond	to	the	LD	blocks	in	which	the	signed	LD	profile	regression	signal	is	the	

strongest,	the	weighted	mean	!	should	be	large	in	magnitude	and	have	the	same	sign	as	the	
overall	signed	LD	profile	regression	association.	We	assess	this	via	an	empirical	null	distribution	
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constructed	by	permuting	the	LD	blocks	to	obtain	“shuffled”	versions	of	!	and	!.	This	
enrichment	method	is	more	conservative	than	ordinary	gene-set	enrichment	methods	for	two	

reasons.	First,	by	permuting	only	LD	blocks	and	not	genes,	it	accounts	for	correlations	induced	

by	LD	as	well	as	co-regulation	of	nearby	genes	and	gene	overlap	in	the	genome.	Second,	because	

a	significant	signed	LD	profile	regression	association	cannot	arise	as	a	result	of	a	strong	signal	in	

only	one	genomic	location,	this	method	is	more	robust	to	outliers	and	cannot,	e.g.,	produce	a	

rejection	simply	because	of	a	very	strong	signal	at	just	one	gene.	In	comparison	to	gene-set	

enrichment	methods	for	GWAS	data,	this	method	also	has	the	advantage	that	it	will	not	cause	

gene	sets	containing	large	genes	to	produce	signals	of	enrichment.	Separately	from	null	

hypothesis	testing,	we	computed	heuristic	standard	errors	for	use	in	Figures	6	and	7	by	

computing	the	closed-form	standard	deviation	of	!(!,! , !)	assuming	that	the	!! 	are	fixed	and	
the	!! 	are	i.i.d.	

To	quantify	effect	size,	we	computed	a	fold-enrichment	by	dividing	!(!,! , !)	by	the	average	
value	of	!	at	LD	blocks	containing	no	genes.	That	is	the	enrichment	is	defined	as	!(!,! , !) =

!(!,!,!)
!"#$( !!:!!!! )

.	This	quantity	!	is	the	number	reported	in	Figures	6	and	7.	

We	conducted	our	hypothesis	test	for	gene-set	enrichment	for	each	of	our	77	significant	TF-

complex	trait	associations	against	each	of	the	10,325	MSigDB	gene	sets.	For	every	TF-complex	
trait	association	and	every	tranche	of	gene-sets	from	MSigDB,	we	assessed	significance	at	

FDR< 5%	using	the	Benjamini-Hochberg	procedure175.	This	detected	6,379	significant	
enrichments	in	total	(0.8%	of	all	795,025	tests	conducted).	We	ranked	these	enrichments	by	q-
value,	except	for	the	15	enrichments	whose	p-values	were	less	than	the	resolution	of	our	

empirical	null	hypothesis	testing	procedure,	which	we	ranked	by	fold-enrichment.	

Estimation	of	global	FDR	for	complex	trait	analysis	

When	many	traits	are	analyzed,	per-trait	FDR	control	does	not	imply	global	FDR	control.	This	is	

because	in	the	case	of	a	completely	null	trait,	the	guarantee	of	FDR	control	does	not	imply	that	

there	will	never	be	any	rejections	but	rather	only	that	there	will	be	a	non-zero	number	of	

rejections	at	most	5%	of	the	time.	Therefore,	if	enough	null	traits	are	analyzed	the	set	of	results	

may	be	contaminated	by	these	spurious	findings.	In	the	case	of	independent	tests	(i.e.,	

uncorrelated	annotations)	with	FDR	controlled	by	the	Benjamini-Hochberg	procedure,	this	can	

be	taken	into	account179	and	the	global	FDR	can	be	approximated	using	the	formula	

! = !ℓ(! + !)
! + 1 	 (9)	

where	!	is	the	estimated	global	FDR,	!ℓ	is	the	per-trait	FDR,	!	is	the	observed	total	number	of	
discoveries	at	per-trait	FDR	!ℓ,	and	!	is	the	number	of	traits.	This	correction	is	based	on	the	
intuition	that	for	a	null	trait	with	independent	tests,	the	Benjamini-Hochberg	procedure	behaves	

very	similarly	to	a	Bonferroni	correction,	and	so	the	expected	number	of	rejections	per	null	trait	

is	approximately	!ℓ,	and	the	expected	number	of	rejections	for	!	null	traits	would	be	
approximately	!ℓ!.	
Applying	this	correction	to	our	results	yields	a	global	FDR	estimate	of	7.9%.	However,	since	our	
annotations	are	dependent,	this	estimate	can	be	anti-conservative.	To	see	this,	imagine	a	null	

trait	with	100	perfectly	correlated	tests.	The	Benjamini-Hochberg	procedure	will	give	more	than	

zero	rejections	only	5%	of	the	time,	but	whenever	it	rejects	it	will	yield	100	rejections	rather	

than	1.	Therefore,	the	expected	number	of	rejections	is	not	0.05	but	rather	5.	We	heuristically	
corrected	for	this	using	the	intuition	that	under	dependent	tests,	the	expected	number	of	false	

discoveries	in	a	null	stratum	is	not	!ℓ	but	rather	!ℓ	times	the	number	of	tests	conducted	per	
single	“independent”	test.	We	estimated	the	number	of	independent	tests	as	in	the	GWAS	
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literature,	by	simulating	1,000	independent	null	traits	with	a	heritability	of	0.5,	testing	each	trait	
against	our	382	annotations,	and	asking	for	what	!	we	see	at	least	one	p-value	≤ 0.05/!	in	
approximately	5%	of	the	1,000	null	traits.	This	procedure	gave	us	! = 250.	We	then	estimated	
the	global	FDR	using	the	equation	

! = !ℓ(! + 382!/!)
! + 1 .	 (10)	

This	yielded	the	reported	global	FDR	of	9.4%.	

Pruning	77	significant	associations	to	12	independent	signals	

To	prune	our	set	of	77	significant	associations	to	a	set	of	approximately	independent	results,	we	

used	the	following	iterative	greedy	approach	for	each	trait:	we	chose	the	pair	of	associations	

whose	annotations	had	the	most	strongly	correlated	signed	LD	profiles,	removed	the	annotation	

with	the	less	significant	p-value,	and	repeated	until	no	annotations	in	the	result	set	had	signed	

LD	profiles	that	were	correlated	at	!! > 0.25.	We	used	correlation	between	signed	LD	profiles	
rather	than	between	the	annotations	themselves	because,	since	our	method	regresses	the	

summary	statistics	on	the	signed	LD	profile	rather	than	the	raw	annotation,	correlation	between	

signed	LD	profiles	most	accurately	represents	the	correlation	between	the	test	statistics	for	the	

two	annotations.	Grouping	the	results	by	TF	identity	gives	similar	results	(13	distinct	TF-trait	

associations	as	opposed	to	12	independent	TF-trait	associations;	see	Table	S20).	

Analysis	of	diseases	and	complex	traits	with	annotations	corresponding	to	directional	
effects	of	minor	alleles	

We	constructed	an	alternate	set	of	382	annotations	as	follows.	For	each	of	the	382	ChIP-seq	

experiments	represented	by	a	set	of	peaks	!,	we	set	
!! = !{! ∈ !}!!! 	 (11)	

where	!!	is	the	signed	background	annotation	corresponding	to	SNPs	in	the	bottom	quintile	of	
the	MAF	spectrum.	We	then	used	signed	LD	profile	regression	to	test	for	association	between	

each	of	these	382	annotations	and	each	of	our	46	traits,	assessing	significance	as	above.	

Estimation	of	lower	bound	on	number	of	independent	TF	binding	sites	contributing	to	
each	association	

We	converted	each	of	the	12	independent	TF-trait	associations	reported	in	Table	1	into	a	vector	

!	of	length	~300	whose	!-th	entry	equaled	the	covariance	between	the	GWAS	in	question	and	
the	signed	LD	profile	in	question	within	the	!-th	of	the	~300	independent	genomic	blocks	used	
for	our	null	hypothesis	testing.	For	every	threshold	! ∈ 0, !!max !! ,… ,

!
!max !! ,	we	then	

computed	the	number	!!	of	the	entries	of	!	with	magnitude	at	least	!,	as	well	as	the	number	!!	
of	those	entries	whose	sign	agreed	with	that	of	the	genome-wide	trend.	Our	estimated	lower	

bound	on	the	number	of	independent	TF	binding	sites	contributing	to	the	association	was	then	

given	by	

max! 2!! − !! 	 (12)	

The	intuition	for	this	is	that	the	distribution	of	the	signs	of	the	entries	of	!	can	be	modeled	as	a	
mixture	of	a	uniform	distribution	(for	genomic	chunks	with	no	signal)	and	a	distribution	with	all	

of	its	mass	on	the	sign	of	the	genome-wide	trend	(for	genomic	chunks	with	signal).	The	number	

of	entries	drawn	from	the	latter	distribution	is	what	we	seek	to	estimate.	This	is	because	it	gives	

the	number	of	independent	genomic	blocks	contributing	to	the	association,	which	is	a	lower	
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bound	on	the	number	of	independent	TF	binding	sites	contributing	to	the	association	(since	a	

genomic	block	spanning	1/300-th	of	the	genome	may	contain	multiple	independent	TF	binding	
sites).	Estimating	this	number	naively	without	thresholding	yields	the	expression	2!! − !!.	
However,	this	is	an	under-estimate	in	the	presence	of	noise	in	!.	We	therefore	repeat	this	
argument	considering	only	the	subset	of	entries	of	!	with	magnitude	at	least	!	for	a	small	
number	of	thresholds	!	and	retain	the	largest	estimate.	

Creation	of	additional	annotations	using	DeepSEA,	GTRD,	and	HOCOMOCO	

Creation	of	additional	annotations	using	DeepSEA	

For	each	of	the	382	ENCODE	TF	ChIP-seq	tracks	used	to	generate	our	post-QC	Basset	

annotations,	we	obtained	predictions	for	the	same	track	using	the	DeepSEA	method	from	the	

authors	of	that	method.	We	then	created	382	new	annotations	using	the	same	procedure	used	to	

generate	the	382	Basset	annotations	(see	Equation	(7)).	We	analyzed	each	of	these	annotations	

against	the	blood	molecular	QTL,	the	GTEx	eQTL,	and	the	46	diseases	and	complex	traits;	for	

results,	see	Table	S16	and	Figures	S9	and	S11.	We	also	obtained	the	reported	AUPRCs	of	Basset	

and	DeepSEA	on	all	691	of	ENCODE	TF	ChIP-seq	tracks;	these	are	compared	in	Figure	S10.	

Creation	of	additional	annotations	using	GTRD	

We	downloaded	all	482	of	the	meta-cluster	tracks	from	the	GTRD	(see	URLs)	and	trained	Basset	

to	predict	these	tracks	jointly	with	the	ENCODE	tracks	used	to	train	our	main	Basset	predictor.	

We	created	482	annotations	from	these	tracks	using	the	same	procedure	used	to	generate	the	

382	(ENCODE)	Basset	annotations	(see	Equation	(7)).	Only	149	(31%)	of	these	annotations	

passed	our	standard	QC	filter	(Basset	prediction	AUPRC	> 0.3	and	at	least	5,000	SNPs	with	non-
zero	annotation	values).	We	analyzed	each	of	these	149	annotations	against	the	blood	molecular	

QTL,	the	GTEx	eQTL,	and	the	46	diseases	and	complex	traits;	for	results,	see	Table	S17.	

Creation	of	additional	annotations	using	HOCOMOCO	

We	downloaded	the	402	core	human	mononucleotide	TF	binding	PWMs	from	the	HOCOMOCO	

database	(see	URLs).	We	filtered	these	402	PWMs	to	those	for	which	the	TF	in	question	had	a	

ChIP-seq	track	among	the	382	post-QC	ENCODE	TF	binding	tracks	used	to	produce	our	main	set	

of	annotations.	For	each	of	the	resulting	58	PWMs,	we	then	created	one	new	annotation	for	

every	matching	ENCODE	TF	binding	track	by	using	the	PWM	to	score	SNPs	inside	the	ChIP-seq	

peaks	in	the	matching	track.	This	resulted	in	276	annotations.	

To	create	an	annotation	from	a	PWM	and	an	ENCODE	TF	binding	track,	we	first	computed	a	

score	!(!)	for	every	SNP	allele	!	via	!(!) = exp!
!!!ℓ!! pwm!(!) 	where	ℓ	is	the	length	of	the	

PWM,	and	where	pwm!(!)	is	the	PWM	score	given	by	the	motif	in	question	to	the	reference	
genome	sequence	with	allele	!	substituted	for	the	SNP	in	question	and	the	first	position	of	the	
PWM	placed	!	bases	before	the	SNP.	(The	PWM	score	of	a	sequence	is	the	sum	of	the	entries	of	
the	PWM	specified	by	the	bases	comprising	each	position	of	the	sequence180.)	We	then	treated	

these	scores	as	binding	predictions	and	produced	an	annotation	from	them	using	the	same	

procedure	used	to	generate	the	382	Basset	annotations	(see	Equation	(7)).	We	analyzed	each	of	

the	resulting	276	annotations	against	the	blood	molecular	QTL,	the	GTEx	eQTL,	and	the	46	

diseases	and	complex	traits;	for	results,	see	Table	S18	and	Figures	S12	and	S13.	

Data	availability	

We	have	released	all	genome	annotations	we	analyzed,	as	well	as	regression	weight	matrices	for	

our	1000	genomes	reference	panel,	at	http://data.broadinstitute.org/alkesgroup/SLDP/.	
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Code	availability	

Open-source	software	implementing	our	approach	is	available	at	

http://www.github.com/yakirr/sldp.	

Code	used	to	make	all	figures	is	available	at	http://www.github.com/yakirr/sldp-display.	
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Tables	

	

Table	1.	Independent	TF-trait	associations	from	analysis	of	diseases	and	complex	traits	
using	signed	LD	profile	regression.	For	each	of	12	independent	associations	at	per-trait	
FDR<5%	after	pruning	correlated	annotations	(!! ≥ 0.25),	we	report	the	associated	trait;	the	
TF	of	the	most	significant	annotation	and	the	number	of	correlated	annotations	with	significant	

associations;	(a)	the	estimated	functional	correlation	!! ,	P-value,	q-value,	and	minimum	number	
of	TF	binding	sites	contributing	to	the	association;	(b)	the	top	two	significant	MSigDB	gene-set	

enrichments	among	loci	driving	the	association.	Linked	TFs	producing	significant	associations:	

(*)	TAF1,	TBP;	(**)	RAD21.	See	Table	S10	for	full	gene	set	names	and	enrichment	q-values	(all	

<5	×	10-2).	LMPP:	lymphoid-primed	pluripotent	progenitor;	GMP:	granulocyte-monocyte	

precursor.	 	

A 
Trait Top TF (#) rf p q Min. # sites 
Years of ed. BCL11A (1) 2.4% 3.9 × 10-5 1.5 × 10-2 104 
Crohn's POL2* (20) 5.3% 4.8 × 10-5 1.5 × 10-2 74 
Anorexia SP1 (1) -8.9% 1.1 × 10-4 4.0 × 10-2 30 
HDL FOS (1) 4.8% 1.2 × 10-4 4.6 × 10-2 19 
Eczema CTCF (12) 2.7% 1.4 × 10-4 3.4 × 10-2 106 
Crohn’s ELF1 (1) 4.9% 1.6 × 10-4 1.5 × 10-2 58 
Crohn's POL2 (1) 4.4% 2.6 × 10-4 1.5 × 10-2 50 
Lupus CTCF** (36) -5.0% 3.6 × 10-4 4.4 × 10-2 100 
Crohn's TBP (1) 5.4% 4.9 × 10-4 1.5 × 10-2 54 
Crohn's E2F1 (1) 4.3% 6.4 × 10-4 2.7 × 10-2 90 
Crohn's IRF1 (1) 4.7% 9.8 × 10-4 1.5 × 10-2 90 
Crohn's ETS1 (1) 6.1% 1.4 × 10-3 1.5 × 10-2 114 

	
B 
Trait Top TF (#) #1 MSigDB enrichment #2 MSigDB enrichment 
Years of ed. BCL11A (1) Cholesterol homeostasis é upon mTOR inhibition 
Crohn's POL2* (20) ê upon immunosuppression regulation of reproductive process 
Anorexia SP1 (1) é upon mTOR inhibition Androgen response 
HDL FOS (1) Regulated by NF-kB in response to TNF - 
Eczema CTCF (12) é upon BCL6 knockout é upon IL21 stimulation 
Crohn's ELF1 (1) ê upon PPARγ activation Transcription co-repressor activity 
Crohn's POL2 (1) ê in fibroblast early serum response ê upon ALK knockdown 
Lupus CTCF** (36) Targets of NF-κB ê in LMPP vs GMP cells upon IKZF1 knockout 
Crohn's TBP (1) Late estrogen response - 
Crohn's E2F1 (1) Cancer module 323 (immune) Targets of miR-17-3p 
Crohn's IRF1 (1) Regulation of nuclear division Regulation of type I interferon production 
Crohn's ETS1 (1) Neighborhood of EI24 Targets of MYC 
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Figures		

	

Figure	1.	Simulations	assessing	null	calibration.	We	report	null	calibration	(q-q	plots	of	
−log!"(!)	values)	in	simulations	of	(a)	no	enrichment,	(b)	unsigned	enrichment,	and	(c)	
directional	effects	of	minor	alleles.	The	q-q	plots	are	based	on	(a)	382	annotations	×	1,000	

simulations	=	382,000,	(b)	1,000,	and	(c)	two	sets	of	382	×	1,000	=	382,000	P-values.	A	5-MAF-

bin	signed	background	model	is	included	in	all	cases	except	for	the	red	points	in	part	(c),	which	

are	computed	with	no	covariates.	We	also	report	the	average	!!-statistic	corresponding	to	each	
set	of	P-values.	Numerical	results	are	reported	in	Table	S2.	
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Figure	2.	Simulations	assessing	power,	bias,	and	variance.	(a)	Power	curves	under	
simulation	scenarios	comparing	signed	LD	profile	regression	using	generalized	least-squares	

(i.e.,	weighting)	to	an	ordinary	(i.e.,	unweighted)	regression	of	the	summary	statistics	on	the	

signed	LD	profile.	Error	bars	indicate	standard	errors	of	power	estimates.	(b)	Assessment	of	bias	

and	variance	of	the	signed	LD	profile	regression	estimate	of	!!	at	realistic	sample	size	(47,360)	
and	heritability	(0.5),	across	a	range	of	values	of	the	true	!! .	Blue	box	and	whisker	plots	depict	
the	sampling	distribution	of	the	statistic,	while	the	red	dots	indicate	the	estimated	sample	mean	

and	the	red	error	bars	indicate	the	standard	error	around	this	estimate.	Numerical	results	are	

reported	in	Table	S3.	
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Figure	3.	Analysis	of	blood	molecular	traits	using	signed	LD	profile	regression.	Each	
segmented	bar	in	(a,b,d,e)	represents	the	set	of	significant	annotations	(or	top	100	associations)	

at	a	per-trait	FDR	of	5%	for	the	indicated	traits,	with	each	annotation	corresponding	to	a	

particular	TF	profiled	in	a	particular	cell	line.	Results	in	(a,d,e)	are	aggregated	across	the	3	

BLUEPRINT	cell	types.	The	stripe	above	each	segmented	bar	is	colored	red	for	UniProt	

(unambiguously)	“activating”	TFs	(170	of	382	annotations;	see	main	text),	gray	for	“ambiguous”	

TFs	(174	of	382	annotations),	and	blue	for	(unambiguously)	“repressing”	TFs	(38	of	382	

annotations).	We	note	that	the	large	number	of	associations	detected	in	this	analysis	is	expected	

due	to	widespread	effects	of	TF	binding	on	gene	expression	and	chromatin	as	well	as	the	strong	

representation	of	transcriptional	activators	among	our	annotations	(see	Table	S1).	(c)	z-scores	

from	the	analyses	of	expression	in	the	NTR	data	set	and	neutrophil	expression	in	the	

BLUEPRINT	data	set,	respectively,	for	each	of	the	382	annotations	tested;	red,	gray,	and	blue	

again	indicate	UniProt	(unambiguously)	“activating”	TFs,	“ambiguous”	TFs,	and	

(unambiguously)	“repressing”	TFs,	respectively.	Dashed	lines	represent	significance	thresholds	

for	5%	FDR.	Numerical	results	are	reported	in	Table	S5.	
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Figure	4.	Analysis	of	GTEx	eQTLs	using	signed	LD	profile	regression.	We	plot	polarized	−log!"(!)	
values	for	all	significant	associations	as	a	heatmap.	Columns	denote	the	36	GTEx	tissues	(of	48	GTEx	

tissues	tested)	with	significant	associations.	Rows	denote	the	67	TFs	(of	75	TFs	tested)	with	significant	

associations,	collapsing	all	annotations	corresponding	to	a	single	TF	into	one	row	and	displaying	in	each	

case	the	most	significant	result.	Cells	with	dots	indicate	associations	that	show	robust	evidence	for	

tissue-specificity	in	our	conditional	analysis	(see	main	text).	Cells	indicated	in	outline	correspond	to	

associations	described	in	the	main	text,	with	dashed	outline	indicating	known	associations	and	solid	

outline	indicating	previously	unknown	associations	or	associations	supporting	emerging	theories.	

Numerical	results	are	reported	in	Table	S7.	
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Figure	5.	Analysis	of	diseases	and	complex	traits	using	signed	LD	profile	regression.	For	
each	disease	or	complex	trait	with	at	least	one	significant	result,	we	plot	−log!"(!)	against	
estimated	effect	size	for	each	of	the	382	annotations	analyzed.	Points	are	colored	by	TF	identity,	

with	TFs	with	no	significant	associations	for	the	trait	colored	in	gray.	Larger	points	denote	

significant	results.	The	number	of	significant	results	for	each	trait	is:	Crohn’s,	26;	Lupus,	36;	

Years	of	education,	1;	Eczema,	12;	HDL,	1;	Anorexia,	1.	Numerical	results	are	reported	in	

Table	S9a.	
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Figure	6.	Highlighted	TF	binding-complex	trait	associations	that	either	provide	biological	
insight	into	established	genetic	associations	or	refine	emerging	theories.	For	each	of	(a)	
BCL11A-Years	of	education,	(b)	IRF1-Crohn’s	disease,	(c)	CTCF-Lupus	associations,	we	display	

plots	of	the	marginal	correlation	!	of	SNP	to	trait	versus	the	signed	LD	profile	!"	of	the	
annotation	in	question,	with	SNPs	collapsed	into	bins	of	4,000	SNPs	and	a	larger	bin	
around	!" = 0;	Manhattan	plots	of	the	trait	GWAS	signal	near	the	associated	TF;	and	the	top	
two	significant	MSigDB	gene-set	enrichments	among	the	loci	driving	the	association,	with	error	

bars	indicating	standard	errors.	Numerical	results	are	reported	in	Table	S11.	LMPP:	lymphoid-

primed	pluripotent	progenitor;	GMP:	granulocyte-monocyte	precursor.		
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Figure	7.	Highlighted	previously	unknown	TF	binding-complex	trait	associations.	For	each	
of	(a)	CTCF-Eczema,	(b)	SP1-Anorexia,	(c)	POL2-Crohn’s	disease,	we	display	plots	of	the	

marginal	correlation	!	of	SNP	to	trait	versus	the	signed	LD	profile	!"	of	the	annotation	in	
question,	with	SNPs	collapsed	into	bins	of	4,000	SNPs	and	a	larger	bin	around	!" = 0;	
Manhattan	plots	of	the	trait	GWAS	signal	near	the	associated	TF	or,	in	the	case	of	CTCF-Eczema,	

the	BCL6	gene	(see	main	text;	there	is	no	GWAS	peak	at	CTCF);	and	the	top	two	significant	
MSigDB	gene-set	enrichments	among	the	loci	driving	the	association,	with	error	bars	indicating	

standard	errors.	Numerical	results	are	reported	in	Table	S12.		
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