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Abstract

This paper derives the exact finite-sample p-value for univariate
regression of a quantitative phenotype on individual genome markers,
relying on a mixture distribution for the dependent variable. The
p-value estimator conventionally used in existing genome-wide as-
sociation study (GWAS) regressions assumes a normally-distributed
dependent variable, or relies on a central limit theorem based ap-
proximation. The central limit theorem approximation is unreliable
for GWAS regression p-values, and measured phenotypes often have
markedly non-normal distributions. A normal mixture distribution
better fits observed phenotypic variables, and we provide exact small-
sample p-values for univariate GWAS regressions under this flexible
distributional assumption. We illustrate the adjustment using a years-
of-education phenotypic variable.
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1 Introduction

This paper provides an alternative estimator of the coeffi cient p-values in
genome-wide univariate regressions of a phenotypic variable on a single-
nucleotide polymorphism (SNP). The formula is easy to apply, and can pro-
vide substantially more accurate p-values if the phenotypic variable under
consideration is non-normally distributed and the number of observations is
not extremely large. For a normally distributed phenotypic variable, or with
an extremely large sample, the adjustment is not necessary. The magnitude
of the p-value adjustment depends upon the size of the sample, the non-
normal features of the phenotypic variable including skewness and kurtosis,
and the minor allele frequency of the SNP.
Regression based Genome-Wide Association Studies (GWAS) are a key

exploratory tool in genetic research on the heritability mechanisms of phe-
notypic traits, with the goal of identifying individual SNPs associated with a
trait. GWAS involves a million or more individual regressions (one per SNP),
in the search for SNPs with a significant relationship to an observed pheno-
typic variable. To account for the multiple comparisons problem, analysts
use Bonferonni-corrected p-values, so that an adjusted 5% p-value with one
million independent regressions requires an uncorrected univariate regression
coeffi cient p-value (for a two-sided test) of 0.025x10−6.
In the estimation of Bonferonni-corrected p-values, analysts rely on the

assumption that the estimated regression coeffi cient is normally distributed.
This holds exactly if the phenotypic variable has a normal distribution, and
approximately (for suffi ciently large samples) if the phenotypic variable has
any reasonably well-behaved distribution, by the central limit theorem. The
quality of the central limit theorem based approximation depends upon the
size of the sample, the distributional characteristics both of the observed
phenotypic variable and the SNP, and (crucially in this application) on the
magnitude of the p-value.
The central limit theorem guarantees uniform convergence of the true

cumulative distribution to the normal distribution (see White (1984) for a
review). An approximate p-value in the region of 0.025, accurate to within
±0.0001, can be entirely adequate; an approximate p-value in the region of
0.025x10−6 = 0.000000025 which is similarly accurate to within ±0.0001 is
effectively worthless. GWAS involve very large-number multiple tests and
therefore extremely low p-value thresholds, with the conventional critical
value set at 0.025x10−6. Invocation of the central limit theorem is problematic
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in this context.
In this paper, we develop an alternative approach based on fitting a

Bernoulli-normal mixture distribution to the phenotypic variable. As we
show, since a genome-wide regression has a trinomial explanatory variable
(the three states of the SNP) and the Bernoulli-normal mixture is a combina-
tion of a binomial and a normal, the resulting regression coeffi cient p-value
is a multinomial-based linear combination of independent normals, with a
closed-form expression in terms of the standard normal distribution. Em-
pirically, the p-value adjustment can be quite large, and can increase or de-
crease estimated p-values relative to the conventional approach. We illustrate
the approach by comparing conventional and adjusted p-value for years-of-
education, a common phenotypic variable which has a notably non-normal
distribution.
Assuming that the mixture distribution correctly describes the phenotypic

variable, our finite-sample adjusted p-value eliminates the reliance on the
large-sample-dependent central limit theorem for significance tests in GWAS.
This allows for the use of datasets with modest sample sizes and for including
SNPs with very low minor allele frequencies. We provide an implementation
of the method in the R programming language, as a standard R package from
CRAN, along with user documentation.

2 Exact finite-sample p-values for GWAS uni-
variate regression under a Bernoulli-normal
mixture distribution

This section presents the new methodological result. We derive the exact p-
values of a univariate GWAS regression under an assumed Bernoulli-normal
mixture distribution. This is a reasonably straightforward exercise, com-
bining the Bernoulli-normal mixture for the dependent variable with the
three-valued explanatory variable of the regression, and then rearranging,
manipulating, and simplifying the expressions.

2.1 The GWAS regression framework

The analyst has observations on i = 1, n individuals with the data consisting
of a phenotypic variable (such as income, years of education, life satisfaction
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rating, etc.) and a very long (we assume 106 for notational simplicity) string
of genetic markers. We assume that the phenotype variable y has known
mean and variance; to simplify notation (without loss of generality) we as-
sume that y is standardized and so has zero mean and unit variance. We
assume that the phenotype variable y has been pre-whitened with respect
to any other confounding explanatory variables by a preliminary regression
step, so that the GWAS regressions are univariate. The genetic markers are
single nucleotide polymorphisms which have three potential states: major
allele homozygote, minor allele homozygote, and heterozygote. Let xij be
the trinomial explanatory variable, set equal to 0 if individual i is a major
allele homozygote for the jth genetic marker, 1 if he/she is a heterozygote,
and 2 if he/she is a minor allele homozygote.
The research objective is to identify individual SNPs that have an influ-

ence on the phenotypic variable. This is done through a set of 106 univariate
regressions, each using one genetic marker. As null hypothesis, we assume
that none of the individual SNPs have an influence on the phenotype, so
that:

E[yi|xij] = 0; i = 1, n; j = 1, 106. (1)

This null hypothesis is tested separately for each j. Let mx and s2x denote
the sample average and mean-square deviation of the explanatory variable
xj. For each individual j we test the statistical significance of the ordinary
least squares regression coeffi cient:

β̂j =
1

ns2x

n∑
i=1

yi(xij −mx), (2)

where it follows from (1) that E[β̂j] = 0 for all j.
In performing the multiple tests H0 : E[β̂j] = 0 with j = 1, .., 106 each

tested separately, it is crucial to apply a Bonferonni correction to the in-
dividual test critical values. With 106 independent tests, and choosing a
95% confidence level, the two-tailed critical values for Bonferonni-corrected
multiple-test significance of each coeffi cient uses a cumulative probability of
0.025× 10−6 for testing a negative estimated coeffi cient and 1− .025× 10−6
for a positive estimated coeffi cient.
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2.2 Fitting a Bernoulli-normal mixture distribution to
a phenotypic variable

As we will demonstrate later, the central limit theorem does not always
provide a reliable approximation for the extremely small p-values under ex-
amination in the large-number multiple test environment of GWAS. We need
an alternative estimator of regression p-values to apply in the case of a non-
normally distributed phenotypic variable. We need a reasonable distribu-
tional assumption on y that fits the phenotypic variable and allows for the
feasible computation of exact p-values that do not rely on the central limit
theorem approximation. In this section we propose a Bernoulli-normal mix-
ture distribution.
The Bernoulli-normal mixture distribution is a flexible family of distribu-

tions with good fit in many applications, and convenient analytical properties
in our model.
Let za ∼ N(µa, σ

2
a), zb ∼ N(µb, σ

2
b ), and λ a Bernoulli distributed random

variable with λ = 1 with probability p; all three random variables assumed
independent. The mixed normal y is the random variable:

y = λza + (1− λ)zb, (3)

which has five parameters: µa, σa, µb, σb, p. The first two moments are:

E[y] = pµa + (1− p)µb (4)

V ar[y] = p(σ2a + µ2a) + (1− p)(σ2b + µ2b)− E[y]2 (5)

For notational simplicity, consider the case in which E[y] = 0 and V ar[y] = 1,
then the third and fourth moments are:

E[y3] = pµ3a + (1− p)µ3b + 3(pµaσ2a + (1− p)µbσ2b ) (6)

E[y4] = pµ4a + (1− p)µ4b + 6(pµ2aσ2a + (1− p)µ2bσ2b )+ (7)

3(pσ4a + (1− p)σ4b )

The distribution can be fitted via EM-maximum likelihood; see McLach-
lan and Peel (2000) for an overview of mixture distributions and estimation
methods.
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3 The GWAS univariate regression coeffi cient
as a linear combination of independent nor-
mals

We now use the assumption that y has a Bernoulli-normal mixture distri-
bution to derive the exact finite-sample p-values of β̂j. Since we now look
at one particular j only, we simplify notation and drop the j subscript. To
implement our technique, the analyst counts the number of major allele ob-
servations, heterozygote observations and minor allele observations in each
regression sample. Let {n0, n1, n2} denote these three integer values, with
n0 + n1 + n2 = n. The sample average and mean-square deviation of the
explanatory variable have simple forms, since xi only takes the three values
0, 1, 2:

mx =
1

n

n∑
i=1

xi =
n1 + 2n2

n

s2x =
1

n

n∑
i=1

(xi −mx)
2 =

n0m
2
x + n1(1−mx)

2 + n2(2−mx)
2

n
.

The cumulative distribution of an estimate β̂ is the probability under the
null hypothesis of a random realization β̃ having that value or less:

Pr[β̃ ≤ β̂] = Pr[
1

ns2x

n∑
i=1

yi(xi −mx) ≤ β̂]. (8)

For notational convenience, we order the observations index so that the
major allele observations are listed first, then the heterozygote observations,
and then the minor allele observations.

xi = 0; i = 1, n0

xi = 1; i = n0 + 1, n0 + n1

xi = 2; i = n0 + n1 + 1, n

Writing out the coeffi cient formula (8) using the observed values n0, n1, n2:

Pr[β̃ ≤ β̂] = Pr[
1

s2x
(

n0∑
i=1

(−mx)yi+

n0+n1∑
i=n0+1

(1−mx)yi+

n∑
i=n0+n1+1

(2−mx)yi) ≤ β̂].
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Under our distributional assumption on y, each of the three integers n0, n1
and n2 in turn decomposes into two (unobserved) integers: the number of
realizations of the dependent variable yi∗ with conditional mean and standard
deviation either {µa, σa} or {µb, σb}. We denote these integer realizations
with a double subscript, {n0a, n1a, n2a}h,and {n0b, n1b,n2b}h, h = 1,m where
the first subscript refers to the minor allele frequency, 0, 1, or 2, and the
second subscript refers to the (unobserved) number of realizations of {µa, σa}
or {µb, σb}. Since the second set {n0b, n1b,n2b} consists of the remainders
n0b = n0 − n0a, n1b = n1 − n1a and n2b = n2 − n2a, it is suffi cient to index
with {n0a, n1a, n2a}.
Each of the integers n0a, n1a,n2a has an independent binomial distribution,

since each depends upon the number of λ = 1 outcomes of the Bernoulli
random variable λ within one of the three allele categories. It is easy to see
that m = (n0 + 1)(n1 + 1)(n2 + 1). The probabilities of each of the potential
outcomes {n0a, n1a,n2a}h, h = 1,m can be found from the binomial formula
(for three independent binomials):

Ph = Pr[{n0a, n1a,n2a}h] = (9)

(
n0!

n0a!n0b!
)(

n1!

n1a!n1b!
)(

n2!

n2a!n2b!
)×

p(n0a+n1a+n2a)(1− p)(n0b+n1b+n2b).

The cumulative probability of β̂ is the sum of the conditional cumulative
probability given each of the potential outcomes h = 1,m times the proba-
bility of each outcome:

Pr[β̃ ≤ β̂] =

n0∑
n01=0

n1∑
n11=0

n2∑
n21=0

(Pr[β̃ ≤ β̂|h])× Ph. (10)

The last step is to calculate

Pr[β̃ ≤ β̂|h] = Pr[ 1
ns2x

n∑
i=1

yixi ≤ β̂|h]; (11)

which is the sum of n independent normals, consisting of n0a draws with mean
−mxµa and standard deviation of mxσa, plus n0b draws with mean −mxµb
and standard deviation of mxσb, plus n1a draws with mean (1 −mx)µa and
standard deviation of (1−mx)σa, plus n1b draws with mean (1−mx)µb and
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standard deviation of (1−mx)σb, plus n2a draws with mean (2−mx)µa and
standard deviation of (2−mx)σa, plus n2b draws with mean (2−mx)µb and
standard deviation of (2−mx)σb. A sum of independent normals has a normal
distribution with mean equal to the sum of the means and variance equal to
the sum of the variances. Applying this to (11):

Pr[
1

ns2x

n∑
i=1

yixi ≤ β̂|h] = Pr[ 1
ns2x

(−mx(µan0a + µbn0b)

+ (1−mx)(µan1a + µbn1b) + (2−mx)(µan2a + µbn2b)+

(m2
x(n0aσ

2
a + n0bσ

2
b ) + (1−mx)

2(n1aσ
2
a + n1bσ

2
b )

+ (2−mx)
2(n2aσ

2
a + n2bσ

2
b ))

1/2z)

≤ β̂] (12)

where z denotes a standard normal random variable. The right-hand side of
equation (12) is simply the p-value of a normally distributed random variable.
Therefore, the p-value of the regression coeffi cient (10) is a binomial-weighted
linear combination of conventional normal distribution p-values. There is no
need to invoke the (sometimes unreliable) central limit theorem approxima-
tion to find the regression p-value. Given the trinomial set of values for the
independent variable and a Bernoulli-normal mixture distribution for the
dependent variable, the exact finite-sample p-value of the GWA regression
coeffi cient is a directly computable linear combination of normal distribution
p-values; we simply combine (9), (10) and (12).
As a tangential benefit, the model also provides exact formulas for the

skewness and kurtosis of the estimated regression coeffi cient (under the null
hypothesis that E[β̂] = 0). Since y is standardized, it also follows from (2)
that E[β̂2j ] = 1/(ns2x). Simply inserting (2) and (3) into the definitions of
skewness and kurtosis, and evaluating using the skewness and kurtosis of the
mixture distribution, (6) and (7), give closed form expressions that are easy
to evaluate, in particular:

skewness = E[β̂3]/(E[β̂2]
3
2 )

= (
1√
n
)(

1√
s2x
)3(
n0
n
(−mx)

3 +
n1
n
(1−mx)

3 +
n2
n
(2−mx)

3)E[y3]

(13)
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kurtosis = E[β̂4]/(E[β̂2]2) (14)

= 3 + (
1

n
)
(E[y4]− 3)
(s2x)

2
(
n0
n
m4
x +

n1
n
(1−mx)

4 +
n2
n
(2−mx)

4);

see the Technical Appendix for details. This allows the analyst to have a sense
of how close to normality is the finite-sample distribution of the estimated
regression coeffi cient in a particular application.

3.1 Computationally effi cient implementation of the
estimator

The p-value formula (10) requires a sum over the set of outcomes from three
independent binomials with n0, n1 and n2 draws, giving a total of m = (n0+
1)(n1+1)(n2+1) terms. For large n, the number of termsm can be extremely
large, but using an effi cient computation algorithm, the vast majority of the
terms can be dropped from the calculation without any discernible effect
on the quality of the estimate. Each of the three random outcomes, nja,
j = 0, 1, 2, has an independent binomial distribution with parameter p and
draw size nj. The three univariate binomial distributions for nja, j = 0, 1, 2
have their peaks at pnj, j = 0, 1, 2. The probability of a particular value
nja diminishes exponentially towards zero as nja moves further away from
pnj. For large nj, one or both of the "tails" of the univariate probability
distribution of nja can be deleted, when one or both make approximately
zero contribution to the sum (10). See the Technical Appendix for details of
the computation algorithm used in the GWRPV estimation code.

4 Illustration of the magnitude of the p-value
adjustment using years of education

This section examines the magnitude of the adjustment arising from our finite
sample p-values compared to using large-sample approximate p-values based
on the central limit theorem. We illustrate the adjustment with a commonly
used phenotypic variable: years of education, which is a social trait with a
strongly non-normal distribution.
Given the parameters of the mixture distribution, our p-value formula

(10) is exact; it does not require any simulation. The only inputs needed
are the number of major allele homozygote, heterozygote, and minor allele
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homozygote observations in the regression sample, (n0, n1, n2), the estimated
regression coeffi cient, β̂, and the five parameters of the mixture distribution,
(p, µa, µb, σa, σb).
For the purposes of this comparison, we use five sample sizes, n = 500,

1000, 5000, 50000, and 100000. For each sample size we fit n0, n1, n2 from
the range of values typically encountered in genome-wide regression tests.
Let MAF denote the minor allele frequency of the SNP; we chose four rep-
resentative values: MAF = 0.1%, 0.5%, 1%, 5%. To choose the observation
numbers n0, n1, n2 we assume that the SNP is in Hardy-Weinberg equilib-
rium, which implies that n0 = n(1−MAF )2, n1 = 2nMAF (1−MAF ) and
n2 = nMAF 2. The numbers of observations n0, n1, n2 must be integers, so
for fractional values we stick the "leftover" one or two observation(s) in the
heterozygote category.
Note that the relative numbers of explanatory variables across the three

categories, n0, n1, n2, can affect the quality of the central limit theorem
approximation. For example, with MAF = 0.1%, only 0.0001% of SNP
observations take the value x = 2 (zero observations in most small samples);
0.1998% take the value 1, and for 99.8% of the regression sample, x = 0.
This unbalanced distribution impacts the speed at which the central limit
theorem acts upon the probability distribution of the coeffi cient estimate,
and the asymmetry (right-tail probability versus left-tail probability) of its
finite-sample distribution, unless the dependent variable is exactly normal.
Our p-value adjustment is particularly valuable for genome-wide regressions
with low minor allele frequency since it provides a finite-sample test statistic
when the large-sample approximation is unreliable. This will become clear
in the tables and figures below.
To calibrate the parameters of the mixture distribution, (p, µa, µb, σa, σb),

we run EM-maximum likelihood on the phenotypic variable; see below for
details.

4.1 Application to a non-normal phenotype: Years-of-
education

In this subsection we calibrate the Bernoulli-normal mixture using data on
years of education from the U.S. Census Bureau Current Population Survey
of Educational Attainment, 2015. See Rietveld, et al. (2013, 2015), Okbay
et al. (2016), and references therein for details on the considerable number of
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GWA regression studies with years-of-education as the phenotypic variable.
Figure 1 shows a frequency distribution of the years-of-education data,

along with fitted normal and Bernoulli-normal mixture distributions. See
the Technical Appendix for description of the U.S. census data. The mix-
ture distribution picks up the high-peakedness and asymmetry in the data
distribution, associated with the 76% frequency of data observations in the
range 12 − 16 years, and the secondary clump of observations in the 0 − 6
years range with frequency 3.04%. These features are missed by the fitted
normal. The data has skewness of −0.676781 and kurtosis of 5.126954, which
both differ significantly from the normal distribution values (zero and three,
respectively) with 99% confidence. The Jarque-Bera test rejects normality
with 99% confidence.
The 81,913 years-of-education data observations are fitted to a Bernoulli-

normal mixture distribution using the normalmixEM command in the mix-
tools library of programming languageR; see Benaglia et al. (2009) for details
on the estimation routine. The estimated parameter values are p = 0.9654,
µa = 13.872, µb = 4.628, σa = 2.588, σb = 2.518.
For comparative purposes, in the tables below we assume β̂ values at

the normal-distribution critical values for 95%, and 99% confidence, and
for Bonferonni-adjusted multiple-test 95% confidence with 106 independent
tests. These β̂ values are easily derived from the t-statistics, using Pr( β̂√

ns2x
≤

−1.96) = 2.5%; Pr( β̂√
ns2x
≤ −2.58) = 0.5%; and Pr( β̂√

ns2x
≤ −5.45) =

2.5% × 10−6; the upper-tail tests are analogous, with a positive sign. We
take each of the normal-distribution critical values of β̂ and find their p-
values under the mixture distribution, which we can then compare to the
normality-based p-values, 2.5%, 0.5%, and 2.5%× 10−6.
Table 1 Panel A considers a single-hypothesis, two-sided test with a 95%

confidence limit. The table shows exact p-values under the mixture distribu-
tions for estimated regression coeffi cients with normality-based approximate
p-values (using the central limit theorem) of 2.5%. The central limit the-
orem approximation gives quite accurate p-values in almost all cases, even
with small sample sizes and low minor allele frequencies. The approximation
error from invoking the central limit theorem to estimate p-values is never
severe.
Panel B of the table repeats the exercise for a 99% confidence test, so that

the p-value under normality is 0.5%. The central limit theorem approximation
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continues to work reasonably well, with the exception of smallest sample size
(500 observations) with minor allele frequencies of 1% or less.
For 106 multiple test Bonferonni-corrected p-values with 95% confidence,

shown in Table 2, the approximation error from relying on the central limit
theorem is severe. Convergence of the p-value toward its normality-derived
value is much slower, and the small-sample asymmetry in the approximation
error is more notable. For small to medium sample sizes, the true p-value for
a negative-tail test is very substantially above 2.5% × 10−6, the p-value for
the positive-tail test is substantially below 2.5%× 10−6, and the sum of the
two tail probabilities (which should be 5% × 10−6) is substantially higher.
The central limit theorem approximation only works reasonably accurately
for sample sizes of ten thousand or more, and only with relatively high minor
allele frequency. In the other cases considered in Table 2, the finite-sample
adjustment is critically important.
Table 3 shows the skewness and kurtosis of the estimated coeffi cients,

using (13) and (14), for the twenty sample specifications considered in Tables
1 and 2. The results in this table explain the pattern of findings in Tables 1
and 2. The estimated coeffi cient, viewed as a random variable under the null
hypothesis, has strong negative skewness, inherited in turn from the negative
skewness in the years-of-education variable. The negative skewness in the
distribution of the years-of-education variable interacts with the asymmetry
in the spread of SNP values (vastly more major allele observations than
heterozygote or minor allele) to produce biases in the conventional p-values.
For negative estimated betas, the conventional p-value understates Type I
error, rejecting the null hypothesis when it should be accepted. For positive
estimated betas, the conventional p-value sacrifices power by accepting the
null hypothesis when it could be rejected with confidence.

5 Summary

This paper provides a new approach to estimating Bonferonni-corrected multiple-
test p-values for regressions of individual genetic markers on a phenotypic
variable. The current standard approach in computing coeffi cient p-values
is to assume a normal distribution for the phenotypic variable, or to invoke
the central limit theorem to justify the approximate normality of the coeffi -
cient estimate. Many phenotypic variables, particularly for social traits like
income and education levels, have distributions which are far from normal-
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ity. The central limit theorem, as we show, does not give reliable p-values
for the types of sample sizes (and multiple-test numbers) used in genome-
wide association studies (GWAS) with non-normally distributed phenotypic
variables.
We suggest a new approach, based on fitting a Bernoulli-normal mixture

distribution to the phenotypic variable (prewhitened with respect to any
other confounding explanatory variables) before running univariate GWAS
regressions. We derive the exact finite-sample distribution of GWAS regres-
sion coeffi cients p-values under this more flexible distributional assumption.
We illustrate the magnitude of the p-value adjustment from our approach
(relative to the conventional approach) with sample data on a commonly-used
phenotypic variable with a notably non-normal distribution: years of educa-
tion. The derived p-values differ markedly from the conventional, normality-
based, p-values. This new approach allows for smaller samples sizes and
lower minor allele frequencies since it does not rely on a large-sample central
limit theorem approximation. We provide an implementation of the method
in the R programming language, which is available as a standard R package
from CRAN, along with user documentation.
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Figure 1 
The frequency distribution of years-of-education and fitted normal and 

mixture distributions 
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Table 1 
Comparison of adjusted/unadjusted single-test p-values for GWA regression 

coefficients under a mixture distribution: Years of education 

Panel A: 95% two-tailed confidence test (conventional p-value=0.025) 
Sample Size: 500 1000 5000 50000 100000 

Minor allele 
frequency 

Sign of tested 
coefficient 

p-value 

0.1% Positive 0.012936 0.014220 0.018346 0.022736 0.023396 
Negative 0.036828 0.040418 0.031954 0.027251 0.026596 

0.5% Positive 0.016554 0.018427 0.021854 0.023992 0.024287 
Negative 0.034740 0.031877 0.028132 0.026006 0.025712 

1% Positive 0.018530 0.020212 0.022799 0.024290 0.024503 
Negative 0.031779 0.029837 0.027191 0.025707 0.025505 

5% Positive 0.022143 0.022958 0.024067 0.024706 0.024787 
Negative 0.027909 0.027063 0.025937 0.025300 0.025212 

Panel B: 99% two-tailed confidence test (conventional p-value=0.005)

Sample Size: 500 1000 5000 50000 100000 
Minor allele 
frequency 

Sign of tested 
coefficient 

p-value 

0.1% Positive 0.001539 0.001750 0.002587 0.003988 0.004262 
Negative 0.023088 0.017138 0.009214 0.006196 0.005829 

0.5% Positive 0.002191 0.002611 0.00365 0.004525 0.004659 
Negative 0.011185 0.009165 0.006713 0.005513 0.005358 

1% Positive 0.002642 0.003103 0.004015 0.004663 0.004758 
Negative 0.009103 0.007784 0.006163 0.005357 0.005250 

5% Positive 0.003778 0.00409 0.004561 0.004856 0.004898 
Negative 0.006610 0.006104 0.005479 0.005147 0.005106 
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Table 2 
Comparison of adjusted/unadjusted 106 multiple-test p-values for GWA 
regression coefficients under a mixture distribution: Years of education 

95% two-tailed confidence test (conventional p-valuex106  = 0.025) 
Sample Size: 500 1000 5000 50000 100000 

Minor allele 
frequency 

Sign of tested 
coefficient 

p-valuex106 

0.1% Positive 0.000086 0.000115 0.000349 0.003322 0.005567 
Negative 28.85998 56.65438 4.016193 0.199445 0.112986 

0.5% Positive 0.000213 0.000365 0.001747 0.009510 0.012572 
Negative 11.83049 3.895693 0.404728 0.065809 0.049793 

1% Positive 0.000394 0.000741 0.003448 0.012650 0.015399 
Negative 3.748166 1.306868 0.190816 0.049647 0.040670 

5% Positive 0.002526 0.004296 0.010469 0.018774 0.020353 
Negative 0.374346 0.182129 0.062877 0.033458 0.030762 

Table 3 
Skewness and kurtosis of GWAS regression coefficients under a mixture 

distribution: Years of education 

Sample Size: 
500 1000 5000 50000 100000 

Minor allele 
frequency: 

0.1% Skewness -0.81933 -0.57935 -0.25909 -0.08193 -0.05794 
Kurtosis 5.071641 4.035821 3.207164 3.020716 3.010358 

0.5% Skewness -0.36198 -0.25596 -0.11447 -0.03642 -0.02575 
Kurtosis 3.407713 3.203856 3.040771 3.004160 3.00208 

1% Skewness -0.25201 -0.1782 -0.07969 -0.02560 -0.0181 
Kurtosis 3.19976 3.09988 3.019976 3.002101 3.00105 

5% Skewness -0.10559 -0.07466 -0.03383 -0.01073 -0.00759 
Kurtosis 3.041966 3.020983 3.004343 3.000438 3.000219 
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1 Introduction

This technical appendix discusses the computationally effi cient procedures
used in the R code, provides detailed derivations of the skewness and kurtosis
of the estimated regression coeffi cient, and describes the years-of-education
data set used in the paper.

2 The regression format

The p-value formula in GWRPV assumes that the regression coeffi cient β̂
comes from a univariate genome-wide regression model, in which the influ-
ence of other confounding variates have been removed in a first-stage regres-
sion. The analyst begins with a raw phenotypic variable ỹ which potentially
includes the influence of confounding variates Xc, such as the dominant prin-
cipal components of the genetic variants matrix. The raw phenotype ỹ is
first regressed on these confounding variates to remove their influence:

y = (I −Xc(X
′
cXc)

−1X ′c)ỹ.

The prewhitened phenotypic variate y is then used throughout.
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For a given SNP, the analyst has regressed the prewhitened phenotypic
variable y on a single nucleotide polymorphism (SNP) x:

β̂ =
1

ns2x

n∑
i=1

yi(xi −mx) (A1)

with sample {yi, xi}i=1,n, where xi = 0 if the SNP is a major homozygote,
xi = 1 if the SNP is a heterozygote, xi = 2 if the SNP is a minor homozygote.
The inputs for computing the p-value of a given coeffi cient estimate are the
five parameters of the mixture distribution, µa, σa, µb, σb, p, the number of
each of the three values for the independent variable, n0, n1, n2, and the
estimated coeffi cient, β̂.
The model assumes that y has a Bernoulli-normal mixture distribution.

For notational simplicity, the main paper and this technical note also assume
that y is standardized in the regression, so that E[y] = 0 and E[y2] = 1.
However this assumption is only for notational simplicity; the analyst need
not standardize y before running the regression (A1) or the GWRPV pro-
gram. Under the assumed distribution, E[y] = pµa+(1− p)µb and V ar[y] =
p(µ2a + σ2a) + (1 − p)(µ2b + σ2b ) − E[y]2. The GWRPV program takes the in-
putted regression coeffi cient β̂ and, using the inputted parameters to compute
V ar[y], scales the inputted regression estimate by V ar[y]−1/2. This has the
effect of replacing the regression model with the equivalent one with stan-
dardized y. This linear transform of the regression model does not affect the
p-value of the regression coeffi cient but simplifies the calculations.
The sample average sum of squares of x is:

s2x =
n0m

2
x + n1(1−mx)

2 + n2(2−mx)
2

n
. (A2)

In running the regression, it is acceptable to subtract one from x and rescale
so that x = −1, 0, 1 since this does not impact β̂ or s2x. For notational sim-
plicity we will assume x = 0, 1, 2.

3 Computing the exact p-value

Consider the case β̂ ≤ 0. In order to determine the p-value, one considers this
observed β̂ estimate and finds the cumulative probability of random outcomes
which would give this value or less. (If β̂ > 0 the p-value is computed as one
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minus this probability.) The cumulative distribution of an estimate β̂ under
the null hypothesis β = 0 is:

Pr[
1

ns2x

n∑
i=1

yi(xi −mx) ≤ β̂]. (A3)

Each of the three integers n0, n1 and n2, decomposes into two (unob-
served) integers: the number of realizations of the dependent variable yi
with the conditional normal distribution with mean and standard deviation
{µa, σa} or {µb, σb}. We denote these integer realizations with a double sub-
script, {n0a, n1a, n2a}h,and {n0b, n1b, n2b}h, h = 1,m where the first subscript
refers to the minor allele frequency, 0, 1, or 2, and the second subscript refers
to the (unobserved) number of realizations of {µa, σa} or {µb, σb}, depending
upon whether the Bernoulli random variable λ equals one or zero. Note that
m = (n0+1)(n1+1)(n2+1). Since the second set {n0b, n1b,n2b} consists of the
remainders n0b = n0 − n0a, n1b = n1 − n1a and n2b = n2 − n2a, it is suffi cient
to index with {n0a, n1a, n2a}. Let Ph, h = 1,m denote the probabilities of all
these unobserved potential outcomes {n0a, n1a, n2a}h. The probability of the
n−sum (A3) can be written as a probability-weighted m−sum over all the
potential outcomes:

Pr[
1

ns2x

n∑
i=1

yi(xi −mx) ≤ β̂] =

n0∑
n0a=0

n1∑
n1a=0

n2∑
n2a=0

Pr[
1

ns2x

n∑
i=1

yi(xi −mx) ≤ β̂|{n0a, n1a, n2a}h]× Ph. (A4)

The probabilities of each potential outcome Ph = Pr[{n0a, n1a, n2a}h], can
be found from the binomial formula (for three independent binomials).

Ph = Pr[{n0a, n1a, n2a}h] = (A5)

(
n0!

n0a!n0b!
)(

n1!

n1a!n1b!
)(

n2!

n2a!n2b!
)×

p(n0a+n1a+n2a)(1− p)(n0b+n1b+n2b).

The formula (A5) consists of a potentially very large number, ( n0!
n0a!n0b!

)( n1!
n1a!n1b!

)( n2!
n2a!n2b!

),
multiplied by a potentially extremely small number, p(n0a+n1a+n2a)(1−p)(n0b+n1b+n2b).
To prevent numeric overflow, the program computes the log of each of these
two terms, sums the logs, and then takes the antilog.
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4 Trimming the set of feasible combinations

The p-value formula (A4) requires a sum over the set of outcomes from
three independent binomials with n0, n1 and n2 draws, giving a total of m =
(n0 + 1)(n1 + 1)(n2 + 1) terms. If all three values n0, n1, n2 are very large
(or even if only two are very large and the third is moderately large) this
can be an extremely large number of terms to compute in the sum, and not
computationally necessary. It is possible to shrink this computational burden
substantially without sacrificing any estimation accuracy.
For each h = 1,m, rearrange (A4) listing the values associated with

n0, n1, n2 separately:

Pr[β̃ ≤ β̂] =

n0∑
n0a=0

n1∑
n1a=0

n2∑
n2a=0

(
n0!

n0a!n0b!
)p(n0a)(1− p)(n0b)×

(
n1!

n1a!n1b!
)p(n1a)(1− p)(n1b)×

(
n2!

n2a!n2b!
)p(n2a)(1− p)(n2b)×

Pr[
1

ns2x

n∑
i=1

yi(xi −mx) ≤ β̂|(n0a, n1a, n2a)]. (A6)

Each of the four multiplicative terms in (A6) is a probability and lies be-
tween zero and one, for every (n0a, n1a, n2a). Depending upon the values of
n0, n1, n2, and p, the vast majority of the terms in (A6) are indistinguishable
from zero.
To speed computation in the GWRPV programme, a range of beginning

and/or ending terms in (A6) with extremely low cumulative probability are
dropped from the sum. We divide the summation into two parts: a range
of index values A which by construction covers virtually all of the total
probability, and the complement set with total probability very close to zero.
The separate computation interval for each of n0a, n1a, and n2a is chosen
using the univariate distributions. Let (n0a, n0a) denote the upper and lower
limits, with n0a ≥ 0, n0a ≤ n0 and n0a ≤ n0a. Let δ denote a small positive
number (the GWRPV code uses δ = 10−16 as the default value but this can
be altered by the user). The range limits are chosen such that at most δ
probability lies outside the range:

n0a = argmax
n0a

Pr[n0a < n0a] ≤ (
1

6
)δ

4
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where of course Pr[n0a < 0] = 0. Note that Pr[n0a < n0a] is the cumulative
probability of a univariate binomial with parameter p (a trivial computation).
Similarly for the upper limit on the range:

n0a = argmin
n0a

Pr[n0a > n0a] ≤ (
1

6
)δ

where of course Pr[n0a > n0] = 0. The values for (n1a, n1a) and (n2a, n2a) are
chosen analogously. Since each of the ommitted tail ranges have probability
less than or equal to (1

6
)δ, the set A has total probability greater than or

equal to 1 − δ. The p-value is separated into the conditional probability
given (n0a, n1a, n2a) ∈ A times the probability of (n0a, n1a, n2a) ∈ A, plus the
remaining probability:

Pr[β̃ ≤ β̂] = Pr[β̃ ≤ β̂|(n0a, n1a, n2a) ∈ A] Pr[(n0a, n1a, n2a) ∈ A]+
Pr[β̃ ≤ β̂|(n0a, n1a, n2a) /∈ A] Pr[(n0a, n1a, n2a) /∈ A].

Using the restricted range A in (A6) in place of the full range:

Pr[β̃ ≤ β̂] =

n0a∑
n0a=n0a

n1a∑
n1a=n1a

n2a∑
n2a=n2a

(
n0!

n0a!n0b!
)p(n0a)(1− p)(n0b)×

(
n1!

n1a!n1b!
)p(n1a)(1− p)(n1b)×

(
n2!

n2a!n2b!
)p(n2a)(1− p)(n2b)×

Pr[
1

ns2x

n∑
i=1

yi(xi −mx) ≤ β̂|(n0a, n1a, n2a)] + f [δ]. (A7)

where f [δ] ≤ δ.
The trimming parameter is set by the parameter logdelta in the optional

input file trimparameters.txt. logdelta is in log base 10 format and has a
default value of −16.

5

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 9, 2017. ; https://doi.org/10.1101/204727doi: bioRxiv preprint 

https://doi.org/10.1101/204727
http://creativecommons.org/licenses/by-nc/4.0/


5 Using a normal approximation for the sam-
ple average phenotype of the major homozy-
gote observations

If the sample size n is large and the minor allele frequency is low (so that the
number of major allele observations n0 is large) then it may be possible to
greatly speed computation by applying a central limit theorem approximation
to the sample average of the phenotype values within the subset of major
allele observations.
Recall that, for notational convenience, the observations are ordered by

allele type. The beta coeffi cient β̂ can be written as a linear combination
of three random variables, the average of the phenotype over the major ho-
mozygote, heterozygote, and minor homozygote observations:

β̂ =
1

s2x
(
n0
n
(−mx)mn0 +

n1
n
(1−mx)mn1 +

n2
n
(2−mx)mn2)

where

mn0 =
1

n0

n0∑
i=1

yi; mn1 =
1

n1

n0+n1∑
i=n0+1

yi; mn2 =
1

n2

n∑
i=n0+n1+1

yi.

Since y has a Bernoulli-normal mixture distribution, if follows easily that
mn0 is asymptotically normal for large n0. The GWRPV program computes
the skewness and kurtosis of mn0 and measures how far they are from their
normal-based values of zero and three. See Section 7 below for the for-
mulas for Skew[mn0] and Kurt[mn0]. If (Skew[mn0])

2 + (Kurt[mn0]− 3)2 <
nearnorm, then the GWRPV program uses a normal approximation formn0.
This greatly shrinks the computation time of the program, since the compu-
tation loop (A6) need only run over n1 and n2, which tend to be much smaller
than n0. The program has a default value of nearnorm= 10−6. The analyst
can alter the value of nearnorm by inserting a different value of lognearnorm
(in base 10 format) into trimparameters.txt.
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6 Setting an upper limit on the computation
sum

The GWRPV program has a built-in computation limit, topsum, designed
to prevent an individual regression result from causing a long computation
delay. Before running the main computation sum (A7) for each regression
case (β̂, n0, n1, n2), the program computes the number of terms in this com-
putation sum, which is (n0a − n0a + 1)(n1a − n1a + 1)(n2a − n2a + 1). If this
number is greater than topsum, and the skewness and kurtosis are not suf-
ficiently close to normal values to invoke a normality-based p-value, then
the program skips the p-value computation for that β̂ and procedes to the
next regression case. A value of −999.9 is inserted in place of the p-value
in the output file pvalues.txt to flag that the p-value computation has been
skipped. The analyst can alter the value of topsum by inserting a different
value of logtopsum (in base 10 format) into trimparameters.txt. The code
has a default value of topsum= 108.

7 The skewness and kurtosis of the estimated
coeffi cient

In addition to computing the p-value, the GWRPV programme computes the
skewness and kurtosis of the estimated regression coeffi cient, under the as-
sumed mixture distribution of the dependent variable and under the assumed
null hypothesis that the true coeffi cient equals zero. That is, the programme
computes:

skewness = E[β̂3]/(E[β̂2]
3
2 ) (A8)

= (
1√
n
)(

1√
s2x
)3(
n0
n
(−mx)

3 +
n1
n
(1−mx)

3 +
n2
n
(2−mx)

3)E[y3]

kurtosis = E[β̂4]/(E[β̂2]2) (A9)

= 3 + (
1

n
)
(E[y4]− 3)
(s2x)

2
(
n0
n
m4
x +

n1
n
(1−mx)

4 +
n2
n
(2−mx)

4)
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under the model’s assumptions. The first equalities in (A8) and (A9) are def-
initional; the second equalities will be derived here. Note that skewness→ 0
and kurtosis→ 3 as n→∞.
Recall the definition of β̂, where we order the observations according to

SNP allele type:

β̂ =
1

ns2x
(

n0∑
i∗=1

(−mx)yi∗ +

n0+n1∑
i∗=n0+1

(1−mx)yi∗ +

n∑
i∗=n0+n1+1

(2−mx)yi∗). (A10)

The three additive terms in (A10) will be denoted a, b and c. Since yi
is independently distributed across i and E[yi] = 0, we have E[apbqcr] =
E[ap]E[bq]E[cr] and E[apbqcr] = 0 if p, q or r equals one. First consider the
value in the numerator of both the skewness and kurtosis formulas (A8) and
(A9). Writing the square using a, b and c:

E[β̂2] = E[(a+ b+ c)2] = E[a2] + E[b2] + E[c2] (A11)

since all other terms in the product have at least one unit power of a, b, or
c and so have zero expectation. Expanding out E[a2] and dropping terms
which have a unit power of yi for some i :

E[a2] = E[(
1

ns2x

n0∑
i∗=1

(−mx)yi∗)
2] (A12)

= (
−mx

ns2x
)2

n0∑
i1=1

n0∑
i2=1

E[yi1yi2 ] = (
1

ns2x
)2n0m

2
xE[y

2],

and recall that E[y2] = 1 since this variable is standardized. Repeating (A12)
for E[b2] and E[c2] :

E[b2] = (
1

ns2x
)2n1(1−mx)

2

E[c2] = (
1

ns2x
)2n2(2−mx)

2

Inserting the expressions for E[a2], E[b2] and E[c2] into (A11):

E[β̂2] = (
1

ns2x
)2(n0m

2
x + n1(1−mx)

2 + n2(2−mx)
2)

=
1

ns2x
(
n0m

2
x + n1(1−mx)

2 + n2(2−mx)
2

n
)(
1

s2x
) =

1

ns2x
, (A13)
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substituting the expression (A2) for s2x and cancelling from the numerator
and denominator.
Next, we turn to the numerator in the definition of skewness (A8). Using

(A10) gives:

E[β̂3] = E[(a+ b+ c)3] = E[a3] + E[b3] + E[c3]

= (
1

ns2x
)3(n0(−mx)

3 + n1(1−mx)
3 + n2(2−mx)

3)E[y3]. (A14)

Taking the numerator divided by the denominator to get skewness:

E[β̂3]/(E[β̂2]
3
2 ) = (

1√
n
)(

1√
s2x
)3(
n0
n
(−mx)

3+
n1
n
(1−mx)

3+
n2
n
(2−mx)

3)E[y3].

Following the same procedure as above, now for the computation of the
numerator in the expression for kurtosis (A9):

E[β̂4] = E[(a+ b+ c)4] = E[a4] + E[b4] + E[c4]+ (A15)

6E[a2]E[b2] + 6E[a2]E[c2] + 6E[b2]E[c2].

Consider first the term E[a4]. Expanding this out using the definition of a in
(A10):

E[(
1

ns2x
(

n0∑
i=1

(−mx)yi)
4] = (

1

ns2x
)4

n0∑
i1=1

n0∑
i2=1

n0∑
i3=1

n0∑
i4=1

(−mx)
4yi1yi2yi3yi4 (A16)

Dropping all terms in (A16) which include a unit power of yi1 , yi2 , yi3 , or yi4
gives n0 terms with i1 = i2 = i3 = i4 and n0(n0−1) terms for each of the three
cases {i1 = i2, i3 = i4, i1 6= i3}, {i1 = i3, i2 = i4, i1 6= i2}, {i1 = i4, i2 = i3,
i1 6= i2}. The first set of terms all have the same individual term value of
E[y4]m4

x and similarly the other three sets of terms all have individual term
values of E[y2]2m4

x = m4
x. Summing all sets of terms:

E[a4] = (
1

ns2x
)4(n0E[y

4] + 3n0(n0 − 1))m4
x. (A17)

Repeating exactly the same steps to generate (A17) for b and c :

E[b4] = (
1

ns2x
)4(n1E[y

4] + 3n1(n1 − 1))(1−mx)
4 (A18)

E[c4] = (
1

ns2x
)4(n2E[y

4] + 3n2(n2 − 1))(2−mx)
4. (A19)
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Inserting the expressions for E[a2], E[b2], E[c2], E[a4], E[b4], and E[c4] into
(A15) gives:

E[β̂4] = (
1

ns2x
)4((n0E[y

4]+3(n0(n0 − 1))(mx)
4+ (A20)

(n1E[y
4] + 3(n1(n1 − 1))(1−mx)

4+

(n2E[y
4] + 3(n2(n2 − 1))(2−mx)

4+

6n0n1(mx)
2(1−mx)

2 + 6n0n2(mx)
2(2−mx)

2+

6n1n2(1−mx)
2(2−mx)

2.

In order to simplify (A20) it is necessary to cancel out (ns2x)
2 from a

collection of terms in the the numerator. First, rewriting (ns2x)
2 using the

expression (A2) for s2x :

(ns2x)
2 = n20m

4
x + n21(1−mx)

4 + n22(2−mx)
4+ (A21)

2n0n1m
2
x(1−mx)

2 + 2n0n2m
2
x(2−mx)

2 + 2n1n2(1−mx)
2(2−mx)

2.

Gathering terms in (A20) that match those in (A21) inside the first curly
bracket and the remainders (which all multiply (E[y4]−3)) inside the second
curly bracket:

E[β̂4] = (
1

ns2x
)4(3{n20(mx)

4 + n21(1−mx)
4 + n22(2−mx)

4+

2n0n1(mx)
2(1−mx)

2 + 2n0n2(mx)
2(2−mx)

2+

2n1n2(1−mx)
2(2−mx)

2}+
(E[y4]− 3){(n0(mx)

4 + (n1(1−mx)
4+

n2(2−mx)
4}

Dividing by E[β̂2]2 using (A13) and (A21) gives 3 plus a remainder:

E[β̂4]/
(
E[β̂2]2

)
= 3 +

(E[y4]− 3)
(ns2x)

2
(n0m

4
x + n1(1−mx)

4 + n2(2−mx)
4).

Next we derive the skewness and kurtosis of the Bernoulli-normal mixture
distribution. We only consider the standardized case E[y] = 0 and E[y2] = 1.
Recall that y = λ(µa+σaza)+(1−λ)(µb+σbzb) where λ is a Bernoulli random
variable with probability p that λ = 1 and za, zb are independent standard
normal variates. Note that λ(1− λ) = 0 and λ2 = λ3 = λ4 = λ. Taking the
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cube, dropping all terms which include λ(1 − λ), and simplifying powers of
λ and (1− λ):

y3 = (λ(µa + σaza) + (1− λ)(µb + σbzb))
3 =

λ(µa + σaza)
3 + (1− λ)(µb + σbzb)

3. (A22)

The third moment of a normal variate with mean µ and standard deviation
σ is µ3 + 3µσ2. Taking the expectation of (A22) gives:

E[y3] = pµ3a + (1− p)µ3b + 3(pµ1σ2a + (1− p)µbσ2b ).

For the kurtosis of y, take the fourth power of y, drop all terms which
include λ(1− λ), and simplify powers of λ and (1− λ):

y4 = (λ(µa + σaza) + (1− λ)(µb + σbzb))
4 =

λ(µa + σaza)
4 + (1− λ)(µb + σbzb)

4. (A23)

The fourth moment of a normal variate with mean µ and standard deviation
σ is µ4 + 6µ2σ2 + 3σ4. Taking the expectation of (A23) gives:

E[y4] = pµ4a + (1− p)µ4b + 6(pµ2aσ2a + (1− p)µ2bσ2b ) + 3(pσ4a + (1− p)σ4b ).

Finally, we derive the skewness and kurtosis of mn0, which is an average
of n0 independent observations of y.Finding the second, third and fourth
moments:

E[(mn0)
2] =

1

n0
E[y2] =

1

n0

E[(mn0)
3] = (

1

n0
)3(n0E[y

3]) = (
1

n0
)2E[y3]

E[(mn0)
4] = (

1

n0
)4(n0(n0 − 1)3E[y2] + n0E[y

4]).

Taking ratios as in (A8) and (A9) to get skewness and kurtosis:

Skew[mn0] = (
1

n0
)
1
2E[y3]

Kurt[mn0] = 3 + (
1

n0
)(E[y4]− 3).
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8 Years-of-education data description

The first two columns of Table A-1 below reproduce two rows from Table
1: Educational Attainment of the Population 18 Years and Over, by Age,
Sex, Race, and Hispanic Origin: 2015 in Current Population Survey Data
on Educational Attainment (U.S. Census Bureau (2015)). We choose the
subsample "U.S. white males ages 25 and greater" from that data source,
which is row 25 of their Table 1. The [white/male/age 25 and over] sub-
sample has 81,913 observations. Row three of Table A-1 below transforms
the qualitative categories into a quantitative variable. There are a few minor
subjective judgements in transforming the survey categories into quantitative
years-of-education. The final column shows the frequency distribution of the
data.
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Table A-1 
Years of education of U.S. white males, ages 25+ 

Completed years 
of education, 
survey categories 

Number of survey 
respondents in 
each category 

Quantitative 
measure for 
years-of-
education 

Frequency 
distribution of the 
quantitative 
variable 

None 293 0 0.36% 

1st – 4th grade 703 4 0.86% 

5th – 6th grade 1,487 6 1.82% 

7th – 8th grade 1,558 8 1.90% 

9th grade 1,397 9 1.71% 

10th grade 1,445 10 1.76% 

11th grade 2,704 11 3.30% 

High school 
graduate 

24,812 12 30.29% 

Some college, no 
degree 

13,316 13 16.26% 

Associate’s 
degree, 
occupational 

3,478 14 4.25% 

Associate's 
degree, academic 

4,001 15 4.88% 

Bachelor’s degree 16,882 16 20.61% 

Master’s degree 6,475 18 7.90% 

Professional 
degree 

1,705 19 2.08% 

PhD graduate 1,657 20 2.02% 
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Appendix B: Guide to the gwrpv program in
the R package gwrpvr

Gregory Connor
Department of Economics, Finance and Accounting

Maynooth University

Michael O’Neill
School of Business

University College, Dublin

October 17, 2017

1 Introduction

The Genome-Wide Regression P-Value (gwrpv) program computes the sam-
ple probability value (p-value) for the estimated coefficient from a standard
genome-wide univariate regression. It computes the exact finite-sample p-
value under the assumption that the measured phenotype (the dependent
variable in the regression) has a known Bernoulli-normal mixture distribu-
tion. This appendix provides instructions for using the gwrpv program con-
tained in the R package gwrpvr version 1.0.

2 Preliminary Research Steps

The gwrpv program only has added value if the phenotypic variable in the
genome-wide regression study does not follow a normal distribution. Before
running the gwrpv program, the analyst should compute the sample skewness
and kurtosis of the phenotypic variable, and apply the Jarque-Bera test for
normality. The Jarque-Beta test is provided in most statistical software pack-
ages; for example, ajb.norm.test in the normtest package in R (see ftp://
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cran.r-project.org/pub/R/web/packages/normtest/normtest.pdf) gives
a standard implementation. If normality is not rejected by the Jarque-Bera
test, the gwrpv routine is not appropriate; conventional normality-based p-
values should be used instead.

In order to run the program, the analyst must fit a normal mixture dis-
tribution to the phenotypic variable. This can be done for example using
the normalmixEM command in the mixtools library in R (see Benaglia et al.
(2009)). The gwrpv program requires the six parameters of the fitted mixture
distribution, µa, σa, µb, σb, pa and pb. The parameters µa, σa are the mean and
standard deviation given that the Bernoulli random variable equals one, and
µb, σb are the mean and standard deviation given that the Bernoulli random
variable equals zero. The parameter pa is the probability that the Bernoulli
random variable equals one and pb is the probability that the Bernoulli ran-
dom variable equals zero.

Before running the gwrpv program, the analyst must run a standard set of
genome-wide regressions. That is, for each single-nucleotide polymorphism
(SNP) in a large data set, the analyst has regressed a phenotypic variable y,
observed over n individuals, on the realized SNP values across the individuals.
The univariate regression has been run separately for each SNP in the data
set, resulting in a very large number (up to tens of millions) of individual
regression coefficients, one per SNP. This can be done using the plink package
of routines (see Purcell, et al. (2007)). The gwrpv program can use as input
the regression coefficient outputs of plink.

The gwrpv program allows the analyst to find p-values for any reasonable
number of regression coefficients. The number of candidate regression coef-
ficients should be a relatively small number, roughly in the range one to one
thousand. It is not appropriate to compute adjusted p-values on the entire
universe of tens of millions of regression coefficients, due to the processing-
time demands of computing each exact finite-sample p-value. The candidate
coefficients should be preselected by the analyst, based for example on the
magnitude of their t-statistics, as the ones most likely to have statistically
significant p-values. A sensible cutoff is to restrict the analysis to regression
coefficients with a t-statistic greater than 3.5 in magnitude. For convenience
we have also provided a batch version of the program (gwrpv batch), which
can process the results from a set of regressions.
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3 Inputs and Outputs

The gwrpv program requires a number of inputs. The first required set of
inputs are the six values (µa, σa, µb, σb, pa, pb ). The inputs µa and µb can
have any real values; σa and σb must be positive; pa and pb both must lie
between zero and one, and must sum to one.

There are also a set of trimming parameters for efficient computation of
the p-values (see Section 5 below), each of these is set to default values, which
can be overridden.

The second required set of inputs are four values1. The first is the set
of candidate regression coefficient estimates for the regressions being ana-
lyzed. The second, third, and fourth values must give the number of major
heterozygote, homozygote, and minor heterozygote observations from each
of the corresponding regression samples. The three number-of-observations
columns must all be non-negative integers; the beta estimates can have any
real values.

The gwrpv program outputs the p-value of the regression coefficient based
on the mixture distribution and some supplementary statistics, including
the skewness and kurtosis of the coefficient estimate, based on the assumed
mixture distribution for the dependent variable.

4 Procedure for Running the Program

This short section lists the steps needed to run the program. The gwrpv

program is contained in the R package gwrpvr, which is available as standard
from CRAN. The current version of the program is v1.0.

In your favourite R environment install the package gwrpvr.

> install.packages("gwrpvr")

> library(gwrpvr)

To see the associated help file for the gwrpv program with the required pa-
rameters run

> help("gwrpv")

1There is a batch version of the function gwrpv batch, to which a list of candidate
regression coefficients whose adjusted p-values are to be computed are passed.
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The following is an example of how to use gwrpv, having initially calculated
the inputs as per Sections 2 and 3.

> beta <- 6.05879 # candidate regression cooefficient estimate

> n0 <- 499 # number of major heterozygote observations

> n1 <- 1 # number of major homozygote observations

> n2 <- 0 # number of minor heterozygote observations

> mua <- 13.87226 # mean of the mixture distribution given that the Bernoulli random variable equals zero

> siga <- 2.58807 # stdev of the mixture distribution given that the Bernoulli random variable equals zero

> mub <- 4.62829 # mean of the mixture distribution given that the Bernoulli random variable equals one

> sigb <- 2.51803 # stdev of the mixture distribution given that the Bernoulli random variable equals one

> pa <- 0.96544 # pa is the probability that the Bernoulli random variable equals one

> pb <- 0.03456 # 1 - pa

> g <- gwrpv(beta, n0, n1, n2, mua, siga, mub, sigb, pa, pb)

> g$pvalue # display the p-value

> g # display all the output statistics

4.1 The skewness and kurtosis of the estimated coeffi-
cient

In addition to computing the exact p-value, the gwrpv programme computes
the skewness and kurtosis of the estimated regression coefficient, under the
assumed mixture distribution of the dependent variable, and assuming the
null hypothesis that the true coefficient equals zero.

Following on from the sample input parameters in the earlier example we
can retrieve the output skewness and kurtosis as follows:

> g <- gwrpv(beta, n0, n1, n2, mua, siga, mub, sigb, pa, pb)

> g$pvalue # display the p-value

> g$skew # display the skewness

> g$kurt # display the kurtosis

5 Efficient Computation Procedures

If applied naively, the p-value computation in the model requires a sum over
a potentially very large number of terms. The gwrpv programme uses ef-
ficient computation procedures to minimize run-time, while maintaining a
high degree of accuracy in the p-value computation. There are three pa-
rameter inputs which control these computation features in the programme:
logdelta, lognearnorm and logtopsum. All three parameters are real num-
bers inputted in log base ten format.

The parameter logdelta controls the trimming of the three univariate bi-
nomial distributions, each binomial distribution corresponding to the sample
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of one allele type (see the Technical Appendix for analytical details). logdelta
has a default value of -16, which means that the p-value computation is only
accurate for 16 decimal places. The analyst can increase or decrease delta
by changing the optional parameter value; a larger-magnitude negative delta
will result in a more accurate computation and slower run-time. logdelta
must be a negative number, in log base ten format, so that 10logdelta is less
than one.

The parameter lognearnorm is used to determine whether to use a triple
computation loop over n0, n1 and n2 observations, or apply the central limit
theorem to approximate the distribution of the sample average phenotype
of the major homozygote observations. This approximation eliminates the
need to loop over n0, giving a double loop over n1 and n2 only. The program
computes the skewness and kurtosis of the sample average phenotype of the
major homozygote observations. If the sum of squared difference of skewness
and kurtosis from their normal distribution values is less than nearnorm, then
the gwrpv program uses the central limit theorem to eliminate the major
homozygote observations from the computation loop.

The final parameter, logtopsum, ensures that the gwrpv programme does
not spend too long computing a p-value. Before running the main computa-
tion sum for each regression case (β̂, n0, n1, n2), the program computes the
number of terms in this computation sum. If this number is greater than
logtopsum, the program skips the p-value computation for that β̂ and pro-
ceeds to the next regression case, and a value of −999.9 is inserted in place of
the p-value in the output to indicate that the computation has been skipped.

5.1 Inputting the control parameters for efficient com-
putation

In the gwrpv program we provide parameters to faciliate efficient compu-
tation. These are the control parameters described above, the three real
numbers, logdelta, lognearnorm and logtopsum. All three of these inputs
must be provided in log base ten, so that (−16,−5, 8) means that δ is set at
10−16 and topsum is 108.

By default we set values for these three parameters (i.e., logdelta=-16,
lognearnorm=-5, and logtopsum=8). These do not need to be explicitly
passed in unless you want to override them. For example, the following will
result in the same output as the earlier example. Here we are explicitly
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setting the trimming parameters..

> g <- gwrpv(beta, n0, n1, n2, mua, siga, mub, sigb, pa, pb, logdelta=-12, lognearnorm=-5, logtopsum=8)

> g$pvalue

6 Batch mode

If one wishes to compute p-values for mutiple regressions there is a batch
version of the function, gwrpv batch. The following are examples of its
use. They illustrate how the results of each regression are presented to
gwrpv batch as a list of lists.

# create a list of the beta’s

> beta <- c(6.05879, -6.05879, 2.72055, -2.72055, 1.93347, -1.93347, 0.88288, -0.88288, 4.28421, -4.28421)

# create a list of the number of major heterozygote observations

> n0 <- c(499, 499, 495, 495, 490, 490, 451, 451, 998, 998)

# create a list of the number of major homozygote observations

> n1 <- c(1, 1, 5, 5, 10, 10, 48, 48, 2, 2)

# create a list of the number of minor heterozygote observations

> n2 <- c(0, 0, 0, 0, 0, 0, 1, 1, 0, 0)

# create the list of lists

> myregresults <- list(beta = beta, n0 = n0, n1 = n1, n2 = n2)

> g <- gwrpv_batch(myregresults,13.87226,2.58807,4.62829,2.51803,0.96544,0.03456)

In the second example we illustrate how to load the regression results from
a comma separated file. Connor & O’Neill (2017) describe an illustrative
sample data set of regressions to which the Genome-Wide Regression P-
Value method is applied. The R package gwrpvr contains a folder called
data/ in which this data set is provided. The data is contained in the file
named regresults.csv

# alternatively the regression results may be contained in a .csv file

# let’s call the file "regresults.csv"

# assuming four comma separated columns with a single header line

# containing columns names: beta,n0,n1,n2

# readr is a handy package to read in csv files, install this if not in your environment

> install.packages(’readr’)

# load the readr package into your environment

> library(readr)

# use the read_csv function from the readr package to load in the csv

> myregresults <- read_csv("data/regresults.csv")

> g <- gwrpv_batch(myregresults,13.87226,2.58807,4.62829,2.51803,0.96544,0.03456)
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