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 It is well established that transcription factors (TFs) play crucial roles in 

determining cell identity, and that a large fraction of all TFs are expressed in most cell 

types. In order to globally characterize activities of TFs in cells, we have developed a novel 

massively parallel protein activity assay, Active TF Identification (ATI) that can identify 

DNA-binding activity of all TFs from any species or tissue type. In contrast to previous 

studies based on mRNA expression or protein abundance, we found that a set of TFs 

binding to only around ten distinct motifs display strong DNA-binding activity in any given 

cell or tissue type. Mass spectrometric identification of TFs revealed that within these 

highly active TFs, there were both housekeeping TFs, which were universally found in all 

cell types, and specific TFs, which were highly enriched in known factors that determine 

the fate of the analyzed tissue or cell type. The importance of a small subset of TFs for 

determining the overall accessible chromatin landscape of a cell suggests that gene 

regulatory logic may be simpler than what has previously been appreciated. 
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Transcription factors are proteins that read the gene regulatory information in DNA, and 
determine which genes are expressed. There have been many efforts to decipher the most 
important TFs in different cell types. Genetic analyses have revealed that cell identity is 
determined by a relatively few TFs that regulate each other, and bind often to specific regions of 
the genome together (1-3). Cell identity can often be reprogrammed by exogenous expression of 
one to five TFs; for example, differentiated cells can be transformed into induced pluripotent 
stem (iPS) cells by expression of several different subsets of the TFs Oct4 (Pou5f1), Sox2, Klf4, 
c-Myc, and Esrrb (4-6). These results indicate that the cellular regulatory system is hierarchical, 
and can be controlled by a relatively small subset of TFs.  

Analyses based on gene expression profiling have, however, revealed that most tissues 
express hundreds of TFs (7). Similarly, total proteomic analyses have indicated that tissues 
commonly express more than 40% of all ~ 1500 known human TF proteins (8). Experiments 
based on chromatin immunoprecipitation followed by sequencing (ChIP-seq) have also 
suggested that a large number of TFs are active in individual cell lines (9, 10). Taken together, 
these results suggest that downstream of the master regulators, gene regulatory logic inside cells 
appears to be extremely complex, and that the cellular state could potentially be defined by a 
very large number of regulatory interactions. However, little information exists on which TFs 
have the strongest activities in a given cell type. This is because previous analyses have either 
only analyzed RNA or protein levels (7, 8), or measured individual TF activities using methods 
that cannot compare activity levels between TFs (e.g. ChIP-seq (9-11)). To overcome these 
obstacles, we have in this work established a novel method, Active TF Identification (ATI), 
which can determine the relative DNA-binding activity levels of TFs in specific cell or tissue 
types from any organism. 

 In ATI, a library of double-stranded oligonucleotides containing a 40 bp random 
sequence is incubated with a nuclear extract from different cell or tissue types. The 
oligonucleotides bound by TFs are then separated from the unbound fraction by electrophoretic 
mobility shift assay (EMSA, Fig. 1a). The bound DNA fragments are eluted from the gel and 
amplified by PCR, and the entire process is repeated three more times. Comparison of millions 
of sequences derived from the input and the selected libraries then allows identification of 
enriched binding motifs that correspond to the TFs present in the nuclear extract. Given that the 
binding motifs identified are relatively short compared to the 40 bp random sequence, the 
sequence flanking the motif can also be used as a unique molecular identifier (12), allowing 
absolute quantification of the number of proteins bound to each type of motif. 

 As an initial test, we performed ATI using nuclear extract from mouse ES (mES) cells 
cultured without feeder cells. De novo motif discovery using the “Autoseed” program (13) 
revealed motifs characteristic of TF families such as Nfi, Rfx, Klf and Pou, and of subfamily 
specific motifs for MiT/Tfe basic helix loop helix proteins, class I ETS factors, Zic zinc fingers 
and ERR type nuclear receptors (Fig. 1b; for motif similarity, see Extended Data Fig. 1). Many 
motifs were similar to motifs bound by known lineage-determining factors for ES cells (14-18), 
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such as Klf4, Pou5f1 (Oct-4), Zic3 and Esrrb, suggesting that the ATI assay is able to detect the 
DNA-binding activity of such TFs. Some, but not all, ATI motifs were also detected by MEME 
motif mining of DNase I hypersensitive sites from ES cells, suggesting that ATI can detect also 
activities of TFs that contribute to chromatin accessibility (Fig. 1b). Analysis of the amount of 
DNA recovered from the gel, and the absolute number of motifs recovered during sequencing 
revealed that TFs from one nucleus bound approximately 5 × 106 DNA ligands, of which 3 × 105 
represented specific binding events with clearly identifiable motif. This estimate is broadly 
consistent with earlier estimate of TF abundance (19). 

 Although the de novo motif discovery using Autoseed is relatively sensitive, and can 
identify motifs that represent ~ 5 ppm of all sequences, it cannot identify very rare events. To 
detect such events, we also analyzed the enrichment of known motif matches during the ATI 
process (Fig. 1c and Supplementary Table 2). This method yielded similar results to the de 
novo method, but also identified enrichment of motif matches for additional TFs, including 
homeodomain motifs that are similar to motif bound by the pluripotency regulator Nanog, 
indicating that it has higher sensitivity than the de novo motif discovery method. The relatively 
low enrichment of the homeodomain motif is consistent with its relatively low abundance of 
Nanog in the mass spectrometry analyses (Supplementary Table 3). However, even using 
known motif enrichment, it is hard to unambiguously assign a weak activity to a specific TF. 
This is because it is difficult to determine whether enrichment of the motif matches that is too 
weak to be detected by de novo methods represents specific enrichment of the tested motif, or is 
a consequence of stronger enrichment of a related motif of another TF.  

 It is interesting to note that all of the motifs recovered from ES cells were known prior to 
this study, suggesting that few novel strong TF activities remain to be discovered. In addition to 
monomeric motifs, we detected one dimeric motif consisting of two E-box sequences separated 
by a 2 bp gap. However, some motifs representing dimers formed on DNA (20) such as the well-
known Sox2/Pou5f1 motif were absent from the data. This result suggested that the ATI method 
might be biased against such DNA-dependent dimers, as far larger number of monomeric than 
dimeric sites exist in random sequences (Extended Data Fig. 2). To address this, we performed 
two additional experiments using a synthetic library consisting of known motifs, and a library 
derived from mouse genomic sequences. These targeted analyses were more sensitive than the 
method based on random library, and resulted in identification of many additional motifs, 
including that of CTCF (Extended Data Fig. 3 and Supplementary Table 4). However, 
analysis of the data did not reveal dimeric motifs, suggesting that the activity of DNA-dependent 
TF dimers is lower than that of the corresponding monomeric TFs. This is likely because specific 
formation of DNA-dependent dimers requires that the binding activity of at least one of the TFs 
is relatively low, as its concentration must be below the individual Kds towards the motif and the 
partner, but above the Kd towards the combination of the dimer motif and the TF partner. Due to 
the fact that proteins are more concentrated in the nucleus than in the nuclear extract, such 
dimers are difficult to detect using ATI. 
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 The ATI assay can be used to identify active motifs, but analysis of motif activity alone 
cannot in most cases identify the specific TF that is active in the tissue or cell types, due to the 
fact that many related proteins can bind to the same sequence motif. To address this, we captured 
DNA-binding proteins from the nuclear extract in mouse ES cells using a biotinylated version of 
the control and enriched ATI DNA ligand libraries. After washing and elution, we identified 
proteins bound to the ATI ligands using mass spectrometry (see Methods for details). This 
analysis revealed the TF proteins that bound to the ligand. In most cases, a motif could be 
assigned to a specific protein or a group of paralogous proteins (Extended Data Table 1).  

 We next applied ATI to identification of TFs active in mouse ES cells and four adult 
mouse tissues, including heart, spleen, brain and liver. De novo motif discovery followed by 
motif match counting revealed that limited sets of TFs were highly active in different tissue types 
(Fig. 2a and Supplementary Table 5). In all tissues tested, only few TFs (two to seven) 
displayed activities that were more than 10% of that of the most active TF. The identified motifs 
could be broadly classified into three groups: common, shared and specific. Five common motifs 
were found in all cell and tissue types tested. They represented an extended E-box site 
(gGTCACGTGACc) bound by the MiT/TFE family of basic helix-loop helix (bHLH) TFs, a 
GGTCAaaGGTCA motif bound by a subfamily of nuclear receptors (NR), and canonical sites 
bound by NFI, NRF and bZIP (Creb) family of TFs (Fig. 2a; see Extended Data Fig. 4 for 
comparison to known motifs). Even within this common set, there were large differences in 
quantitative TF binding activities between the cell types, suggesting that the relative activities of 
the common TFs may contribute to cell lineage determination (Fig. 2b and Extended Data Fig. 
5). 

 In addition to the common TF motifs, we also found three motifs, corresponding to Rbpj 
(21), class I Ets family TFs (22) and Yy1/2 (9) that were shared by more than two different tissue 
types, suggesting that members of these families of TFs have important roles in many different 
contexts (Fig. 2a; see Extended Data Fig. 4 for comparison to known motifs). In contrast, there 
were some other motifs specific for only one or two tissue types; some of their corresponding 
TFs have been previously shown to be crucial for the particular cell identities. For example, the 
binding motif of nuclear receptor Thra that is important for heart function (23) was found only in 
the heart, whereas the Rfx and Pax motifs were found only in the spleen, where it is known that 
members of these families such as Pax5 and Rfx5, respectively, contribute to development (24, 
25) and MHC class II expression (26) of B-cells. In the brain, we detected motifs for Egr, Scrt 
and Pou2, Pou3 (Brn2) and Pou6 (Brn5) family proteins that are specifically expressed and play 
important roles in the brain (27-30). In the liver, motifs bound by Cebp family TFs, Hnf1a/b and 
PAR-domain bZIP TF Dbp/Tef/Hlf were specifically enriched, and these TFs have been verified 
to be crucial for liver functionality as well as circadian control of metabolism (31-37). Moreover, 
it has been shown that Hnf1a/b and Cebpa together with other factors can be used to reprogram 
fibroblasts into induced hepatocytes (38, 39), indicating the significance of these factors for 
hepatocyte identity. 
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We next analyzed the relative enrichment of known TF motifs across the tissues using 
known motif enrichment analysis. This analysis confirmed the enrichment of the de novo 
discovered motifs, and revealed additional TFs whose motifs were specifically enriched in the 
different cell types or tissues (Fig. 2a and Supplementary Table 6). For instance, from the mES 
cells we detected motifs for additional pluripotency factors such as Glis2, albeit with a relatively 
low enrichment. From adult mouse liver, we also detected specific motifs for TFs such as Onecut 
and Hnf4a. Taken together, ATI analysis of mouse tissues revealed that in addition to five 
common TF activities, each tissue displayed strong activity of key regulators for the respective 
cell identities. 

To test if TFs detected by ATI can induce transdifferentiation of somatic cells to other 
cell identities, we transduced human fibroblasts with a combination of nine TFs identified by 
ATI from adult mouse liver, and investigated the morphology of the cells and expression of the 
liver specific marker albumin after two weeks of culture. The fibroblasts were converted to 
induced hepatocytes (iHeps) at an efficiency that was similar to the most efficient previously 
described protocol (Extended Data Fig. 6), indicating that ATI can identify all factors necessary 
for transdifferentiation of mammalian cells. 

 We also detected enrichment of some unknown motifs (Fig. 2a, bottom), which we could 
not assign to a known TF based on current knowledge (HT-SELEX motifs, CIS-BP, TOMTOM 
(9, 13, 40, 41)). Overall, we recovered 35 motifs, of which only 6 (17%) were unknown, 
indicating that specificities for most TFs that display strong activity in the tested tissue types 
have already been determined. 

 To identify the TFs, we carried out mass spectrometry (MS) analyses in three adult 
mouse tissues: spleen, brain and liver. This analysis was performed using HiRIEF-LC-MS (42) 
with relative quantification between samples using isobaric tags (TMT). Comparison of the MS 
and ATI data revealed that most of the TF proteins whose motifs were specific for one of the 
tissues were more abundant in that tissue compared to the other two tissues (Fig. 2c). We also 
performed label-free MS analysis to estimate the protein levels within the samples. In this 
analysis, we detected some highly abundant TFs that were not detected in the ATI assay; for 
example, no motif was discovered for Dpf2 that is involved in apoptosis (43). Similarly, Smad 
proteins were abundant in all of the tissues, but their signature motif was not detected in any of 
the cases (Fig. 2d and Supplementary Table 7). This is consistent with low DNA binding 
activity of Smads (44), and the fact that Smad protein activity depends on posttranslational 
modifications induced by stimulation of cells by TGF-β superfamily ligands. We also found that 
interferon regulatory factors (IRFs) were abundant at protein level, yet not detected as active by 
ATI. In addition, the MS analysis indicated that some subunits of the multimeric TFs such as 
NFY were present at high levels, yet the TFs were not strongly active, consistent with lower 
level of abundance of the other subunits. Of the 67 TFs that were detected by mass spectrometry 
in liver, 40% were known to bind to an ATI identified motif, 12% represented a known obligate 
heteromer or ligand-regulated TF, 33% were classifed as TFs but do not have a known motif, and 
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15% had a known motif but were present at a relatively low abundance (Supplementary Table 
7). In summary, the ATI assay revealed that the total DNA binding activities of TFs in cells 
cannot be simply determined by measuring RNA or protein abundance alone, as many TFs either 
have low specific activity, or are only activated under specific circumstances. 

To test if ATI can detect changes in TF activities that are induced during cell 
differentiation, we induced differentiation of ES cells towards neural and mesodermal lineages 
using standard conditions (45-47) (Fig. 3a; see Methods for details). This analysis revealed that 
ATI was able to detect several known quantitative changes in TF binding activities that 
accompany the neural differentiation process (Fig. 3b and c). For example, the activities of the 
pluripotency factors Glis and Zic were decreased, whereas the activity of Rfx factors that are 
known to contribute to neural differentiation was increased. Similarly, the activities of Glis and 
Zic factors decreased after induction of mesodermal differentiation, whereas the activity of the 
known mesodermal factor AP2 increased dramatically (Fig. 3b and d). The activation of Smad 
proteins by BMP4 and activin A that were used to induce mesodermal differentiation was not 
detected, potentially due to the fact that Smad proteins bind DNA only weakly (Kd ≈ 1 × 10-7 
M), and often act together with other TFs (44). In contrast, ATI robustly detected the activation 
of retinoic acid receptor by the neural inducer retinoic acid, indicating that some ligand-gated 
TFs can be detected by ATI. 

 One of the important advantages of the ATI assay is that it can be performed using any 
type of protein extract from any species. To analyze how similar active TFs are between 
organisms, we carried out ATI experiments using nuclear extracts from the fruit fly D. 
melanogaster S2 cells, and the yeasts S. cerevisiae and S. pombe. Analysis of the data using the 
de novo motif discovery method indicated that ATI could identify the most active TFs in all of 
these species. Several of the recovered motifs matched known motifs from the respective species 
(41). From the study of the yeast S. cerevisiae, we detected Abf1, Rap1 and Reb1. Strikingly, of 
six motifs (five common motifs and one shared motif for Rbpj) that were common to almost all 
mouse tissues and cell lines, two TFs, Rbpj/Cbf11 and the bHLH factor Tfe/Cbf1, were highly 
active in the yeast S. pombe, and two TFs Tfe/Cbf1 and the bZIP factor Creb/CST6 were highly 
active in S. cerevisiae. Although there are only 23 TF families, the number of distinct motifs is 
much larger; for example in humans, there are more than 300 different binding motifs (48), and 
at least 30 distinctly different motifs for bHLH factors, and 10 for bZIP factors (9, 48). Thus, the 
fact that the same motifs were highly active in distant species suggests that the dominant 
mechanisms of transcriptional regulation may have been conserved during the evolution of 
eukaryotes. In the different species, we also found many novel motifs, which we could not assign 
to a known TF based on existing TF specificity databases, suggesting that the binding specificity 
landscape of these species is not characterized as well as that of mammals (Extended Data Fig. 
7).   

 One concern with the ATI assay is that it could identify specific TFs that bind strongly 
under the in vitro conditions used in the assay. To independently validate the assay, we analyzed 
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whether the most active DNA-binding TFs identified by the method were also the most active in 
vivo. We first compared the ATI results from the yeast S. cerevisiae with the known four TF 
motifs that determine the yeast transcriptome (49). Out of four motifs that are required to build a 
model describing yeast transcript start positions, ATI identified three Abf1, Rap1 and Reb1, and 
in addition recovered novel CG rich motifs that are related to the fourth motif used in the study 
(Rsc3; Fig. 4a). This result indicates that ATI can identify a complete set of TFs whose activity 
is crucial for determining the transcriptional state of yeast.  

 To determine if ATI also confers information on the mammalian chromatin landscape, 
we compared the ATI data with DNase I hypersensitive sites (DHS) from the mouse ENCODE 
project (50). This analysis revealed that the top 2000 10-mers detected by ATI in mouse ES cells, 
heart, spleen, brain and liver were strongly enriched in the ~ 5000 most significant DHS regions 
from the respective tissues. As expected, the strongest enrichment was seen in ES cells, which 
are more homogenous than tissues containing multiple different cell types (Fig. 4b and 
Extended Data Fig. 8). Analysis of 10-mers enriched in ES cell DHSs and ATI revealed that 
there were many 10-mers that were enriched in both, and that all of these 10-mers were related to 
the ATI motifs (Extended Data Fig. 9). Consistent with the enrichment of ATI 10-mers in 
DHSs, ATI also enriched many DHS sequences from a mouse genomic library (Extended Data 
Fig. 10). However, some 10-mers were only enriched in DHSs (Extended Data Fig. 9); these 
included many repetitive CG rich sequences that enrich in gene regulatory elements due to the 
fact that methylated C is prone to mutation, and the low CpG methylation rate of regulatory 
elements protects these sequences from this mutational process (51, 52). As DHSs represent gene 
regulatory elements, they are also expected to be enriched with both motifs that contribute to the 
opening of the chromatin, and motifs that are involved in downstream activities such as 
transactivation or repression of RNA polymerase II. Consistently, de novo motif discovery 
analysis of DHSs revealed some motifs that were not enriched by ATI. These included a motif 
similar to that of Znf-143 (Fig. 1b); this motif has been reported to contribute to interactions 
between promoters and distal regulatory elements (53).  

 We further hypothesized that if ATI accurately represents TF binding activities in cells 
and reveals subsequences that bind strongly to TFs also in vivo, it would be possible to predict 
the DHS regions using the ATI enriched subsequences. It has been previously shown that DHSs 
can be predicted based on sequence features from different types of experimental data (e.g. 
DNase-seq data (54) or ChIP-seq data (55)). It is also well established that DHSs and TF binding 
clusters are enriched with matches to biochemically obtained TF motifs (56, 57), and that they 
overlap with in silico predicted clusters called based on TF motif matches only. However, in our 
recent study, only ~ 30% of TF binding clusters could be predicted based on monomeric TF 
binding models (57) suggesting that additional unknown determinants affect TF binding to DNA 
inside cells. To determine if ATI improves on the predictions, we developed a predictor based on 
the enrichment rank of all 10-mers in ATI. This analysis revealed that more than 70% of the 
DHSs could be predicted by the 10-mers derived solely from ATI (Fig. 4c; 10% expected by 
random, p < 3.2 × 10-226; winflat (58)), indicating that ATI derived 10-mer enrichment more 
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accurately represents TF activity in cells compared to any other presently available information. 
In prediction of the DHSs genome-wide, ATI was nearly as effective as using 10-mers from the 
DHSs themselves (Fig. 4d, e), indicating that the ATI data contains substantial fraction of the 
motif information contained in the DHSs, despite the fact that the DHSs are expected to contain 
additional motif features that relate to their functionality in gene regulation and not to their open 
chromatin status. Consistently, analysis of DHSs that were hard to predict using ATI 10-mers but 
could be predicted using DHS 10-mers again revealed the Znf-143 like motif (Extended Data 
Fig. 11). In contrast, DHSs that were hard to predict using both types of 10-mers did not contain 
enriched sequence motifs, suggesting that their DNase I hypersensitivity may be caused by 
longer sequence features such as those affecting intrinsic nucleosome affinity (59). In summary, 
both the yeast transcriptome model and the DHSs data verify that the TFs found using ATI are 
active in the cell types and tissues analyzed, and contribute to the positioning of TSSs in yeast, 
and accessibility of chromatin in mouse cells. 

 It is not possible to determine the binding activities of TFs in different types of cells 
based solely on RNA expression or protein abundance data. This is because different TFs have 
different specificities and affinities to DNA, and their activities are also regulated at the level of 
posttranslational modification, protein-protein interaction, and nuclear localization. For this 
reason, we have in this work developed the ATI assay that directly measures the DNA-binding 
activities of all TFs in cell extracts. The ATI method is widely applicable, as it can be applied to 
any species and tissue, and can detect changes in TF activity in response to any perturbation. 
This method is, to our knowledge, the first massively parallel protein activity assay that can 
simultaneously measure a large number of functionally similar protein activities. Based on 
independent verification of the results using mass spectrometry and prediction of functional 
features, the method appears to be able to capture the majority of strong DNA-binding activities 
in cells. However, the sensitivity of ATI in detecting accessory DNA-binding factors and 
proteins that bind to DNA weakly such as the Smad proteins may be low. Further studies that 
miniaturize and standardize the process are expected to further improve the sensitivity and 
accuracy of this widely applicable method. 

 Analysis of active TFs in different species revealed a potential conservation of strongly 
active TFs between distant species. In addition, we found that in higher organisms, relatively few 
TFs display strong DNA binding activity in any given tissue type. From different mouse tissues, 
we detected five TFs classes that were commonly and strongly active. In addition, we found 
many TFs that were strongly active only in specific tissues; these TFs had known roles in cell 
lineage determination. Using the ATI-derived binding information we were able to predict 
positions of open chromatin in mouse ES cells far more accurately than what has previously been 
possible, indicating that lack of knowledge of TF DNA-binding activity levels was a major 
unknown factor that hindered previous computational predictions of regulatory elements. 

 Our results indicate that the few TFs that have strong DNA binding activities in a cell 
play a major role in setting its overall gene regulatory architecture. However, ChIP-seq analyses 
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have clearly shown that a large number of TFs can bind open chromatin regions in cells (9, 10). 
These observations are consistent with a model where the TFs that are strongly active in DNA 
binding set up the overall chromatin state of cells, and that the ability of TFs with weaker DNA 
binding activity to regulate their target genes is conditional on this chromatin state. Interestingly, 
this model also provides a very simple combinatorial gene regulation system. If the TF that has 
strong DNA-binding activity lacks a strong transactivation or repression domain, it will require a 
partner that has such a domain. This co-operating factor may not, in turn, be able to open 
chromatin alone, and therefore will require the strong DNA binder (Fig. 5). It should be noted 
that different types of activation domains will also further contribute to such combinatorial 
regulation (60), increasing the number of cooperation partners to three or more.  

The biochemical activity-based distinction between TFs that we identified here is related 
but not identical to the concept of "pioneer" transcription factors that are able to bind to 
nucleosomal DNA (61). Ability to compete against nucleosomes could either be simply due to 
mass action, or due to a specific ability of some TFs to bind to nucleosomal DNA with fast 
kinetics and to recruit nucleosome remodeling enzymes (62, 63). In bioinformatic studies that 
identify factors occupying most of their consensus motifs (64), both types of factors would be 
detected equally. Comparison of our data with factors that occupy their motifs (64) reveals many 
such factors display strong DNA binding activity in the ATI assay. The ability to predict DHS 
positions based on ATI data suggests that much of the nucleosome-competing activity in ES cells 
is due to TFs that are present in such a high abundance relative to their Kd that they effectively 
and specifically compete against nucleosome binding. Motif discovery analysis from the DHSs 
that we could not predict using ATI data also failed to identify motifs that correspond to 
previously identified pioneer factors that can access nucleosomal DNA (65, 66) (Extended Data 
Fig. 11), suggesting that such activities either do not rely on complex sequence motifs (66) or do 
not occur at so many positions that they would be detectable by motif mining.  

Taken together, our findings suggest that cellular transcriptional regulatory network may 
be much simpler than what has been previously thought, and that the solution to one of the 
largest remaining problems in the biological sciences – the determination of gene expression 
from DNA sequence – may be within reach in the near future.  
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Figures and Figure Legends 
  

 
 Figure 1 | Active transcription factor identification (ATI) assay.     

a, General description of the process. After incubation of proteins extracted from cells or tissues 
with double-stranded DNA oligonucleotides containing 40 bp random sequences, oligos bound 
to the proteins are separated from unbound DNA by native PAGE gel purification (EMSA; right) 
and amplified by PCR. The process is repeated three more times, resulting in enriched DNA 
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oligonucleotide pool that reflects activities of the TF proteins in the cell lysate. To identify the 
DNA-bound proteins, proteins from nuclear extract can be captured by a biotinylated 
oligonucleotide pool followed by mass spectrometry (left). 

b, Logos of motifs discovered using De novo motif discovery from ~ 10 million ATI sequence 
reads (“ATI_motifs”, based on Autoseed program(13)) and from top ~ 1000 DHS regions 
(“DHS_motifs”, based on MEME) in mouse ES cells. In the category of “ATI_motifs”, names of 
TFs are based on motif similarity to known motifs (see Extended Data Fig. 1 for details). Motifs 
with counts more than 10% of the maximum are considered “strong” motifs; for these motifs, the 
relative molecular counts are indicated in the right corner of corresponding motif. Asterisk 
indicates the only motif for which a TF that could bind to it but was not detected using the mass 
spectrometry analysis after capturing with biotinylated oligonucleotides (see Extended Data 
Table 1). In the category of “DHS_motifs”, top 10 motifs with the lowest E values are shown: 
four motifs that are similar with related ATI derived motifs are displayed at the same rows of the 
related ATI motifs; two non-repetitive motifs including the Znf-143 like motif and four repetitive 
motifs are displayed in the two separate boxes.  

c, Known motif enrichment analysis of ATI data from mouse ES cells. Known motifs are 
matched to the unselected and ATI enriched DNA sequences, and p-value (x-axis, log scale; due 
to the precision of calculation, many p-values are set to a minimum of 10-300) and fold change (y-
axis) are calculated for each known motif. The enrichment of motif matches is correlated with 
DNA binding activities of different TFs or TF dimers in the nucleus. Red dots represent TFs that 
have been previously known to be important for maintaining pluripotency in mouse ES cells.  
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Figure 2 | Deciphering most strongly active TFs in different cell types.  

a, Only few TFs are strongly active in mouse ES cells and tissues. Top: Histogram shows 
background corrected absolute molecular counts (12) (y-axis, Motif counts) of all discovered 
motifs at cycle 4; the highest count is normalized to 100%. Counts more than 10% of the 
maximum are indicated by red bars, and the corresponding motifs are considered as “strong” 
motifs; the relative activities of them are shown on the right corner of the corresponding 
sequence logos. Bottom: Sequence logos and the corresponding TFs identified by de novo motif 
discovery from the indicated tissues are shown (see Supplementary Table 8 for PWM models 
of all logos). Five motifs are found in all samples (common), whereas three motifs are found in 
many but not all samples (shared). Many motifs are also found in only one or two tissue or cell 
types (specific), including several factors known to contribute to lineage determination in the 
analyzed tissues (indicated by an asterisk). Examples of TFs known to be important for the 
specific tissues whose motifs were only identified using the known motif discovery pipeline are 
also indicated (specific weak signals; see Supplementary Table 6 for details). Some unknown 
motifs were also identified. The names of the TFs are based on the motifs (see Extended Data 
Fig. 2 and 12). In cases where multiple TFs are known to bind the same motif, the motif is 
assigned to the specific TF based on mRNA expression level and functional data from previous 
studies (see “References” in Extended Data Figure 12).  

b, Quantitative levels of DNA binding activities of the common TFs vary between the tissues. 
Bars indicate the activities of the five common TFs in the indicated tissues, based on increase of 
absolute molecular counts (12) of each motif in the sequencing data from the original library 
(cycle 0) to the last cycle (cycle 4). The activities of each TF are normalized by setting its 
highest activity in any of the tissues as 1. 

c, Relative protein levels of the 'specific' TFs as measured by TMT-labeled mass spectrometry 
from triplicate samples correlate partially with the corresponding TF activities measured by ATI. 
The relative abundance of each TF protein is normalized by setting the highest abundance as 1. 
p-values for significant differences are also given. 

d, Label free mass spectrometry detects many TFs that are strongly active (black font; y-axis, 
ATI motif counts), but also reveals high protein abundance (x-axis) of TFs that are not strongly 
active in mouse liver, including Dpf2, Irf3, Nfyb and Smad4 (red font). The MS analysis also 
fails to detect some TFs whose motifs are recovered by ATI (blue font; Rbpj, Dbp, Esrr, Nrf1). 
Note that the same motif detected in ATI could be correlated with several different TFs detected 
in the mass spectrometry.  
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Figure 3 | ATI analysis of TF activities in differentiating ES cells. 

a, Morphology of control mouse ES cells (left), and ES cells induced to differentiate towards 
neural (middle) and mesodermal (right) lineages, scale bar = 400 µm.  
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b, Comparison of the motifs detected by de novo motif discovery method in the ES cells and 
differentiated ES cells. Bars indicate the relative activities of the indicated TFs based on increase 
of the absolute molecular counts (12) of each motif between the first cycle and the fourth cycle 
of ATI. The activities of each TF are normalized by setting the highest activity in any of the 
three conditions to 1. 

c, Comparison of motif enrichment between the neural differentiated ES cells and the control ES 
cells. y-axis: p-value (log scale; due to the precision of calculation, many p-values are set to a 
minimum of 1 × 10-300). x-axis: fold change. The motifs with p-value less than 1 × 10-10 and 
change of more than +20 % or -20% are indicated by red or blue colors, respectively, with names 
of some motifs indicated. 

d, Comparison of motif enrichment between the mesodermal differentiated ES cells and the 
control ES cells. y-axis: p-value (log scale; due to the precision of calculation, many p-values are 
set to a minimum of 1 × 10-300). x-axis: fold change. 

 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 20, 2017. ; https://doi.org/10.1101/204743doi: bioRxiv preprint 

https://doi.org/10.1101/204743


 20

 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 20, 2017. ; https://doi.org/10.1101/204743doi: bioRxiv preprint 

https://doi.org/10.1101/204743


 21

Figure 4 | Strongly active TFs explain key features of transcription in yeast and in mouse 
cells.  

a, Comparison of motifs detected in ATI assay (S. cerevisiae) and the four motifs that can be 
used to computationally identify yeast transcript start positions (49).  

b, ATI enriched 10-mers from mouse ES cells are also enriched in DNase I hypersensitive sites 
from ES cells. In the dot plot, each row indicates one DHS region from the ES cells that is 
flanked with genomic sequences. Red dots indicate the boundaries of the DHS regions, blue dots 
indicate positions of top 2000 ATI-enriched 10-mers out of all 410 (~ 1 million) 10-mers. The 
graph on top shows the average of scores for each 10-mer at each position across the rows.  

c, Prediction of ES cell DHS regions by using the 10-mer data from the ATI assay. DHSs are 
sorted by position of the prediction call (yellow line). Black horizontal lines separate accurate 
DHS calls (middle) from calls more than 500 bp off the known DHS center that is located at the 
x-axis position 0 in all cases. The fraction of predictions within ± 500 bp of the center and the 
corresponding p-value for null model where position calls are randomly distributed are also 
indicated. Two example tracks for the DHS and ATI signals are also shown.  

d-e, Comparison between the genome-wide predictions of the ES cell DHS regions using 10-mer 
data from the ATI assay (d) and DHSs themselves (e). Precision-recall curves (red lines, 
cumulative precision) indicate that the ATI 10-mers can be used to predict the DHS positions 
(AUC 0.29), and that the performance of the ATI predictor is relatively close to a predictor that 
uses 10-mer data from the DHSs themselves (AUC 0.39). Yellow and black lines, respectively, 
show smoothed incremental precision and fraction of the genome selected at the indicated recall 
level. Gray shading indicates fraction of true DHSs in the genome (0.9%). 
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Figure 5 | Hierarchical gene regulatory network leads to a hierarchical gene expression 
profile.  

Compared with a complex gene regulatory network formed from equally active TFs, the 
hierarchical gene regulatory network formed using TFs that are either strongly (large circles) or 
weakly (small circles) active is simpler, and yields a gene expression pattern that is similar to the 
hierarchical gene expression patterns observed in real biological samples. The heatmap for 
complex expression pattern is generated from an artificial random matrix containing 20 “samples” 
and 2,000 “genes”; the heatmap for hierarchical expression pattern is generated from RNA-seq 
data from 20 different cell and tissues samples in the ENCODE project (50).   
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Methods 

 

Cell culture and protein extraction. Mouse embryonic stem cells (C57BL/6J; from KCTT 
center at Karolinska Institutet) were thawed and plated in ES1+LIF medium and cultured in 
2i+LIF medium without MEF feeder layers (first set, corresponding to Fig. 1 and Fig. 3) or on 
low density MEF feeder layers (277,000 irradiated MEFs per 60 mm dish, corresponding to Fig. 
2) until 70-80% confluence; cells were collected by trypsinization and MEF feeder cells were 
removed by means of differential adhesion method. The ES1+LIF (250 ml) medium includes: 
204 ml knockout DMEM (Gibco, Cat no. 10829-018), 37.5 ml FBS (ES qualified, Sigma, Cat 
no. F7524), 2.5 ml L-Glutamine (200 mM, Gibco, Cat no. 25030-024), 2.5 ml HEPES (1M, 
Gibco, Cat no. 15630-056), 2.5 ml Non-Essential Amino Acids (10 mM each, Gibco, Cat no. 
11140-035), 0.5 ml β-mercaptoethanol (50 mM, Thermo Scientific, Cat no. 31350-010), 0.25 ml 
Gentamicin (10 mg/ml, Thermo Scientific, Cat no. 15710-049) and 0.25 ml Leukemia inhibitory 
factor (1 × 106 U/ml, Millipore, Cat no. ESG1107). The 2i+LIF medium (50 ml) includes: 
38.785 ml knockout DMEM, 10 ml KnockOut™ Serum Replacement (Gibco, Cat no. 10828-
028), 0.5 ml L-Glutamine (200 mM, Gibco, Cat no. 25030-024), 0.5 ml Non-Essential Amino 
Acids (10 mM each), 0.1 ml β-mercaptoethanol (50 mM), 50 µl Gentamicin (10 mg/ml), 50 µl 
LIF (1 × 106 U/ml), 1 µM MEK inhibitor PD0325901 (Miltenyi Biotec, Cat no. 130-103-923), 2 
µM GSK-3α/β inhibitor BIO (Sigma, Cat no. B1686). Drosophila S2 cells were cultured in 
Schneider’s Drosophila Medium (Thermo Scientific, Cat no. R69007) at 27 °C without CO2 and 
collected by trypsinization. Collected cells were washed once with ice-cold PBS.  

For the differentiation of mouse ES cells to different lineages, the ES cells were thawed 
and plated in ES1+LIF medium and cultured in 2i+LIF medium without feeder layers, and then 
split to several plates for different treatments. The control ES cells were cultured in 2i+LIF 
medium without feeder layers; the ES cells for neural differentiation were cultured with 2i 
medium implemented with 2 μM retinoic acid for 2 days; the ES cells for mesodermal 
differentiation were first cultured with 2i+LIF medium for 16 hours, and then changed to the 
mesodermal medium for 30 hours. The mesodermal medium (206 ml) includes: 100 ml IMDM 
supplemented with GlutaMAX (Thermo Scientific, Cat no. 31980030), 100 ml Ham's F-12 
Nutrient Mix (Thermo Scientific, Cat no. 21765029), 2 ml N2 supplement (100×, Thermo 
Scientific, Cat no. 17502048), 4 ml B27 supplement (50×, Thermo Scientific, Cat no. 
17504044), 0.5 mM ascorbic acid (Sigma, Cat no. A92902), 4.5 × 10-4 M monothioglycerol 
(Sigma, Cat no. M1753), 5 ng/ml VEGF (Thermo Scientific, Cat no. PHC9391), 8 ng/ml Activin 
A (Thermo Scientific, Cat no. PHG9014) and 0.5 ng/ml BMP4 (Thermo Scientific, Cat no. 
PHC9534).  

The mouse ES cells were passaged every two or three days. The heart and spleen samples 
were collected and then cut into small pieces (~ 4 mm) prior to protein extraction; the liver and 
brain samples were lysed directly without cutting. The nuclear soluble proteins in cells or tissues 
were extracted by using the “Subcellular Protein Fractionation Kit for Tissues” (Life 
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Technologies, Cat no. 87790). Ice-cold CEB buffer (Life Technologies; 1 ml/100 mg tissue 
sample or 1 ml/1 million cells) complemented with protease inhibitors (Roche, Cat no. 
05892791001) and phosphatase inhibitors (Roche, Cat no. 04906845001) was added, followed 
by dounce homogenization. Homogenized samples were transferred through a strainer into a 
clean tube, and then centrifuged at 500 × g for 5 minutes. Subsequently the supernatant was 
discarded, and ice-cold MEB buffer (Life Technologies) with protease and phosphatase 
inhibitors was added to extract the membranes of cells, followed by centrifugation at 3000 × g 
for 5 min. The remaining nuclear pellet was lysed with detergent-free NEB buffer (Life 
Technologies) with inhibitors, vortexed for 15 seconds, and incubated at 4 °C for 45 minutes 
with gentle mixing. The supernatant was collected, supplemented with glycerol (5% v/v) and 
stored at -80 °C in aliquots for future use. All cells were tested regularly for Mycoplasma 
infection. All tissues were from one-year old C57BL/6J male mouse. 

 

Lentivirus production and generation of iHeps. The full length ORFs were cloned into 
pLenti6/V5 lentiviral expression vector using gateway recombination system. Viruses were 
generated by co-transfection of expression vectors with packaging vectors psPAX2 and pMD2.G 
(Addgene) into 293FT cells with Lipofectamine 2000 (Thermo Fisher Scientific). The following 
day the cells were replenished with fresh culture media and virus containing media was collected 
after 48 h. The virus was concentrated using Lenti-X concentrator (Clonetech). 

Human fibroblast cell line CCD-1112Sk was obtained from ATCC (#CRL 2429) and 
cultured in fibroblast media containing DMEM plus 10% fetal bovine serum with antibiotics. 
Early passage fibroblasts were seeded on day 0 and transduced on day 1 with cocktails of TFs as 
previously reported in studies from Morris et al. (67) (Foxa1, Hnf4a, Klf5), Huang et al. (39) 
(Foxa3, Hnf4a, Hnf1a), and Du et al. (38) (Hnf4a, Hnf1a, Hnf6, Atf5, Prox1, Cebpa) along with 
the nine TFs identified by ATI from mouse liver (Hnf1a, Hnf1b, Dbp, Mafg, Cebpa, Cebpb, 
Hnf4a, Hnf6/Onecut1, Esrra). The transduction was performed overnight in the presence of 8 
μg/ml polybrene in biological duplicates. The virus containing media was replaced the following 
morning with fresh fibroblast media containing β-mercaptoethanol. On day 3, the cells were 
changed to defined hepatocyte growth media (HCM, Lonza). On day 7, the cells were replated 
on type-I collagen coated plates in HCM media in several technical replicates and thereafter the 
HCM media was changed every second day. On day 29, the cells were passaged to new type-I 
collagen coated plates and cultured until 6 weeks after transduction.  

The cells were harvested from biological duplicates for each condition at several time 
points for total RNA isolation followed by cDNA synthesis by Transcriptor High Fidelity cDNA 
synthesis kit (Roche) and real-time PCR using SYBR green (Roche) for primers specific for 
GAPDH and albumin transcripts. The albumin Ct values were normalized to GAPDH and the 
mean values of sample replicates were shown for different conditions at indicated time points. 
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Active TF identification assay. Protein extract (4 µg) was incubated with 5 µl barcoded double 
stranded DNA oligos containing 40N random sequences (10 pmol, 900 ng), together with poly-
dIdC as a competitor (80 ng) in 1 × binding buffer (140 mM KCl, 5 mM NaCl, 1 mM K2HPO4, 2 
mM MgSO4, 100 µM EGTA and 3 µM ZnSO4, in 20 mM HEPES, pH = 7.5) at room temprature 
for 30 min. After incubation, electrophoretic mobility shift assay (EMSA) was carried out on ice 
for 70 min by using 6% DNA Retardation Gel (Invitrogen, Cat no. EC63652BOX) in 0.5 × TBE 
buffer (1 mM EDTA in 45 mM Tris-borate, pH 8.0) with 106 V constant voltage. The gel was 
then dyed with SYBR gold fluorescence dye for 10-20 min and washed with milliQ water. 
Fragments migrating above the 300 bp marker were collected and eluted in TE buffer (1mM 
EDTA in 10 mM Tris-Cl, pH 8.0), followed by incubation at 65 °C for 3 h. PCR was carried out 
using Phusion polymerase (Thermo Sci. Cat no. F530L) to amplify the eluted DNA oligos for 20 
cycles with 4 pmol of each primer using Bio-Rad S1000 Thermal Cycler with the following 
settings: initial denaturation 97 °C for 60 s, denaturation 97 °C for 15 s, annealing 65 °C for 15 s, 
elongation 72 °C for 40 s, final elongation 72 °C for 180 s. Additional 4 pmol of primers were 
added before the last cycle of PCR with 20 min elongation time to convert remaining ssDNA 
into dsDNA. The PCR product was then incubated again with the same extract and the cycle 
repeated. After 3 to 4 cycles of enrichment, PCR products bearing different barcodes were 
pooled and purified with QIAquick PCR Purification Kit (Qiagen, Cat no. 28106) for next 
generation sequencing (NGS) library preparation. NGS was carried out with HiSeq 2000 or 4000 
instruments (Illumina). The sequencing data from different cycles were compared with each 
other to determine the enrichment of specific motifs that relates to the overall DNA binding 
activities of specific transcription factors. 

 In principle, ATI analysis using 1 µg of the 40 bp random oligonucleotides (consisting of 
more than 6 × 1012 DNA ligands) can identify exact sequences that are approximately 20 bp long, 
or redundant sequences that consist of approx. 40 bits of information content. Most known TF 
motifs are well below this limit, with the exception of long arrays of zinc fingers found in 
repressor proteins that suppress mobile genetic elements (68, 69). Motifs for some of these 
proteins cannot be identified by ATI due to lack or extreme rarity of the potentially bound 
sequences in the initial library pool. To address this, we also run ATI using fragmented mouse 
genomic sequences. 

 

ATI assay using genomic fragments. The genomic DNA extracted from the mouse ES cells 
was sheared to make fragments of approx. 150 bp in size. Then, 270 ng of fragmented genomic 
DNA was incubated with 5 µg mouse ES cell nuclear extract together with 270 ng poly-dIdC in 
in 20 µl of 1 × binding buffer. After incubation, electrophoretic mobility shift assay (EMSA) was 
carried out on ice for 70 min using 6% DNA Retardation Gel (Invitrogen, Cat no. 
EC63652BOX) in 0.5 × TBE buffer (1 mM EDTA in 45 mM Tris-borate, pH 8.0) with 106 V 
constant voltage. Fragments above 450 bp (“bound”) and between 150 bp to 300 bp (“unbound”) 
were collected and prepared for Illumina sequencing using NEBNext Ultra™ DNA Library Prep 
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Kit for Illumina (NEB, Cat no. E7370S). Peak calling was carried out using MACS (70) program 
for bound and unbound DNA fragments (setting original sheared DNA as background). The 
peaks from both samples were separately compared with DHSs from mouse ES cells with 
BEDOPS program (71).  

 

Synthetic DNA library design. The synthetic DNA library design was based on our previous 
SELEX results (9, 20) that include monomeric and dimeric motifs for TFs. First, a dominating 
set of motifs, consisting of 921 position weight matrices (PWMs) (9, 20) was extracted from the 
motifs. Subsequently, the seeds of these motifs were reformatted to include only five different 
IUPAC nucleotide ambiguity codes, A, T, C, G and N. A set of sequences containing the 
consensus seed, and seeds with each individual defined base replaced by an N were then 
generated, leading to the total number of 13,847 sequences. These sequences were then flanked 
with eight different sets of background sequences in such a way that the total length of all 
sequences was 35 nucleotides. The background sequences were derived from the human genome 
that did not contain TF binding sites (based on ChIP-seq data), exons, or high affinity matches to 
any of the 921 PWMs. Finally, standard Illumina adapters and 3 undefined bases were added to 
each sequence to generate unique molecular identifiers (UMIs). The DNA library, consisting of 
single stranded DNA was then amplified by PCR to make double stranded DNA for experiment.  

 

ATI data analysis. Two methods were utilized to identify the most important transcription 
factors in different cell types. The de novo motif discovery method was based on the “Autoseed” 
program (see Nitta et al., 2015; Ref. (13)). In Autoseed, seed sequences representing 
subsequences whose counts were higher than any other closely related subsequence (using the 
Huddinge distance metric (13)) were used as seeds. This method is based on direct counts of 
subsequences (enrichment relative to random sequence) and not on direct comparison between 
selected and unselected 10-mer sequences, as the latter approach would increase noise due to the 
low counts of all 10-mer sequences in the unselected library. The method can identify seeds that 
are separated by a Hamming distance of two or more. Up to 200 highest count local maxima 10 
bp sequences (with or without a gap at the center) were used as seeds to generate initial PWM 
motifs, which were then investigated manually to remove low complexity motifs and motifs that 
were highly similar. Background correction was performed by using the subtractive method 
described in Jolma et al. (Ref. (72)). To facilitate comparison of similar motifs, logos were 
generated in such a way that the frequency of each base was directly proportional to the height of 
the corresponding letter. Counts of motifs were assigned based on number of reads that match 
the seeds in cycle 4 minus cycle 0. As > 93% of the reads were unique in each case, all reads 
were used to estimate the absolute number of molecular events. 

Known motif enrichment analysis was used to study the enrichment of known motifs. 
First the number of reads for known motifs were counted by MOODS program (73, 74) before 
and after enrichment based on a particular cutoff (p-value ≤ 0.0001, Score > 11). Subsequently, 
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the enrichment and p-value (Winflat (58)) were calculated for each motif; the sensitivity to detect 
differences using this method was very high, and it could detect highly statistically significant 
differences whose fold-changes were probably too low to be biologically meaningful. Due to this 
reason, we reported also the fold-changes in each case. 

To analyze the combinatorial binding of TFs in mouse ES cells, seven “strong” motifs 
(more than 10% of the highest activity as mentioned in Fig. 2a) were taken into account. Each 
read in the sequencing data was analyzed for the presence of perfect matches to each of the seven 
strong motif seeds and the total number of all the seed matches in each read were counted. For 
symmetric motifs, only one strand was taken into account; for asymmetric motifs, both strands 
were analyzed. This analysis revealed that after four cycles, ~5% of reads contained a seed 
match, and only 0.05% contained matches to more than one seed (Extended Data Figure 2), 
indicating that in the early rounds of ATI, the motifs cannot effectively compete against each 
other. Thus, the presence of only few strongly active motifs in the ATI data cannot be due to 
over-enrichment of one motif that competes out the other motifs during the enrichment cycles. 

 

DHS analysis. The DHSs data for different mouse tissues and ES cells were obtained from 
ENCODE project (50), including 14 replicates for mouse liver, 7 replicates for mouse brain, 2 
replicates for mouse heart, spleen and ES cells. First the BroadPeak data was downloaded, and 
top 5,000 regions for each replicate were selected based on Signal Values. For tissues with two 
replicates, the intersected regions were used for downstream analysis, resulting in around 4,000 
DHSs for each tissue; for liver, DHSs overlapped by more than 8 replicates were selected to 
reach similar size of data compared with the other tissues; for brain, DHSs overlapped by more 
than 4 replicates were selected. For each tissue, the frequencies of all 10-mers were counted in 
the initial ATI library, and in each ATI enrichment cycle; the fold change for each 10-mer was 
calculated by comparing the frequencies of it in the last cycle (Cycle4) and first cycle (Cycle1). 
After that, the DHSs and the 10-mer results of the same tissues were analyzed. First, each DHS 
region was flanked with adjacent genomic sequences to make a 10 kb region, resulting in ~ 4,000 
regions with the length of 10 kb for each tissue and cell type, all these 10 kb regions were then 
aligned by using the middle of the DHS as center position. A score for each position of the 10 kb 
sequences was then calculated based on the log2 fold change of the ATI 10-mers. The histogram 
in Fig. 4b was calculated from the average of the scores for all DHSs. For visualization (Fig. 
4b), the position containing a 10-mer that was ranked at 2000 or higher in enrichment based on 
ATI was indicated by a blue dot.  

The extended 10 kb regions of ES cells were used in the ATI-based prediction of DHSs. 
All 10-mers enriched in ATI were scored 1, with the remaining scored 0. The scoring of the 10-
mers was optimized by trying different cutoffs using a separate training set (setting separately 
top 0.1%, top 0.5%, top 1%, top 5%, top 10%, top 20%, top 40%, top 60% and top 100% (all) of 
the 10-mers as score 1 and the remaining 10-mers as score 0, 100% of 10-mers is considered as a 
negative control). The 10 kb regions were divided to 50 bp bins, and each bin was then assigned 
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with the mean score of all 10-mers inside the bin. The DHS position was then called based on 
identification of the highest score in a sliding window of 17 bins. The optimal width of the 
smoothing window was determined by using half of the 10 kb regions as a training set; only the 
test set data is shown on Fig. 4.  

 

Precision-recall analysis. For prediction of DHS regions genome-wide, DHS regions 
representing the intersection of the two top 30,000 mouse ES cell DHS sequences were selected 
and for each DHS region, 10 kb control sequences (non-DHS regions) were also taken from both 
ends of 50 kb windows centered by it. A score was assigned to each 10-mer as the Log2 fold 
change by comparing the counts of the 10-mer in DHS regions and the control regions derived 
from chromosomes 12 to 18. For the ATI data, the 10-mer scores were calculated as mentioned 
in “DHS analysis”. The scores were kept for a fraction of the most enriched 10-mers, with the 
remaining 10-mers assigned a score of 0. To plot the precision recall curves, a score was 
assigned to each non-overlapping 1 kb window by adding up the scores of all 10-mers inside the 
window. Each window was labeled as “DHS” if more than 500 bp of it was covered by a DHS, 
and “non-DHS” otherwise. Then the precision-recall curve was plotted by predicting the labels 
of all the windows with their scores using varied thresholds. For the final prediction plots, the 
fraction of non-zero 10-mer scores was identified by optimizing the area under the curve (AUC) 
of a precision recall curve using chromosome 11 and 19 DHS data, and the DHS data from the 
remaining chromosomes was used as ground truth for the prediction.  

 

Enrichment of DNA-binding proteins using biotinylated ATI ligands. The proteins in the 
nuclear extract were pulled down by biotinylated DNA as previously reported (75). First, DNA 
oligonucleotides were amplified with biotinylated primers (modified with Biotin-TEG) and 
purified to remove extra primers. Subsequently, 2 µg of biotinylated dsDNA were incubated with 
4 µl of high-performance streptavidin Sepharose suspension (GE Healthcare, 17511301) in DNA 
binding buffer (10 mM HEPES, pH 8.0, 1 M NaCl, 10 mM EDTA, and 0.05% NP40) for 1 h at 
room temperature by shaking. Beads were then washed twice with DNA binding buffer and 
twice with protein binding buffer (140 mM KCl, 5 mM NaCl, 1 mM K2HPO4, 2 mM MgSO4, 
100 µM EGTA and 3 µM ZnSO4, in 20 mM HEPES, pH = 7.5). Nuclear extract from feeder-free 
mouse ES cells (200 µg in 200 µl) supplemented with 2 µg poly-dIdC competitor DNA and 
EDTA-free complete protease inhibitors (Sigma, Cat no. 000000004693159001) was added to 
the beads and incubated for 1.5 hours with shaking at room temperature. The beads were then 
washed with ice-cold low stringency buffer (10 mM Tris-Cl, pH 7.5, 4% glycerol, 500 μM 
EDTA, 50 mM NaCl) for 10 times and proceeded to on-beads digestion for MS (75).  

 

MS sample preparation. For on-beads digestion of captured DNA-binding proteins from the 
nuclear extract, washed beads were incubated in 50 μl of 25 mM ammonium bicarbonate and 1 
mM DTT for 1h in 37 °C. Iodoacetic acid (IAA) was then added to samples to a final 
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concentration of 5 mM and samples were incubated at room temperature in the dark for 10 min. 
The IAA was then quenched by addition of DTT to a final concentration of 5 mM. Protein 
samples were then digested, first by using Lys-C protease (0.2 μg/sample, Thermo Scientific, Cat 
no. 90051) overnight at 37 °C. In the second digestion step trypsin protease (0.1 μg/sample, 
Thermo Scientific, Cat no. 90057) was added and samples were incubated overnight at 37 °C, 
and then lyophilized using a speedvac. 

For analysis of nuclear proteins, nuclear extracts were prepared as described above and 
protein concentration was determined (Bio-Rad DC assay). For digestion using filter aided 
sample prep (FASP), 250 µg of protein sample was mixed with 1mM DTT, 8 M urea, 25 mM 
HEPES pH 7.6 in a centrifugation filtering unit with a 10 kDa cut-off (Nanosep® Centrifugal 
Devices with Omega™ Membrane, 10 k). The samples were then centrifuged for 15 min, 
14.000g, followed by another addition of the 8 M urea buffer and centrifugation. Proteins were 
alkylated by 25 mM IAA, in 8 M urea, 25 mM HEPES pH 7.6 for 10 min, centrifuged, followed 
by two more additions and centrifugations with 4 M urea, 25 mM HEPES pH 7.6. Protein 
samples were digested on the filter, first by using Lys-C (Thermo Scientific) for 3h in 37 °C, 
enzyme:protein ratio 1:50. In the second digestion step trypsin (Thermo Scientific), 
enzyme:protein ratio 1:50 in 50 mM HEPES was added and incubated overnight at 37 °C. After 
digestion, the filter units were centrifuged for 15 min, 14 000 x g, followed by another 
centrifugation with 50 uL MilliQ water. Peptides were collected and the peptide concentration 
determined (Bio-Rad DC assay). For the label-free experiment, peptide samples were cleaned-up 
individually by solid phase extraction (SPE strata-X-C, Phenomenex) and dried in a SpeedVac. 

For the relative quantification (TMT) experiment, peptide samples were pH adjusted 
using TEAB buffer with pH 8.5 (30 mM final conc.). The resulting peptide mixtures were 
labelled with isobaric TMT-tags (Thermo Scientific). High labelling efficiency was verified by 
LC-MS/MS before pooling of samples. Sample clean-up was performed by strong cation 
exchange solid phase extraction (SPE strata-X-C, Phenomenex). Purified samples were dried in a 
SpeedVac. 

For peptide prefractionation by high resolution isoelectric focusing (42), 500 μg of the 
labeled peptide pool was dissolved in 250 μl of rehydration solution (8 M urea, 1% Pharmalyte 
for pH range 3-10 from GE Healthcare), which was then used to re-swell an immobilized pH 
gradient (IPG) gel-strip (GE Healthcare) pH 3-10. IEF was then run on an Ettan IPGphor (GE 
Healthcare) until at least 150 kVh (~1 day running time). After focusing was complete, a well-
former with 72 wells was applied onto the strip, and liquid-handling robotics (GE Healthcare 
prototype) added MilliQ water and, after 3x30 min incubation/transfer cycles, transferred the 72 
fractions into a microtiter plate (96 wells, V-bottom, Corning cat. #3894), which was then dried 
in a SpeedVac. 

 

Mass spectrometry. Label-free MS of peptides from captured DNA-binding proteins was 
performed using a hybrid Q-Exactive mass spectrometer (Thermo Scientific). Each sample was 
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resuspended in 10 μl of solvent A (95% water, 5% DMSO, 0.1% formic acid) of which 3 μl was 
injected. Peptides were trapped on an Acclaim PepMap nanotrap column (C18, 3 µm, 100 Å, 75 
µm x 20 mm), and separated on an Acclaim PepMap RSLC column (C18, 2 µm, 100 Å, 75 µm x 
50 cm, Thermo Scientific). Peptides were separated using a gradient of A (5% DMSO, 0.1% FA) 
and B (90% ACN, 5% DMSO, 0.1% FA), ranging from 6 % to 37 % B in 240 min with a flow of 
0.25 µl/min.  Q Exactive (QE) was operated in a data-dependent manner, performing FTMS 
survey scans at 70 000 resolution (and mass range 300-1700 m/z) followed by MS/MS (35 000 
resolution) of the top 5 ions using higher energy collision dissociation (HCD) at 30% normalized 
collision energy. Precursors were isolated with a 2 m/z window. Automatic gain control (AGC) 
targets were 1e6 for MS1 and 1e5 for MS2. Maximum injection times were 100 ms for MS1 and 
150 ms for MS2. The entire duty cycle lasted ~1s. Dynamic exclusion was used with 60 s 
duration. Precursors with unassigned charge state or charge state 1 were excluded. An underfill 
ratio of 1% was used. 

LC-MS of TMT labeled peptides from nuclear extracts was also performed using a hybrid Q-
Exactive mass spectrometer (Thermo Scientific). For each LC-MS/MS run, the auto sampler 
(Dionex UltiMate™ 3000 RSLCnano System) dispensed 15 μl of solvent A (95% water, 5% 
DMSO, 0.1% formic acid) to the well in the 96 well plate, mixed, and 7 μl proceeded to 
injection. Peptides were trapped on an Acclaim PepMap nanotrap column (C18, 3 µm, 100 Å, 75 
µm x 20 mm), and separated on an Acclaim PepMap RSLC column (C18, 2 µm, 100Å, 75 µm x 
50 cm, Thermo Scientific). Peptides were separated using a gradient of A (5% DMSO, 0.1% FA) 
and B (90% ACN, 5% DMSO, 0.1% FA), ranging from 6 % to 37 % B in 50 min with a flow of 
0.25 µl/min. QE was operated as described above. 

Label-free MS of proteins in the nuclear extract was performed using Orbitrap Fusion™ 
Tribrid mass spectrometer (Thermo Scientific). Before the analysis, peptides were separated 
using an Ultimate 3000 RSLCnano system. Samples were trapped on an Acclaim PepMap 
nanotrap column (C18, 3 µm, 100Å, 75 µm × 20 mm), and separated on an Acclaim PepMap 
RSLC column (C18, 2 µm, 100Å, 75 µm × 50 cm), (Thermo Scientific). Peptides were separated 
using a gradient of A (5% DMSO, 0.1% FA) and B (90% ACN, 5% DMSO, 0.1% FA), ranging 
from 6 % to 37 % B in 240 min with a flow of 0.25 µl/min. The Orbitrap Fusion was operated in 
a data dependent manner, selecting top 10 precursors for sequential fragmentation by HCD and 
CID. The survey scan was performed in the orbitrap at 120,000 resolution from 350-1550 m/z, 
with a max injection time of 50 ms and target of 2 × 105 ions. Precursors were isolated by the 
quadrupole with a 1.4 m/z window and a 0.5 m/z offset, and put on the exclusion list for 30s. 
Charge states between 2 and 7 were considered for precursor selection. For generation of HCD 
fragmentation spectra, a max ion injection time of 100 ms and AGC target of 1 × 105 were used 
before fragmentation at 37% normalized collision energy, and analysis in the orbitrap at 30,000 
resolution. For generation of CID fragmentation spectra, a max ion injection time of 100 ms and 
AGC target of 1 × 104 were used before fragmentation at 35% activation energy, activation Q 
0.25, and analysis in the iontrap, using normal scan range and rapid scan rate. 
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Peptide and protein identification.  For the label free capture experiment, MS raw files were 
searched using Sequest-percolator under the software platform Proteome Discoverer 1.4 
(Thermo Scientific) against Uniprot mouse database (version 2016_10,canonical and isoforms, 
85832 protein entries) and filtered to a 1% FDR cut off (peptide spectrum match level). A 
maximum of 2 missed cleavages were used together with: carbamidomethylation (C) set as fixed 
modification, and oxidation (M) as variable modification. We used a precursor ion mass 
tolerance of 10 ppm, and a product ion mass tolerance of 0.02 Da for HCD spectra. For 
calculation of precursor ion area, a mass precision of 2 ppm between scans was used, and the 
average area of the top 3 PSMs for each protein group was used to calculate protein area. Only 
unique peptides in the data set were used for quantification. In total the database search resulted 
in the identification of 3889 proteins (Supplementary Table 3). 

For the nuclear extracts analysis, MS raw files were searched using Sequest-percolator under the 
software platform Proteome Discoverer 1.4 (Thermo Scientific) against Uniprot mouse reference 
database (version 2014_03, canonical only, 43386 protein entries) and filtered to a 1% FDR cut 
off (peptide spectrum match level). For TMT experiments, a maximum of 2 missed cleavages 
were used together with: carbamidomethylation (C), TMT/ 10-plex (K, N-term) set as fixed 
modifications, and oxidation (M), as variable modification. We used a precursor ion mass 
tolerance of 10 ppm, and a product ion mass tolerance of 0.02 Da for HCD spectra. 
Quantification of reporter ions was done by Proteome Discoverer on HCD-FTMS tandem mass 
spectra using an integration window tolerance of 10ppm. Only unique peptides in the data set 
were used for quantification. In total the database search resulted in the identification and 
quantification of 8578 proteins in the TMT experiment (Supplementary Table 9). 

For label free analysis, a maximum of 1 missed cleavage were used together with: 
carbamidomethylation (C), set as fixed modifications, and oxidation (M), as variable. We used a 
precursor ion mass tolerance of 12 ppm, and a product ion mass tolerance of 0.02 Da for HCD 
spectra and 0.36 for CID spectra. For calculation of precursor ion area, a mass precision of 3 
ppm between scans were used, and the average area of the top 3 PSMs for each protein group 
were used to calculate protein area. In total the database search resulted in the identification of 
6239 proteins in the label free experiment (Supplementary Table 10). 
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Extended Data Figures  

 

 
 

Extended Data Figure 1 | Assignment of motifs detected in ATI assay to the TF families or 
candidate TFs based on reference TF binding motifs in ES cells.  

The motifs detected in ATI assay by using the mouse ES cells extract are compared with 
reference motifs detected by using bacterial expressed pure proteins using HT-SELEX (9). The 
reference binding motif of TF Rbpj (asterisk) is from T. Tun et al. (21), 1994; the binding motif 
of TF Nfy (asterisk) is from the HOCOMOCO database (76). The TF families or specific TFs are 
proposed based on the comparison of the motifs.  
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Extended Data Figure 2 | Analysis of combinatorial TF binding in mouse ES cells.  
The pie charts indicate the percentage of reads containing different numbers (counts) of seed 
matches to the strong motifs found in mouse ES cells. Top: matches in the original input DNA 
pool (“Cycle 0”). Bottom: matches in the ATI-enriched DNA pool (“Cycle 4”).  
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Extended Data Figure 3 | ATI assay by using an array-synthesized DNA library. 

The heatmap indicates the enrichment rank of 921 motifs included in the array-synthesized DNA 
library. Enrichment was determined by comparing cycle 3 and input libraries. The heatmap is 
sorted based on the sum of the ranks across different tissues. The color indicates rank in the 
individual sample. The top 25 motifs are shown together with their ranks in different cell or 
tissue types. The fold changes of each motif in the different cell or tissue types are shown in 
Supplementary Table 4.  
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Extended Data Figure 4 | Comparison of “Common” and “Shared” motifs detected in ATI 
assay using different mouse cells and tissues and known reference motifs.  

“Common” and “Shared” motifs that are found in different mouse cell and tissue types are 
compared with corresponding motifs detected by using bacterially expressed pure proteins using 
HT-SELEX (9). There is one exception that is not in the SELEX database and corresponds to 
motif of TF Rbpj; the reference motif of Rbpj (asterisk) is from T. Tun et al. (21), 1994. 
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Extended Data Figure 5 | Quantitative comparison of activities of the common TFs for 
different cell and tissue types. 

The activities of all five “common” TFs detected in all tested samples are compared based on the 
absolute molecular counts (12) of each motif in the sequencing data. Data from the last cycle 
(cycle 4) are used as signals, and data from the previous cycle (cycle 3) are used as background 
to determine enrichment in one single ATI cycle. For each motif, the activities are normalized by 
setting its highest activity in any of the tissues as 1. 
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Extended Data Figure 6 | See next page for caption. 
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Extended Data Figure 6 | Reprogramming of human induced hepatocytes confirms the 
results of ATI assay. 

a, Reprogramming timeline for direct conversion of human fibroblasts to induced hepatocytes 
(iHep).  

b, Bright field images of iHep colonies from human fibroblasts after lentiviral transduction of 
transcription factors (TF) combinations previously reported in Morris et al. (67) (Set_a; Foxa1, 
Hnf4a, Klf5), Du et al. (38) (Set_b; Hnf4a, Hnf1a, Hnf6, Atf5, Prox1, Cebpa), Huang et al. (39) 
(Set_c; Foxa3, Hnf4a, Hnf1a) and factors identified by ATI in mouse liver (Set_ATI; Hnf1a, 
Hnf1b, Dbp, Mafg, Cebpa, Cebpb, Hnf4a, Hnf6, Esrra).  

c, Expression levels of the liver-specific marker gene Albumin in iHep cells normalized to 
GAPDH levels by qRT-PCR from two biological replicates using previously reported TF 
cocktails and ATI-identified TF combinations. Bars indicate standard deviation of biological 
replicates (n=2).  
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Extended Data Figure 7 | See next page for caption. 
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Extended data Figure 7 | ATI assay from multiple species reveals deep conservation of TF 
activity.  

ATI analysis of four different species indicates that the assay can identify TF activities from a 
wide variety of organisms. The names of the TF that bind to motifs that are similar to those 
identified using ATI are shown above the sequence logos. Histograms on top show background 
corrected absolute molecular counts (12) (y-axis, Motif counts) of all discovered motifs at 
enriched ATI cycle; for each sample the highest count is normalized to 100%. Counts more than 
10% of the maximum are indicated by red bars; the relative activities of them are shown on the 
right corner of the corresponding sequence logos. Note that many TFs have similar specificities 
between the species, and that out of the six motifs that are active in most mouse tissues, two 
(Rbpj/Cbf11 and Tfe/Cbf1) are also highly active in the yeast S.pombe, and two (CST6/Creb and 
Tfe/Cbf1) are highly active in S.cerevisiae. Note also that several motifs that could not be 
assigned to a known TF based on the literature were detected in the species using the indicated 
seed sequences.  
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Extended Data Figure 8 | See next page for caption. 
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Extended Data Figure 8 | Enrichment of ATI 10-mers in DNase I hypersensitive sites from 
different mouse tissues.  

a, ATI enriched 10-mers from mouse tissues are also enriched in DNase I hypersensitive sites 
from the corresponding tissues. The dot plots show matches to enriched ATI 10-mers in DNase I 
hypersensitive sites from the indicated mouse tissues. In each dot plot, each row indicates one 
DHS region from the relative mouse tissues that is flanked with its genomic sequences. Red dots 
indicate the boundaries of the DHS regions, blue dots indicate positions of top 2000 ATI-
enriched 10-mers out of all 410 (~ 1 million) 10-mers. The graph on top shows the average of 
scores for each 10-mer at each position across the rows. 

b, Prediction of DHS regions by using the 10-mer data from the ATI assay. DHSs are sorted by 
position of the prediction call (yellow line). Black horizontal lines separate accurate DHS calls 
(middle) from calls more than 500 bp off the known DHS center that is located at the x-axis 
position 0 in all cases. The fraction of predictions within ± 500 bp of the center and the 
corresponding p-value for null model where position calls are randomly distributed are also 
indicated. For each tissue, the scoring of the 10-mers was optimized by trying different cutoffs 
using a separate training set (setting separately top 0.1%, top 0.5%, top 1%, top 5%, top 10%, top 
20%, top 40%, top 60% and top 100% of the 10-mers as score 1 and the remaining 10-mers as 
score 0, top 100% 10-mers is considered as negative control).   
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Extended Data Figure 9 | See next page for caption. 
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Extended Data Figure 9 | Comparison of subsequences enriched in ATI and in DHS regions 
from mouse ES cells. 

a, The enrichment of ATI derived motifs (red dots; based on “Autoseed” program) or DHS 
derived motifs (black dots; based on MEME) between ATI cycles 4 and 0, and between DHS 
and non-DHS sequences from mES cells is shown. The motifs were matched using the MOODS 
program. X-axis indicates the log2 fold change of motif counts in DHS regions compared with 
non-DHS regions; y-axis indicates log2 fold change of motif counts in ATI enriched DNA pool 
(Cycle 4) compared with original pool (Cycle 0). The Znf143-like motif is shown as an example 
of a motif that is enriched within DHS regions but not in ATI.  

b, The enrichment of all 10-mer sequences in the ATI data (y-axis) and DHS data (x-axis) from 
ES cells is shown. X-axis indicates the log2 fold change of 10-mer counts in DHS regions 
compared with non-DHS regions; y-axis indicates fold change of 10-mer counts in ATI enriched 
DNA pool (Cycle 4) compared with original pool (Cycle 0). Coloring of the dots indicates 10-
mers that are similar to the motifs shown on the right; black dots indicate the 10-mers that are not 
similar to any motifs. One such 10-mer sequence (“CGGCGGCGGC”) is shown as an example; 
it displays high enrichment in DHS regions but no enrichment in ATI.  
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Extended Data Figure 10 | ATI assay by using genomic DNA in mouse ES cells. 

a, De novo motif mining of genomic fragments bound by nuclear extract from mouse ES cells. 
Top twelve motifs are shown with the corresponding E-values. Motifs 4, 5, 8 and 10 were similar 
to motifs detected in the ATI assay. 

b, Overlap between the 25,261 DHS regions from mES cells (DHSs) and the peaks called from 
genomic fragments bound by nuclear extract (ATI peaks) or the peaks called from genomic 
fragments not bound by nuclear extract (Control peaks). The peak analyzed is considered 
overlapping with DHSs if not less than the indicated percentage or length of the peak overlaps 
with the DHS regions. The numbers in corresponding areas indicate numbers of DHSs or peaks. 
The right panel shows three specific loci exemplifying the non-overlapped DHS regions without 
ATI peaks (top), DHS and ATI overlapped regions (middle) and non-overlapped ATI peaks 
(bottom).   
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Extended Data Figure 11 | See next page for caption. 
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Extended Data Figure 11 | Analysis of features of different categories of DHS fragments    

a-b, Comparison of features between DHS regions that are easy to predict (tritile 1), intermediate 
(tritile 2) and hard to predict (tritile 3) using DHS (a) or ATI (b) 10-mers. The DHS fragments 
are 1 kb non-overlapping “DHS” fragments used for the final prediction in the Precision-recall 
analysis. Top: prediction score (sum of the scores of all 10-mers inside the window). Middle: 
distance from TSS. Bottom: percentage of CpG dinucleotides. Note that hard to predict DHSs 
using ATI and DHS 10-mer data tend to be farther from a TSS and have a low CpG content. 

c, The correlation between the ATI and DHS total prediction scores for all the 1 kb DHS 
fragments used for the final prediction in the Precision-recall analysis. Each dot represents one 
fragment and the color indicates the percentage of CpG dinucleotides within the fragment.  

d, De novo motif mining of four different types of DHS regions from mouse ES cells. The 
different types of DHS regions are generated from intersection of different categories of DHS 
fragments: easy to be predicted with both ATI and DHS 10-mer data (intersection of tritile 1 of 
DHS-based prediction in a and tritile 1 of ATI-based prediction in b, “Easy to predict”), easy to 
be predicted with ATI 10-mer data but hard to be predicted with DHS data (intersection of tritile 
3 of DHS-based prediction in a and tritile 1 of ATI-based prediction in b, “ATI_predicted”), 
easy to be predicted with DHS 10-mer data hard to be predicted with ATI data (intersection of 
tritile 1 of DHS-based prediction in a and tritile 3 of ATI-based prediction in b, 
“DHS_predicted”) and hard to be predicted with both types of data (intersection of tritile 3 of 
DHS-based prediction in a and tritile 3 of ATI-based prediction in b, “Hard to predict”). The 
“known motifs” indicate the motifs can be assigned to the known motifs based on current 
knowledge. All known motifs with E-value less than 0.01, and top five unknown/repetitive 
motifs are shown. 
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Extended Data Figure 12 | See next page for caption. 
Extended Data Figure 12 | Assignment of motifs detected in ATI assay to specific TFs, 
based on reference TF motifs and mRNA expression levels in the relevant tissues.  

Wei et al 2016 Extended Data Figure 12
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The motifs detected in ATI assay by using different mouse cell and tissue samples are compared 
with the similar motifs detected by using bacterial expressed pure proteins using HT-SELEX (9). 
The binding motif of TF Nfy (asterisk) is from the HOCOMOCO database (76).  For TFs having 
the unique binding motifs, the results are validated by the mRNA expression of those TFs; for 
TFs sharing the same binding motifs, the specific members are proposed based on the mRNA 
expression levels (50, 77) and functional data from previous studies.   
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Extended Data Table 1 | Comparison of the ATI results and DNA-binding MS results from 
nuclear extract of mouse ES cells  
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Comparison between motifs from ATI and SELEX, together with mass spectrometry data for 
TFs that bind to the indicated motifs is shown. Columns indicate: 

Motif_ATI: The motif detected in feeder free mouse ES cells using ATI 

Motif_SELEX: The corresponding motif detected by using bacterially expressed pure proteins 
using HT-SELEX (9). There is one exception that is not in the SELEX database and corresponds 
to motif of TF Rbpj; the reference motif of Rbpj (asterisk) is from Tun et al. (21) 

TF detected: The exact TF detected in the DNA-binding MS which can be assigned to the 
corresponding motif detected with ATI 

TF family: Specific TF family the detected TF belongs to 

Aver_area(c0): The average protein area in the triplicate samples pulled down with 40N random 
ds DNA oligos which are used as the background oligos in ATI 

Aver_area(c4): The average protein area in the triplicate samples pulled down with ds DNA 
oligos from the final enrichment cycle (4th cycle) in the ATI assay for nuclear extract from 
mouse ES cells  

Aver_area(p0): The average protein area in the triplicate samples pulled down with synthetic 
DNA library which contains high concentration of TF binding motifs 

Ratio(c4/c0): The ratio of the Aver_area(c4) to Aver_area(c0) for each TF indicating the 
enrichment of the TF by using DNA oligos from the final cycle 

p value(c4_c0): T-test p value for the null hypothesis that the difference in the amount of the TF 
pulled down by DNA oligos from the final enrichment cycle and by background oligos is due to 
random variation. 

“NA” for TF Srf means that the protein Srf was not detected in the mass spectrometry.  
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