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Figure 3. MISE comparison for various prior parameter (α) values. (a) MISE

values (star mark) and their 95% confidence interval (vertical bar) for IG model. (b)

MISE values (star mark) and their 95% confidence interval (vertical bar) for IIG model.

(c) Average MISE values across 2 models and 3 rate functions. Optimal parameter

αopt = 4 was selected as it yielded the smallest average MISE.

duration (2 s). From 100 repetitions and 19 variation of parameter values (α =

{1, 1.5, 2, · · · , 10}), we computed the MISE values along with their 95% confidence

interval from these 6 scenarios (2 models and 3 rate functions). The MISE values

and their confidence interval for IG and IIG models are shown in Figs 3a and 3b. In IG

model, α value that resulted in smallest MISE for chirp, sine and sawtooth rate function

are 4, 3 and 6, respectively. In IIG model, α value associated with the smallest MISE

for chirp, sine and sawtooth rate function are 4.5, 3 and 5.5, respectively. To find the

optimal parameter, we computed average MISE values across 6 scenarios. The value of

α that corresponds to the smallest average MISE was then determined as the optimal

parameter. According to the results as shown in Fig 3c, we selected 4 as the optimal

parameter (αopt) and used this during the testing phase.

3.3. Comparison with the established methods

We evaluated and compared the performance of the proposed method (BAKS) with

the established methods which include optimized kernel smoother (OKS) [12], variable

kernel smoother (VKS) [12], local polynomial fit (Locfit) [13] and Bayesian adaptive

regression splines (BARS) [14]. The performances were quantified using MISE as

expressed in Eq (16). We did not include the the histogram (PSTH) method in

the comparison as this cannot produce a smooth estimate under single-trial case.

Shimazaki and Shinomoto demonstrated that even if the number of trials is increased,

the performance of PSTH is far outperformed by OKS, VKS, Locfit, and BARS [12].

The two kernel smoothing methods used in the presented work, OKS and VKS, were

developed by Shimazaki and Shinomoto [12]. In the OKS method, the bandwidth is fixed

for the whole duration and automatically selected based on global MISE minimization

principle. Unlike OKS, the VKS method employs variable bandwidth and this

bandwidth is automatically determined by minimizing local MISE function. Thus, both
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OKS and VKS methods do not require manual user intervention in selecting optimal

bandwidth parameter. The Matlab codes for OKS and VKS methods can be obtained

from the author’s website (http://www.neuralengine.org/res/kernel.html).

The Locfit is part of Chronux analysis software that at the time of this study

can be downloaded from http://chronux.org/. This method estimates the firing

rate by maximizing local log-likelihood where the log-density function is approximated

by local polynomial. The Locfit has some parameters such as degree of polynomial,

weight function, and bandwidth. However, bandwidth is considered as the most crucial

parameter that affects the accuracy of estimation [13]. Therefore, in Locfit setting, we

concerned more on the bandwidth selection than other parameters. We used nearest

neighbor bandwidth so that the local neighborhood always contains sufficient data

(spikes). This can reduce data sparsity problem that may arise in real neural data. The

nearest neighbor bandwidth parameter was determined by training procedure, while the

parameter of degree of polynomial and weight function were set to the default values

which are two and tricube (‘tcub’), respectively. The training procedure in Locfit was

similar to that of α parameter in our proposed method. We performed MISE comparison

from three underlying rate processes (chirp, sine, and sawtooth) for nearest neighbor

bandwidth between 0.2 to 0.8 with increment 0.1. We chose 0.4 as the optimal parameter

value since the average MISE associated with this value was the smallest among others.

The value 0.4 means that the Locfit uses 40% of the total data in each estimation point.

The BARS method estimates the firing rate by using cubic spline basis function

with free parameters on the number and location of knots [14]. The optimal knot

configurations is determined by a fully Bayesian approach with reversible-jump Markov

chain Monte Carlo (MCMC) engine and locality heuristic. The BARS takes spike

count within bin interval (histogram) centered on estimation time of interest. In

our study, we used Matlab implementation of the BARS which is available at http:

//lib.stat.cmu.edu/~kass/bars/bars.html. We used Poisson prior distribution of

the knots and set the sample iterations to 5000 and burn-in samples to 500. We used

spike count within 10 ms bin interval as the input and mean of fitted function as the

output estimate.

We performed 100 repetitions of single-trial firing rate estimation using dataset

testing 1. We plotted the MISE of all the methods and their confidence interval for

three underlying rate functions and two models (Fig 4). In all 6 scenarios, the MISE

and confidence interval of the BAKS method were smallest among other competing

methods. Clearly, as shown in Fig 4a for IG model and Fig 4b for IIG model, the BAKS

method (blue bar) yielded significantly lower MISE compared to the other competing

methods. This demonstrates the effectiveness of the proposed method in estimating the

underlying rate from single trial spike trains.

Examples of the underlying rate functions and the estimated firing rates from all

methods across 6 scenarios are shown in Fig 5. In the cases of chirp and sawtooth

underlying rate processes, where the frequency of these function (thus the spike density)

change over the observed duration, the BAKS and VKS methods which feature adaptive
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Figure 4. MISE comparison of BAKS with other methods. (a) MISE

comparison for three rate processes (chirp, sine, and sawtooth) from IG model. (b)

MISE comparison for three rate processes (chirp, sine, and sawtooth) from IIG model.

Vertical line crossing the peak of bar plot represents the 95% of MISE confidence

interval.

or variable bandwidth, appear visually better compared to the rest methods (see Figs 5a

and 5c, and Figs 5d and 5f). This indicates the reliability of the adaptive or variable

bandwidth employed by the two methods in adapting to different density over the
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Figure 5. Comparison of firing rate estimates across all methods. (a)-(c)

Firing rate estimates from IG model with chirp, sine, and sawtooth rate functions,

respectively. (d)-(f) Firing rate estimates from IIG model with chirp, sine, and

sawtooth rate functions, respectively. Black line plot with gray-shaded region indicates

the underlying rate function. Black raster in the bottom of each plot represents the

spike train generated from associated model and underlying rate function.
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duration. On the other hand, OKS and Locfit which use fixed bandwidth cannot produce

good fit for the chirp and sawtooth cases. The BARS method, despiting having an

adaptive capability, yields poor estimates. This may be due to the insufficient number

of spikes (data) available in single trial required by the BARS to produce good estimates.

However, in the case of sine underlying rate process (homogeneous frequency), the

goodness-of-fit across all methods does not seem significantly different (Figs 5b and

5d).

3.4. Comparison under different value of intensity and frequency

We studied the effect of different intensity and frequency of the underlying rate functions

to the performance of the proposed method. In real neural data, the number of spikes

(intensity) and the temporal fluctuation of spikes (frequency) may change slowly and

rapidly. Therefore, we varied the intensity and frequency parameters as described in

Table 1 (Testing 2). Using dataset testing 2, we performed 100 repetitions of single

trial firing rate estimation from all methods. The MISE and its confidence interval

comparison across all methods for the case of IG model is shown in Fig 6. From the total

of 12 cases in IG model (3 rate functions and 4 variations of intensity and frequency),

the BAKS method outperforms other competing methods in 9 cases (see Figs 6a, 6c and

6d). In the case of low frequency (Figs 6c), BARS shows better performance compared

to the others. These results demonstrate the reliability of BAKS even when the intensity

and frequency of underlying rate functions differ from that of during parameter tuning

phase (training). Similar results are also observed for the cases of IIG model which can

be seen in Appendix C (Fig C1).

3.5. Comparison under different value of shape parameter (γ)

The flexibility of the proposed method when the assumption of ISI shape deviates from

that of used during the training phase is addressed in this section. Using dataset testing

3 (γ = {1, 2, · · · 10}), we performed 100 repetitions of single trial firing rate estimation.

From the total of 60 cases (2 models, 3 rate functions and 10 variations of γ value),

55 cases (91.67%) show the superior performance of the BAKS (blue triangle mark)

over other methods as shown in Fig 7. In the 5 remaining cases, BAKS results in

comparable performance to OKS and VKS methods which perform good under Poisson

process (corresponds to γ = 1). These overall results demonstrate the flexibility of

BAKS in estimating the firing rate from different ISI characteristic of spike train model.

3.6. Comparison under different number of trials

In offline analyses, the firing rate is typically estimated using spike trains from many

similar trials aggregated into single compact spike trains. To study the effect of

increasing number of trials, we assessed the performance of BAKS under different
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Figure 6. MISE comparison under different intensity and frequency for IG

model. (a) MISE comparison for the case of low intensity. (b) MISE comparison for

the case of high intensity. (c) MISE comparison for the case of low frequency. (d)

MISE comparison for the case of high frequency. Vertical line crossing the peak of bar

plot represents the 95% of MISE confidence interval.

number of trials (tr = {5, 10, 20, 30}) using dataset testing 4. We performed firing

rate estimation using all methods, each for 100 times. The MISE comparison for this

multi-trial cases is depicted in Fig 8. For all 6 scenarios, the increasing number of

trials improves the performance of all methods as indicated by the decreasing MISE

values. However, with the increasing number of trials, the rate of improvement declines

as the MISE values reaching its convergence. Unlike in the single-trial case where the

BAKS method outperforms all other methods, in some of multi-trial cases, the BAKS

method cannot outperform all the others. For examples, in the cases of chirp and sine

functions for both IG and IIG models, the BARS outperforms the BAKS method when

tr ≥ 5 (Figs 8a, 8b and Figs 8d, 8e). In the case of sawtooth rate function, the BARS

outperforms the BAKS on larger number of trials (tr = 30) as can be seen in Figs 8c

and 8f. The OKS and VKS methods yield better estimates than that of BAKS only in

case of sine rate function when tr ≥ 10 (Fig 8b and 8e). The performance of Locfit does

not significantly improve when tr ≥ 5 and is relatively far behind of all other methods.

As a summary, the BAKS method is the most superior in single-trial cases. In multi-
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Figure 7. MISE comparison under various γ values. (a)-(c) MISE comparison

for chirp, sine, and sawtooth rate functions, respectively, from IG model. (d)-(f) MISE

comparison for chirp, sine, and sawtooth rate functions, respectively, from IIG model.

Vertical bar represents the 95% of MISE confidence interval.

1 5 10 20 30
0

100

200

300

400

M
IS

E

Chirp rate - IG Model

1 5 10 20 30

Number of trials (tr)

0

50

100

150

200
Sine rate - IIG Model

BAKS OKS VKS Locfit BARS

1 5 10 20 30
0

100

200

300

400
Sawtooth rate - IG Model

1 5 10 20 30

Number of trials (tr)

0

100

200

300

400
Sawtooth rate - IIG Model

BAKS OKS VKS Locfit BARS

(a)

1 5 10 20 30

Number of trials (tr)

0

100

200

300

400

M
IS

E

Chirp rate - IIG Model

BAKS OKS VKS Locfit BARS

(c)

(d) (e) (f)

1 5 10 20 30
0

50

100

150

200

M
IS

E

Sine rate - IG Model

(b)

Figure 8. MISE comparison under different number of trials. (a)-(c) MISE

comparison for chirp, sine and sawtooth rate function, respectively, for IG model.

(d)-(f) MISE comparison for chirp, sine and sawtooth rate function, respectively, for

IG model. Vertical bar (not clearly seen when tr ≥ 5) represents the 95% of MISE

confidence interval.
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trial cases with moderate number of spikes, the BAKS still shows good or comparable

performance to other methods. Nevertheless, when it comes to multi-trial cases with

large number of spikes, the BARS method performs the best among others.

3.7. Comparison under different underlying rate function

In practice, the true underlying rate function that generates the spiking data is unknown.

There is infinite spaces of rate function that underlie the spiking generation. During

the training, we used 3 underlying rate functions (chirp, sine and sawtooth) to find the

optimal parameter for BAKS. Next, we studied the impact of different underlying rate

function along with its intensity and frequency variations to the performance of BAKS.

We performed 100 repetitions of firing rate estimation using dataset testing 5 which

corresponds to single trial spike trains generated from Gaussian-damped sinusoidal rate

function as in Eq (26). The performance comparison across all methods using this

dataset for IG model is plotted in Fig 9. From a total of 6 cases (variation of intensity

and frequency), BAKS outperforms other methods in 4 cases (all intensity cases and

one medium frequency case). Similar results are also obtained for all the cases from IIG

model which can be seen in Appendix C (Fig C2). This indicates the reliability of the

BAKS even when the underlying processes depart from that of used during the training.

The difference of underlying processes do not significantly affect the performance of

BAKS.
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Figure 9. MISE comparison under different underlying rate function for

IG model. Vertical line crossing the peak of the bar plot represents 95% of MISE

confidence interval.
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Figure 10. Firing rate estimate comparison for IG model with Gaussian-

damped sinusoidal rate function. (a)-(c) Firing rate estimates for the cases of

low, medium and high frequency, respectively. (d)-(f) Firing rate estimates for the

cases of low, medium and high intensity, respectively. Black line plot with gray-shaded

region indicates the underlying rate function. Black raster in the bottom of each plot

represents the spike train generated associated with the underlying rate function.

The estimated firing rates from all methods across 6 scenarios for IG model with

Gaussian sinusoidal rate function are shown in Fig 10. In all cases, BAKS method

shows relatively consistent good visual fit. In the case of high frequency, BARS and

VKS produce poor visual fit compared to the others (Fig 5c). In the case of low intensity,

BARS and Locfit yield poor visual fit (Fig 10d) among others. In the remaining cases,

the goodness-of-fit across all method does not differ significantly. Similar results are

also observed for the cases from IIG model which is shown in Appendix C (Fig C3).

3.8. Comparison of computational complexity

The computational complexity reflects the execution time of a method. This is particular

important when the above methods are applied on on-line firing rate estimation in

BMI experiments in order to generate real-time feedback to the subject. This section

describes and compares the computational complexity of each method.

Kernel smoothing technique has advantage of relatively simple and computationally

fast. This is especially the case when the bandwidth is fixed throughout the observation

interval such as in OKS method. OKS uses binned spike counts within certain bin

interval (centered at estimation times) and kernel function with fixed bandwidth to

estimate firing rate. The firing rate computation is performed by convolving the binned

spike counts with the kernel function. OKS incorporates Fast Fourier Transform (FFT)
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for computing the convolution to further reduce the computation time. In OKS method,

the bandwidth is selected by minimizing mean integrated squared error (MISE) function

over the whole duration [12]. An extension to OKS method is VKS, which incorporates

variable bandwidth. This variable bandwidth is computed by minimizing local MISE

which requires large number of iterations with varying local interval. This iterative

process makes VKS method significantly more complex than OKS. Unlike OKS and

VKS, Locfit uses a polynomial to fit log-rate function by maximizing a local likelihood

function. Locfit has relatively slow complexity because it uses fixed bandwidth selected

in manual fashion; it does not employ automatic selection of bandwidth. Moreover, in

this study, the bandwidth (in term of nearest neighbor) of Locfit was set to 0.4, meaning

that the computation involves 40% of the total data within the whole duration.

Our proposed method, BAKS, even though incorporating automatic selection of

optimal adaptive bandwidth, it still offers relatively low computational complexity.

This advantage arises from the simple kernel smoothing technique with proper choice of

prior distribution and kernel function which leads to closed-form expression of posterior

bandwidth. This in turn simplifies the computation process of determining the adaptive

bandwidth. This type of convenient closed-form expression cannot be obtained in the

case of BARS method; thus, a numerical approximation technique is required. BARS

uses iterative procedure involving computationally expensive Markov chain Monte Carlo

(MCMC) technique and Bayes information criterion (BIC) to find the optimal smoothing

parameters. This process takes relatively long computation to yield “converged” results.

The computational complexity among these methods can be indicated by the

time required for completing the firing rate estimation in computer simulation (i.e.

computational runtime). Since this runtime comparison is impacted by the code

implementation of each method, this should be viewed as estimation of the real

computational complexity of each method. The code for BAKS can be downloaded from

https://github.com/nurahmadi/BAKS. The OKS and VKS codes can be downloaded

from http://www.neuralengine.org/res/kernel.html. The Locfit code is available

through http://chronux.org/; while the BARS code is available through http:

//lib.stat.cmu.edu/~kass/bars/bars.html. All the program codes were written

and run in Matlab R2016b software (The Mathworks Inc., Natick, MA) installed on

Windows 7 64-bit PC with 8 Intel cores i7-4790 @3.6 GHz and RAM 16 GB. This

comparison uses 100 repetitions of single trial synthetic spike train data (2 s duration)

generated by IG model with chirp rate function.

As shown in Table 2, Locfit and OKS are the two fastest methods; both methods

complete the computation within the order of few milliseconds. VKS, on the other

hand, requires around 3 order of magnitude longer time than both Locfit and OKS;

whereas BARS method requires longest time (in the order of seconds). In the BARS

parameter setting, we set burn-in iterations to 500 and sample iterations to 5000. The

BARS’ runtime can be reduced by setting the burn-in and sample iterations to smaller

values. However, this may result in decreasing accuracy as the trade-off. Therefore,

these parameter should be carefully set to find good trade-off between accuracy and
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Table 2. Average runtime comparison of BAKS with other methods (in

second).

Single trial case BAKS OKS VKS Locfit BARS

Low intensity 0.0016 0.0017 0.2340 0.0012 4.8438

Medium intensity 0.0062 0.0018 0.3306 0.0012 4.6563

High intentisy 0.0126 0.0017 0.3306 0.0014 4.5527

runtime. Wallstrom suggested that the default values for burn-in and sample iterations

are 500 and 2000, respectively [40].

The runtime performance of BAKS is significantly better than both VKS and

BARS, and is slightly below that of Locfit and OKS. Table 2 shows that BAKS’ runtime

is influenced by the intensity of the underlying rate function (i.e. number of spikes),

whereas other methods’ runtime are relatively consistent. This is because other methods

incorporate binning procedure for the spiking data prior to their core computation.

This makes the number of input data fed to the core computation always uniform

regardless of the number spikes within the observation interval. This is not the case

for BAKS method. Our current BAKS code is a straightforward implementation of the

formula described in Methods section. In this study, we have not considered the efficient

implementation of BAKS method. It is important to note, as neurons have a property

of refractory period, the number of spikes within observation interval is limited. This

guarantees that under single trial, even with current implementation code, the runtime

performance of BAKS will only decrease up to certain bound.

3.9. Application to real neural data

In this section, we apply our proposed method for estimating the neuronal firing rate

from real data obtained from two public neural databases, which are database for

reaching experiments and models (DREAM) and neural signal archive (NSA). The

DREAM and NSA databases can be accessed from http://crcns.org/ and http:

//www.neuralsignal.org/, respectively. In the DREAM database, we used Flint 2012

dataset that were recorded from primary motor cortex area (M1) of monkey’s brain when

the subject was performing center-out reaching task. Single unit spikes were obtained

by using thresholding and offline sorting technique. More detailed information on the

recording tools and experimental setup can be found in [41]. In the NSA database,

we used nsa2004.1 dataset recorded from visual cortex (MT/V5) area when random

dot stimuli was being presented to a monkey [42]. The detailed electrophysiological

recording is given in [43].

Unlike the synthetic data in which the true underlying rate function is known, in the

case of real neural data, we do not have access to the underlying rate (i.e. ground truth).

Therefore, the ‘true’ underlying rate in real neural data was estimated by averaging and

smoothing the spike counts across many similar trials. These similar trials were selected

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 17, 2017. ; https://doi.org/10.1101/204818doi: bioRxiv preprint 

http://crcns.org/
http://www.neuralsignal.org/
http://www.neuralsignal.org/
https://doi.org/10.1101/204818
http://creativecommons.org/licenses/by/4.0/


23

such that each trial contains greater or equal to 50 spikes/s within observation interval

(1 s for the Flint 2012 dataset, 2 s for the nsa2004.1 dataset). This limited number of

spikes was taken on the assumption that neurons likely fire more spikes when performing

tasks or receiving stimuli. In this work, We considered only neurons that satisfy this

criterion in more than 30 trials in order to obtain sufficiently small error as we observed

in multi-trial synthetic data (Fig 8). To this end, we obtained 47 (4) subdatasets with

total trial of 1791 (134) for the Flint 2012 (nsa2004.1) dataset. In the Flint 2012 dataset,

we aligned the spiking responses over same-direction reaching tasks to the time when the

monkey started the actual hand movement (indicated by cursor movement). To make

the observation interval the same from inherently different trial duration for each trial,

we used on average 200 ms before and 800 ms after the movement (total duration 1 s).

In the nsa2004.1 dataset, the spiking responses were aligned to the time when random

moving dot stimuli was firstly presented to the monkey. In this type of experiment, the

trial duration was fixed to 2 s.

To estimate the ‘true’ underlying rate, we first superimposed the spike trains from

all trials of one neuron. We partitioned the observed duration into 10 ms bin interval

and computed the spike count within the bin interval. The ‘true’ underlying rate was

then smoothed by using BARS method since the BARS demonstrates the most superior

performance on the synthetic data when the number of trial is large (tr = 30, see Fig 8).

However, in this multi-trial case where there exists spike train variability across trials,

we increased the sample iteration to 30,000 and burn-in samples to 5,000 to ensure the

convergence of BARS results. One of the advantages of the BARS is that it provides

the output estimate along with its confidence interval. In this work, we used 95%

confidence interval. When computing MISE, we took into account this uncertainty.

Before squaring and integrating across observation interval, we normalized the error

between ‘true’ underlying rate obtained from many trials (act as a reference) and single-

trial estimated firing rate from method of interest by dividing it with upper or lower

confidence interval. The upper (lower) interval was used when the estimated firing rate

is larger (smaller) than the reference. By doing so, we impose more (less) weight when

the confidence interval is smaller (larger) to adjust the uncertainty brought by the BARS

estimation. We call this normalized MISE as a weighted MISE (WMISE) and formulate

it as follows,

WMISE ≈ ∆t
∑

E

[
λ̂(t)− λ(t)

C(t)

]2
(27)

where C(t) is set to the upper confidence interval when λ̂(t) ≥ λ(t) and the lower

confidence interval when λ̂(t) < λ(t). These upper and lower confidence intervals

calculated by the BARS are not uniform.

We examined the performance comparison across methods under WMISE function.

Based on WMISE function, we derived three different metrics for performing the

comparison. First, we investigated the average WMISE performance across total number

of trials. Based on 1791 single-trial firing rate estimation from 47 subdatasets in
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Figure 11. WMISE comparison across all methods using real neural data.

(a) Average WMISE comparison across all trials in Flint 2012 dataset. (b) Number of

times (in %) BAKS outperforms other methods in Flint 2012 datasets. (c) Single trial

performance improvement made by BAKS over other methods in Flint 2012 datasets.

(d)-(f) Similar to that of (a)-(c) but with nsa2004.1 dataset. Vertical crossing the peak

of the bar plot represents the 95% of WMISE confidence interval.

the Flint 2012 dataset, the BAKS method produces the smallest WMISE average and

confidence interval (10.34 ± 0.53) as shown in Fig 11a. The BAKS method also produces

the best performance (19.77 ± 2.45) in the case of nsa2004.1 dataset with total 134 trials

from 4 subdatasets (Fig 11d). Second, we measured the number of times (in percentage

form) one method outperformed all the other methods. In both Flint 2012 and nsa2004.1

datasets, the BAKS more frequently (41.99% and 42.54% respectively) outperforms the

other methods as shown in Figs 11b and 11e. In these cases, the OKS method comes

as the second with 30.65% and 17.16%. Third, we assessed the average improvement

(WMISE decrease in %) per trial of the BAKS method over other methods. Figs 11c

and 11f describes the BAKS performance compared to other methods for the Flint 2012

and nsa2004.1 datasets. A positive (negative) bar value means that the BAKS method

outperforms (is outperformed by) the others. As described in Fig 11c, the single-trial

average improvement of the OKS method is slightly better than the BAKS (-2.58 ±
1.90%). This seems to contradict the results when using the first and second metrics, in

which the BAKS method outperforms the OKS. By plotting the percentage of average

improvement of the BAKS against the OKS across 1791 trials, it turns out that although

the OKS fewer times outperforms the BAKS (than that of the opposite), but in few trials

the magnitude of improvement made by the OKS is larger than the BAKS. Contrary
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Figure 12. Firing rate estimates comparison for real neural data. (a) Firing

rate estimates from ‘N184’ of Flint 2012 dataset (b) Firing rate estimates from ‘E164’

of Flint 2012 dataset (c) Firing rate estimates from ‘j032 25.6’ of nsa2004.1 dataset.

(d) Firing rate estimates from ‘j032 51.2’ of nsa2004.1 dataset. Black line plot and

gray-shaded area indicate the ‘true’ underlying rate (estimated from ≥ 30 trials) and

its 95% confidence interval, respectively. Black raster in the bottom of each plot

represents the single spike train taken from the associated underlying rate.

to the Flint 2012 dataset, the BAKS method is superior to the OKS (5.37 ± 3.75%)

in the nsa2004.1 dataset (Fig 11f). This is consistent with the results measured by

the two other metrics. On average, the BAKS method consistently performs good

compared to other methods in both datasets. Some examples of single-trial firing rate

estimation from all methods for the Flint 2012 and nsa2004.1 datasets are shown in

Fig 12. Figs 12a and 12b show the firing rate estimates from ‘N184’ and ‘E164’ cases in

the Flint 2012 dataset. Figs 12c and 12d show the firing rate estimates from ‘j032 25.6’

and ‘j032 51.2’ cases in the nsa2004.1 dataset. The firing rate estimates from BAKS are

visually comparable to other methods. However, BARS show poor visual fit in towards

the boundaries (beginning or end of the underlying rate function).

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 17, 2017. ; https://doi.org/10.1101/204818doi: bioRxiv preprint 

https://doi.org/10.1101/204818
http://creativecommons.org/licenses/by/4.0/


26

4. Discussion

In this study, we propose a new method for estimating single-trial neuronal firing rate.

Our method employs a kernel smoothing technique with adaptive bandwidth. This

differs from other kernel-based firing rate estimation methods in that its bandwidth

parameter is adaptively determined by a Bayesian approach. The proposed method,

BAKS, has been developed with the motivation to estimate firing rate from single spike

train generated from underlying rate function that dynamically changes over observed

duration (non-stationary).

We select the optimal parameter of BAKS using a synthetic spike train

stochastically sampled from 3 rate functions (as representation of non-stationary

underlying processes). These rate functions are chirp, sine, and sawtooth expressed

in Eqs (23), (24) and (25), respectively. Using this optimal parameter, we evaluate

the performance of BAKS using 5 synthetic datasets. These datasets represent

various setting and combination of underlying rate functions along with their intensity

and frequency variations, ISI shape (parameter γ), and number of trials. The

performance comparison is measured under MISE function. By extensive simulations, we

demonstrate good performance of the proposed method, BAKS, compared to two other

kernel-based methods (OKS and VKS) and two generalized nonparametric regression

methods (Locfit and BARS). On average, BAKS outperforms the other methods in

single-trial estimation (smallest MISE) across various settings. The adaptive bandwidth

featured in the BAKS can adjust the different spike densities within the observation

interval. The results suggest that our proposed BAKS method is suitable to be used

for single-trial analysis of neural data. The flexibility of the BAKS has also been tested

by using spike train generated from the same 6 scenarios but with different shape

parameter values (γ = {1, 2, · · · 10}). Consistent results are obtained despite using

these different characteristics of spike train. The BAKS method does not assume specific

distribution on the spike train, rather it uses appropriately chosen prior distribution on

the bandwidth parameter. The prior distribution of the bandwidth is derived from

Gamma prior distribution on the precision parameter (inverse of square bandwidth).

The precision parameter describes how concentrated observed are around the means of

Gaussian kernel which are set to the spike times. Since these spike times (i.e. sum of ISI)

are conveniently modeled with Gamma distribution [15,26–29], the precision parameter

is also assumed to be Gamma distribution. This choice has been shown to yield good

performance. On the other hand, all other competing methods (OKS, VKS, Locfit, and

BARS) use a Poisson assumption [12–14], which is less likely for the case of single-trial

spike train; neurons have certain properties (e.g. refractory and bursting) that cannot

be described by the Poisson model [15,16]. Numerous works have shown the inadequacy

of the Poisson model and proposed other more biophysically plausible models (e.g. IG

and IIG) [6, 15, 26–29, 34]. The deviation from Poisson assumption under single-trial

cases may lead OKS, VKS, Locfit and BARS to poor performance [12,17].

We also compare the performance of the BAKS method under multi-trial cases to
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study the implication of increasing number of spikes within the same duration. Some

topics of interest in neuroscience use multi-trial spike train to obtain the firing rate.

The results show that all methods produce similar trend; the increasing number of trials

up to a certain value (threshold) improves the performance (smaller MISE). However,

as the number of trial increases, the rate of improvement of each method and the

threshold value differ from each other. The BARS is the one that improves performance

significantly with increasing number of trials. It has been suggested that under many

trials, superimposed spike train across trials can be approximated by inhomogeneous

Poisson model [12,16]. With a sufficient number of spike counts within the bin intervals

(approximating Poisson count) together with intensive computation in determining

optimal knot configurations, the performance of BARS improves significantly. In the

case of chirp and sine rate functions, the BARS starts to outperform the BAKS method

within few number of trials (tr = 5). However, in the case of sawtooth rate function, the

BARS needs larger number of trials to outperform the BAKS (tr = 30). Nevertheless, in

comparison to OKS, VKS, and Locfit methods, the BAKS method still yields relatively

good performance. The overall results suggest that the BAKS method is good at

estimating firing rate from a low to moderate number of spikes (represented by single

or few trials) from non-stationary underlying rate functions. The BAKS performance is

especially good in the case of discontinuous rate functions (e.g. sawtooth).

After validation using synthetic data, the proposed BAKS method is also tested

using real neural data recorded from motor and visual cortex of non-human primate

(NHP). The motor neural data (Flint 2012) is associated with center-out reaching tasks,

whereas the visual neural data (nsa2004.1) is associated with moving random-dot visual

stimuli. Measuring the performance in real neural data is a challenging due to unknown

underlying rate. Hence, the underlying rate is estimated by using multi-trial cases

on the assumption that neurons respond similarly upon given similar tasks/stimuli.

This procedure is similar to the one described in [26]. However, in practice, neuronal

response may considerably differ across similar trials. To minimize large variation in

the spike trains, subsets from two datasets (Flint 2012 and nsa2004.1) are selected with

constraints explained in previous section. The BARS method is chosen to estimate

the underlying rate as it provides the smallest MISE in multi-trial synthetic data.

To account for the estimation uncertainty produced by the BARS, weighted MISE

(WMISE) is used for comparison. Among three metrics and two real datasets (6 cases)

that we use, there is only 1 case that one other method (OKS) outperforms the BAKS

(see Fig 11c). The performance improvement of the OKS over the BAKS in this only

case is relatively small (2.58%). The overall results show that, on average, the BAKS

method yields good performance compared to all other competing methods. This is

in good agreement with the results obtained from single-trial synthetic data, which

further demonstrates the effectiveness of the proposed method in estimating single-trial

neuronal firing rate.

The BAKS method offers ease and simplicity as standard kernel-based method does,

yet effective in grasping sudden and slow changes of firing rate in different region within
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the observation interval. Unlike the BARS method which is computationally demanding,

the BAKS method is relatively fast owing to analytical expression of bandwidth posterior

density. This analytical expression leads to the adaptive bandwidth determined in an

exact way (not numerical approximation), which reduces the computational complexity.

With good performance and relatively low complexity, BAKS is suitable to be used for

research that require single-trial firing rate estimation. For examples, understanding the

encoding mechanism of neurons in cognitive-related tasks and decoding task parameter

in brain-machine interface (BMI) applications. As a summary, the comparison of BAKS

with other methods is given in Table 3.

Table 3. Comparison summary of BAKS with other methods.

BAKS OKS VKS Locfit BARS

Adaptability to underlying dynamics X − X − X
Bayesian/probabilistic approach X − − − X
Automatic selection of smoothing parameter X X X − X
Single trial (low to moderate number of spikes) � � � �� �� �� ��
Multi trials (large number of spikes) �� �� �� � � � �
Computational complexity (runtime) � � � � � � �� � � � �

More diamonds mark (�) indicates better (desirable) performance.

5. Conclusion

We have presented a simple yet accurate method for estimating single-trial neuronal

firing rate based on kernel smoothing technique with adaptive bandwidth. The key

idea of this method is to consider the bandwidth parameter as random variable under

a Bayesian framework. By using Bayes’ theorem with proper choice of kernel and prior

distribution functions, the bandwidth can be adaptively determined in an exact and

quick way. Extensive evaluations on both synthetic and real neural data show that the

proposed method yields good performance compared to other competing methods. This

suggests that the proposed method has the potential to improve single-trial analysis in

neuroscience studies and decoding performance of spike-based brain-machine interfaces

(BMIs).

Appendix A. Posterior distribution of bandwidth

In this appendix, we derive a closed-form expression of the posterior density of

bandwidth as given in Eq (10). According to Bayes’ theorem, the posterior density

is formulated as:

π(h(t)|t) =
f̂(t|h(t))π(h(t))∫
f̂(t|h(t))π(h(t))dh(t)

(A.1)
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By using likelihood function as in Eq (8) and prior distribution of bandwidth as in

Eq (7), we can obtain:

π(h(t)|t) =

1

n

n∑
i=1

Kh(t)(t− ti)
2h(t)−2α−1

Γ(α)βα
exp

{
− 1

βh(t)2

}
∫

1

n

n∑
i=1

Kh(t)(t− ti)
2h(t)−2α−1

Γ(α)βα
exp

{
− 1

βh(t)2

}
dh(t)

(A.2)

By substituting Gaussian kernel into the likelihood function and removing the same

constants in both numerator and denominator, Eq (A.2) then becomes:

π(h(t)|t) =

n∑
i=1

h(t)2α−2 exp

{
− 1

h(t)2

[
(t− ti)2

2
+

1

β

]}
∫ n∑

i=1

h(t)2α−2 exp

{
− 1

h(t)2

[
(t− ti)2

2
+

1

β

]}
dh(t)

(A.3)

Let now consider the denominator of Eqs (A.1) and (A.3), which we can rewrite as:∫
f̂(t|h(t))π(h(t))dh(t) =

∫ n∑
i=1

h(t)2α−2 exp

{
− 1

h(t)2

[
(t− ti)2

2
+

1

β

]}
dh(t) (A.4)

To simplify the calculation, let us define variables as follows:

σ =
1

h(t)2
, h(t) = σ−

1
2 , dh(t) = −1

2
σ−

3
2dσ (A.5)

θ =

[
(t− ti)2

2
+

1

β

]−1
(A.6)

By substituting Eqs (A.5) and (A.6) into Eq (A.4), the integral function can be

represented as:∫
f̂(t|h(t))π(h(t))dh(t) =

1

2

n∑
i=1

∫
σα−

1
2 exp

{
−σ
θ

}
dσ (A.7)

Eq (A.7) can be simplified so that the integral part forms Gamma probability density

as follows: ∫
f̂(t|h(t))π(h(t))dh(t) =

1

2

n∑
i=1

Γ(α +
1

2
)θ(α+

1
2
)

×
∫

σ(α+ 1
2
)−1

Γ(α + 1
2
)θ(α+

1
2
)

exp
{
−σ
θ

}
dσ

(A.8)

Since the integration of Gamma probability density function is equal to 1,∫
σ(α+ 1

2
)−1

Γ(α + 1
2
)θ(α+

1
2
)

exp
{
−σ
θ

}
dσ = 1 (A.9)
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Eq A.8 can then be analytically expressed as:∫
f̂(t|h(t))π(h(t))dh(t) =

1

2

n∑
i=1

Γ(α +
1

2
)θ(α+

1
2
)

=
1

2
Γ(α +

1

2
)

n∑
i=1

[
(t− ti)2

2
+

1

β

](−α− 1
2
) (A.10)

Finally, by substituting Eq (A.10) back to the original equation of posterior density of

bandwidth in Eq (A.1), we can obtain the closed-form solution as in Eq (10):

π(h(t)|t) =

n∑
i=1

h(t)−2α−2 exp

{
− 1

h(t)2

[
(t− ti)2

2
+

1

β

]}
1

2
Γ(α +

1

2
)

n∑
i=1

[
(t− ti)2

2
+

1

β

](−α− 1
2
)

(A.11)

Appendix B. Adaptive bandwidth estimate

Under squared error loss function, the adaptive bandwidth can be estimated by using

the posterior mean as given by:

ĥ(t) =

∫
h(t)π(h(t)|t)dh(t) (B.1)

By substituting Eq (A.11) into Eq (B.1), we can obtain:

ĥ(t) =

∫ n∑
i=1

h(t)−2α−1 exp

{
− 1

h2

[
(t− ti)2

2
+

1

β

]}
dh(t)

1

2
Γ(α +

1

2
)

n∑
i=1

[
(t− ti)2

2
+

1

β

](−α− 1
2
)

(B.2)

Similar to the derivation procedure for the posterior distribution of bandwidth

(Appendix A), by the change-of-variables rule using Eqs (A.5) and (A.6), Eq (B.2)

can be written as:

ĥ(t) =

1

2

n∑
i=1

∫
σα−1 exp

{
−σ
θ

}
dσ

1

2
Γ(α +

1

2
)

n∑
i=1

[
(t− ti)2

2
+

1

β

](−α− 1
2
)

(B.3)

By modifying the integral part of numerator to be an integration of Gamma probability

density function (which is equal to 1) as in Eq (A.8), we can obtain the final closed-form

solution as in Eq (12):

ĥ(t) =

Γ(α)
n∑
i=1

[
(t− ti)2

2
+

1

β

]−α
Γ(α +

1

2
)

n∑
i=1

[
(t− ti)2

2
+

1

β

]−α− 1
2

(B.4)
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Appendix C. Supporting information
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Figure C1. MISE comparison under different intensity and frequency for

IIG model. (a) MISE comparison for the case of low intensity. (b) MISE comparison

for the case of high intensity. (c) MISE comparison for the case of low frequency. (d)

MISE comparison for the case of high frequency. Vertical line crossing the peak of bar

plot represents the 95% of MISE confidence interval.
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Figure C2. MISE comparison under different intensity and frequency for

IIG model. Vertical line crossing the peak of the bar plot represents 95% of MISE

confidence interval.
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Figure C3. Firing rate estimate comparison for IIG model with Gaussian-

damped sinusoidal rate function. (a)-(c) Firing rate estimates for the cases of

low, medium and high frequency, respectively. (d)-(f) Firing rate estimates for the

cases of low, medium and high intensity, respectively. Black line plot with gray-shaded

region indicates the underlying rate function. Black raster in the bottom of each plot

represents the spike train generated associated with the underlying rate function.
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