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Abstract 

Health systems are stewards of patient electronic health record (EHR) data with 

extraordinarily rich depth and breadth, reflecting thousands of diagnoses and exposures. 

Measures of genomic variation integrated with EHRs offer a potential strategy to 

accurately stratify patients for risk profiling and discover new relationships between 

diagnoses and genomes. The objective of this study was to evaluate whether Polygenic 

Risk Scores (PRS) for common cancers are associated with multiple phenotypes in a 

Phenome-wide Association Study (PheWAS) conducted in 28,260 unrelated, genotyped 

patients of recent European ancestry who consented to participate in the Michigan 

Genomics Initiative, a longitudinal biorepository effort within Michigan Medicine. PRS for 

12 cancer traits were calculated using summary statistics from the NHGRI-EBI catalog. 

A total of 1,711 synthetic case-control studies was used for PheWAS analyses.  There 

were 13,490 (47.7%) patients with at least one cancer diagnosis in this study sample. 

PRSs exhibited strong association for several cancer traits they were designed for 

including female breast cancer, prostate cancer, melanoma, basal cell carcinoma, 

squamous cell carcinoma and thyroid cancer. Phenome-wide significant associations 

were observed between PRS and many non-cancer diagnoses. To differentiate PRS 

associations driven by the primary trait from associations arising through shared genetic 

risk profiles, the idea of “exclusion PRS PheWAS” was introduced. This approach led to 

phenome-wide significant associations between a lower risk for hypothyroidism in 

patients with high thyroid cancer PRS and a higher risk for actinic keratosis in patients 

with high squamous cell carcinoma PRS after removing all cases of the primary cancer 

trait. Further analysis of temporal order of the diagnoses improved our understanding of 
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these secondary associations. This is the first comprehensive PheWAS study using PRS 

instead of a single variant. 

 

Introduction 

In the past decade, genome-wide association studies (GWAS) using single nucleotide 

polymorphisms (SNPs) led to discovery of many common disease susceptibility loci 1-3. 

An alternative agnostic way of exploring gene-disease association is through phenome-

wide association studies (PheWAS) 4-6. PheWAS enable simultaneous exploration of the 

association between genetic variants and a broad spectrum of physiological/clinical 

phenotypes. To explore the joint genome x phenome landscape, one needs access to 

both Electronic Health Records (EHRs) and GWAS data. The promise and potential of 

these studies have recently been illustrated by the electronic Medical Records and 

Genomics (eMERGE) network 7; 8. Beyond genetic associations, EHR has enabled 

discovery of new associations between disease and secondary effects of drugs or blood 

biomarker levels 9-11. 

PheWAS have been used to both replicate known genetic-phenotypic associations and 

to discover new consequences for disease associated variants. PheWAS use computable 

phenotypes derived from EHR databases. Traditional PheWAS have used International 

Classification of Disease (ICD) codes to define a set of computable phenotypes or 

“PheWAS codes” defined and validated by experts using a combination of ICD codes 12. 

Standard PheWAS have primarily focused on correlating genetic variants, one at a time, 

to a spectrum of phenotypes. When each variant is associated with a small effect size, 

these studies can only provide limited insight. For this reason, many areas of genetics 

now use ensembles of variants that cumulatively explain substantial variation in disease 
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risk 13-15. For example, PRS constructed from multiple GWAS identified loci that have 

been proposed for cancer screening, risk prediction and risk stratification 16-19. 

In this paper, we introduce the new concept of exploring PRS in a PheWAS setting instead 

of a traditional PheWAS that considers single variants, one at a time. We focus on cancer 

traits while constructing the PRS. We construct PRS for multiple cancers including some 

of the most common groupings of cancers in the United States: prostate cancer (PCa, 

MIM: 176807), breast cancer (MIM: 114480), colorectal cancer (MIM: 114500), lung 

cancer (MIM: 211980), melanoma of skin (MIM: 155601) and basal cell carcinoma (MIM: 

614740) and correlate them with PheWAS codes.  

Our study is based on the Michigan Genomics Initiative (MGI) launched in 2012, a 

biorepository effort to create a longitudinal cohort of participants in Michigan Medicine. 

MGI enrolled participants undergoing anesthesia prior to a surgery or diagnostic 

procedure, creating a patient community with genome-wide data, electronic health 

information, and permission for follow-up and re-contact in future studies. Our current 

analysis of 28,260 patients in MGI indicates that 47.7% of these patients have at least 

one current or previous neoplasm diagnosis (excluding benign neoplasms). This presents 

a unique opportunity to study multiple cancer outcomes leveraging both EHR and 

genomic data in MGI. 

At the same time, this enrichment of cancer patients in MGI highlights some of the special 

features of the sampling frame for the study and source population. Because of the self-

selective, consent-based nature of MGI patient enrollment, the sample selection 

mechanism is non-probabilistic, that is, the probability of a sampling unit being included 

in the study is not pre-determined. The MGI sample is enriched for neoplasm diagnoses 
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which could be related to the fact that many surgeries are diagnostic procedures are 

specifically related to cancer treatment and screening (e.g., colonoscopy, skin biopsies). 

Cancer patients undergo surgery more frequently than the general population and 

frequently choose an academic medical center for diagnostic and/or interventional 

procedures. The analytic framework presented in this paper conducts careful sensitivity 

analysis for protecting our inference against such selection biases, unbalanced case-

control ratios, and phenotypic enrichment. 

There are several innovative aspects to our study. Our study represents the first 

comprehensive PheWAS focused on using PRS in a cancer-enriched cohort accrued 

in an academic health center. Our study is also the first PheWAS focused on cancer. 

Our results demonstrate PRS, a summary score constructed based on results of large 

population-based GWAS, can be potentially useful for cancer risk stratification among 

patients in an academic medical center. We also note that when a PRS-based PheWAS 

leads to the association of a cancer-specific PRS (e.g., prostate cancer PRS) with other 

secondary related phenotypes (e.g., erectile dysfunction or urinary incontinence), these 

findings may require careful consideration. We observe that many of these secondary 

associations are often driven by the primary cancer diagnosis. We introduce the notion of 

“exclusion PRS PheWAS” to detect independent secondary associations that have 

shared genetic etiology. We extract the temporal order of diagnoses from the EHR to 

shed further insight into these secondary associations. 

Subjects and Methods 

MGI cohort 
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Participants were recruited through Michigan Medicine health system while awaiting 

diagnostic or interventional procedures either during a preoperative visit prior to the 

procedure or on the day of procedure that required anesthesia. Opt-in written informed 

consent is obtained. In addition to coded biosamples and protected secure health 

information, participants understand that all EHR, claims, and national data sources 

linkable to the participant may be incorporated into the MGI databank. Each participant 

donates a blood sample for genetic analysis, undergoes baseline vital signs and a 

comprehensive history and physical, and completes validated self-report measures of 

pain, mood and function, including NIH Patient Reported Outcomes Measurement 

Information System (PROMIS) measures. Data were collected according to Declaration 

of Helsinki principles. Study participants provided written informed consent, and protocols 

were reviewed and approved by local ethics committees (IRB ID HUM00099605).  In the 

current study, we report results obtained from 28,260 genotyped samples of European 

ancestry with available integrated EHR data (see summary characteristics of the cohort 

in Table 1). 

Genotyping and Sample Quality Control (QC) 

DNA from 37,412 blood samples was genotyped on two batches of customized Illumina 

HumanCoreExome v12.1 bead arrays (“UM_HUNT_Biobank_11788091_A1” [N = 

21,207] and “UM_HUNT_Biobank_v1-1_20006200_A” [N = 16,205]) that in addition to 

standard genome-wide tagging SNPs (~N=240,000) and exomic variants (N=~280,000) 

contained about 70,000 additional custom content variants, e.g. candidate variants from 

GWAS experiments, nonsense and missense variants from sequencing studies, ancestry 

informative markers, and Neanderthal variants. Genotype analysis was performed with 
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Illumina GenomeStudio (module 1.9.4, algorithm GenTrain 2.0). After initial clustering, 

variant cluster boundaries were re-defined in a second run using only individuals with call 

rate of at least 99% and genotyped the remaining samples afterwards. 

We excluded samples with: (1) call rate <99%, (2) estimated contamination >2.5 % (BAF 

Regress)20, (3) large chromosomal copy number variants (single chromosome with 

missingness >= five times larger than other chromosomes), (4) lower call rate than its 

technical duplicate or twin, (5) gonosomal constellations other than XX and XY, or (6) 

whose inferred sex did not match the reported gender. We excluded variants if: (1) their 

probes could not be perfectly mapped or mapped perfectly to multiple position in the 

human genome assembly (Genome Reference Consortium Human genome build 37 and 

revised Cambridge Reference Sequence of the human mitochondrial DNA; BLAT) 21, (2) 

they showed deviations from Hardy Weinberg equilibrium in European ancestry samples 

(P<0.0001), (3) had a call rate <99%, (4) another variant with higher call rate assayed the 

same variant or (5) if the allele frequency differences between the two array versions 

within unrelated, European ancestry samples had a P-value < 0.001 (PLINK v1.90)22. 

After quality control, 392,323 polymorphic variants remained. 

Before preparing the final analytical data set, we reduced the data to 33,028 samples for 

which we had complete age and ICD9 data available. Next, we estimated pairwise kinship 

with the software KING 23 and limited further analysis to a subset that contained no pairs 

of individuals with a 1st- or 2nd-degree relationship. We inferred recent ancestry by 

projecting all genotyped samples into the space of the principal components of the Human 

Genome Diversity Project reference panel using PLINK (938 unrelated individuals) 24; 25. 

We limited the principal component analysis to variants that were shared between the 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 3, 2018. ; https://doi.org/10.1101/205021doi: bioRxiv preprint 

https://doi.org/10.1101/205021
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 8 

HGDP reference and the MGI data, had a minor allele frequency >1%, and remained after 

LD pruning (r2<0.5; PLINK). Samples of recent European ancestry (~90% of participants) 

were defined as samples that fell into a circle around the center of the European HGDP 

populations in the PC1 versus PC2 space, whereas the circle’s radius was set to 1/8 of 

the distance between the center of the European HGDP populations and the centroid of 

the centers of the European, East Asian and Sub-Saharan populations (Figure S1). 

Principal components were stored and used for further association tests. After quality 

control, 28,260 unrelated, genotyped individuals of recent European ancestry with age 

and ICD9 data remained for further analysis.  

Phasing and Genotype Imputation 

We imputed genotypes of the Haplotype Reference Consortium using the Michigan 

Imputation Server 26 and filtered poorly imputed variants with R2<0.3 and/or minor allele 

frequency (MAF) < 0.1% resulting in over 17 million imputed variants available after 

quality control and filtering. The obtained accuracy for imputed variants, i.e. the average 

empirical R2 values for different MAF frequency bins, was: 0.89 (0.1%<=MAF≤0.5%), 0.94 

(0.5%<MAF≤5%), and 0.96 (MAF>5%). 

Phenome Generation 

We extracted the ICD9 data for 28,260 unrelated, genotyped individuals of recent 

European ancestry and mapped a total of 3.5 million ICD9 codes to PheWAS codes 

(PheWAS translation table version 1.2)12. The ICD9 codes (10,322 unique ICD9 codes) 

were aggregated to PheWAS traits using the PheWAS R package 12. Cases for a given 

PheWAS code were defined if an individual had at least one assignment of that PheWAS 

code in their record. The remaining individuals that did not have overlapping PheWAS 
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codes that are a part of the exclusion criteria were considered as controls. A total of 1,857 

case control studies were generated of which 1,711 with ≥20 cases were used for further 

analyses (see Table S1; phenotypes with < 50 cases were coded as “<50”). 

GWAS Catalog SNP Extraction and Construction of PRS  

We downloaded previously reported GWAS variants from the NHGRI-EBI Catalog (file 

date: June 31, 2017) 27; 28 . None of the discovery studies included in the catalog used 

any subset of the MGI cohort. This is primarily because MGI started recruiting in 2012 

and the genotype data only became available recently. Variant positions were converted 

to GRCh37 using variant IDs from dbSNP version 144 (UCSC genome browser) after 

updating outdated dbSNP IDs to their merged dbSNP IDs. Entries with missing risk 

alleles, risk allele frequencies, or odds ratios were excluded. We corrected alleles of non-

ambiguous SNPs to the forward strand of the genomic reference sequence so that the 

reported risk allele matched one of the alleles found at the corresponding position in the 

1000 Genomes Project genotype data. We only included entries with broad European 

ancestry (as reported by the NHGRI-EBI Catalog).  To allow an additional quality control 

check, we compared the reported risk allele frequencies (RAF) in controls with the 

frequencies of the 503 European samples of the 1000 Genomes Project reference data 

(Phase 3, release 5) 29. We then excluded entries whose RAF deviated more than 15% 

from the reference. This chosen threshold is subjective and was based on clear 

differentiation between correct and likely flipped alleles on the two diagonals (see Figure 

S2) as noted frequently in GWAS meta-analyses quality control procedures 30. For each 

analyzed cancer type, we extracted overlapping GWAS hits in our genotype data and 

estimated pairwise LD (r2) using the available allele dosages of the corresponding 
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controls. For pairwise correlated SNPs (r2>0.5) or SNPs with multiple entries, we kept the 

SNP with the younger publication date (and smaller P value, if necessary) and excluded 

the other (Figure S2 & Table S2). Finally, we weighted the allele dosages of risk SNPs 

of the risk increasing alleles with their reported log odds ratios and calculated PRS as 

their sum. Namely, for subject j in MGI the PRS was of the form PRSj=∑ 𝛽𝑖𝐺𝑖𝑗𝑖   where the 

sum extends over all included loci, 𝛽𝑖 are the log odds ratios retrieved from the GWAS 

catalog for locus i and 𝐺𝑖𝑗 was the measured dosage data for the risk allele on locus i in 

subject j. This variable was created for each MGI participant and for each cancer 

separately. 

Statistical Analysis 

For the current study, we initially explored 30 cancer traits that had matching entries in 

the GWAS catalog (Table S3), and restricted our analysis to 12 cancer traits with at least 

5 risk SNPs detected in the GWAS catalog after filtering that had relatively larger samples 

sizes in MGI (namely N≥250 cases) (Table 2). Logistic regression was used for all genetic 

association analysis. Firth's bias reduction method was applied to all single SNP and PRS 

models to resolve the problem of separation in logistic regression (Logistf in R package 

“EHR”) 31-33, a common problem for binary or categorical outcome models when for a 

certain part of the covariate space there is only one observed value of the outcome which 

often leads to very large parameter estimates and standard errors. Firth’s bias-reduction 

34 is a penalized likelihood method that reduces the bias in such situations by adding a 

penalty term to the likelihood. 
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To estimate the association of PRS with the primary cancer phenotype, we first 

determined the PRS quartiles using all control samples, categorized all samples 

according to these PRS quartiles and fitted Firth bias corrected logistic regression 

adjusting for age, sex, genotyping array, and the first four principal components. We 

report odds ratios corresponding to the top versus the bottom quartile PRS (reference), 

referred to as PRS OR. We also used continuous PRS instead of the categorized version 

as the covariate for enhanced power. 

To compare reported associations of individual GWAS catalog SNPs with association 

observed in the MGI data set, we tested the association between reported GWAS hits 

and its corresponding trait using Firth bias-corrected logistic regression implemented in 

EPACTS (version 3.3, see Web Resources). Age, sex, genotyping array, and principal 

components 1–4 were included as covariates (see Kinship and Ancestry Inference).  

To determine the agreement of estimated effect sizes [estimated log(odds ratios)] 

between the MGI case-control studies and the published GWAS catalog hits, we 

estimated Pearson’s correlation coefficient [𝜌]  and Lin’s concordance measure between 

the two sets of coefficients35; 36.  Towards more standard discovery type genome-wide 

association analysis with MGI data, we performed GWAS for the 9 cancer traits where 

the correspondence between the effect sizes were relatively strong [𝜌 ≥ 0.6 ], Table 2). 

For computationally efficient GWA analysis we used the score test-based saddle point 

approximation (SPA) 37 method adjusting for age, sex, genotyping array, the first four 

principal components. SPA was reported to provide accurate test statistics even for 

extremely unbalanced case-control ratios similar to Firth bias corrected logistic regression 

(see below) but was estimated to be 100 times faster than the latter 37.  
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For our primary PRS-PheWAS, for the six PRS in Table 2 that showed strong and 

significant association, we conducted Firth bias-corrected logistic regression by fitting a 

model of the following form and repeated them for each of the 1,711 phenotypes. 

logit (P(Disease=1|PRS, Age, Sex, Array, PC)) 

=𝛽0 + 𝛽𝑃𝑅𝑆𝑃𝑅𝑆 + 𝛽𝐴𝑔𝑒𝐴𝑔𝑒 + 𝛽𝑆𝑒𝑥𝑆𝑒𝑥 + 𝛽𝐴𝑟𝑟𝑎𝑦𝐴𝑟𝑟𝑎𝑦 + 𝜷 𝑃𝐶 

where the PCs were the first four principal components obtained from the principal 

component analysis of the genotyped GWAS markers and where “Array” represents the 

two genotyping array versions used in MGI accounting for potential batch effects. To 

adjust for multiple testing, we applied the conservative phenome-wide Bonferroni 

correction according to the 1,711 analyzed PheWAS codes (Table S1). Through a 

PheWAS plot, we present –log10 (P-values) corresponding to each of the 1,711 

association tests for 𝐻0: 𝛽𝑃𝑅𝑆 = 0.  Directional arrows on the PheWAS plot indicate 

whether a phenome-wide significant trait was positively or negatively associated with the 

PRS. 

Furthermore, our extensive sensitivity analyses included: (a) similar models adjusting for 

20 PCs, (b) matching cases to control and conducting conditional logistic regression 

analysis and (c) using the unweighted risk allele counts as predictor. The reason for these 

three sensitivity analyses was to check (a) if the first 4 PCs were sufficient to control for 

population stratification, (b) if differences in age and sex distributions or extreme case-

control ratios influenced the main analysis and (c) if ignoring effect sizes and using total 

risk allele count produced similar results.  For (b), we matched cases and controls using 

the R package “MatchIt” and applied nearest neighbor matching for age, PC1-4 (using 

Mahalanobis-metric matching; matching window caliper/width of 0.25 standard 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 3, 2018. ; https://doi.org/10.1101/205021doi: bioRxiv preprint 

https://doi.org/10.1101/205021
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 13 

deviations) and exact matching for sex. We considered a varying set of case:control 

matching ratios from 1:1 to 1:10. We observed gain in precision with increasing the 

number of matched controls per case, but the gain in precision became negligible after 

1:10 matching ratio (Table S6).  Moreover, for some cancers with large number of cases 

we could not attain 1:10 matching ratio for all cases and ended up with varying number 

of controls per case. For example, for prostate cancer the average number of matched 

controls per case was around 5 38. 

To investigate the possibility of the secondary trait associations with PRS being 

completely driven by the primary trait association, we performed a second set of PheWAS 

after excluding individuals affected with the primary cancer trait for which the PRS was 

constructed, referred to as “exclusion PRS PheWAS”. We applied “exclusion PRS 

PheWAS” instead of a PRS PheWAS that uses the primary cancer trait as covariate, 

because the control exclusion criteria implemented in the PheWAS phenotype 

construction pipeline will often eliminate these primary cancer cases from being eligible 

controls for some selected secondary related phenotypes and thus a logistic regression 

analysis will lead to complete separation12.  We also stratified the MGI data set (or the 

corresponding gender subset depending on cancer type) into ten groups of equal size by 

PRS deciles and determined the percentage of observed cases for secondary traits in 

each risk decile and conducted a test of significance in difference in proportions across 

the deciles before and after removing individuals affected with cancer traits related to the 

primary cancer trait. As a follow-up tool to understand the secondary associations we 

created a plot to display the temporal ordering of diseases plotted against time of 

diagnoses. If not stated otherwise, analyses were performed using R 3.4.1 39
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Results 

In the current study, we report results obtained from 28,260 genotyped and unrelated 

samples of inferred European ancestry with available integrated ICD9-based EHR data. 

The study sample contains 53.5% females and the mean age is 54 years (see Table 1 

for summary). We conducted our initial analysis on 12 cancer traits that after quality 

control had at least five independent risk variants in the NHGRI EBI GWAS Catalog and 

more than 250 cases in our cohort (Table 2, Table S2). Table 2 summarizes data on 

8,423 distinct individuals that were affected by at least one of the 12 cancers. Of these 

patients, 6,398 had one cancer, 1,574 had two cancers, and 451 had more than two 

cancer sites involved. 

Correspondence of MGI effect estimates with those reported in GWAS: To assess 

the calibration properties of the 12 ICD-9 based cancer case-control studies, we first 

compared the concordance of observed effect estimates (log odds ratios) from MGI with 

published effect estimates reported in the NHGRI EBI GWAS Catalog.  

We found strong positive correlation (estimated Pearson’s correlation coefficient [𝜌] > 0.6) 

between the MGI and GWAS reported estimates for 9 of the 12 cancers: female breast 

cancer (78 SNPs; [𝜌]=0.67 [95% CI: 0.53,0.78]), prostate cancer (PCa; 93 SNPs; [𝜌]=0.81 

[0.73,0.87]), melanoma (16 SNPs; [𝜌]=0.92 [0.77,0.97]), basal cell carcinoma (19 SNPs; 

[𝜌]=0.88 [0.71,0.95]), bladder cancer (MIM: 109800; 16 SNPs; [𝜌]=0.65 [0.22,0.86]), 

squamous cell carcinoma (5 SNPs; [𝜌]=0.95 [0.39,1]), lung cancer (MIM: 211980; 9 

SNPs; [𝜌]=0.90 [0.6,0.98]), thyroid cancer (9 SNPs; [𝜌]=0.79 [0.26,0.95]), and cancer of 

brain and nervous system (9 SNPs; [𝜌]=0.79 [0.26,0.95]) (Table 2; Table S5; Figure 1; 

Figure S3). 
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Cancer GWAS in MGI: After having established strong positive correlation for 9 of the 

12 cancer traits and thus a phenotype quality that appears to be in line with their 

corresponding published GWAS, we performed for each of these 9 cancers a GWAS to 

explore our ability to replicate and/or uncover cancer risk variants in a genome-wide 

setting. For the 9 cancers, we could replicate a total 55 of the 253 included risk SNPs with 

consistent effect orientation with P < 0.05 after correcting for the number of SNPs per 

phenotype (Table S7). We found genome-wide significant signals (P<5x10-8) for female 

breast cancer, melanoma of skin, basal cell carcinoma, squamous cell carcinoma and 

thyroid cancer. All but one of the genome-wide signals were found in loci already reported 

in the GWAS catalog for the corresponding cancer trait or related phenotypes.  For 

instance, the four melanoma of skin loci with risk variants near SLC45A2 (MIM 606202), 

IRF4 (MIM 601900), MC1R (MIM 155555) and ASIP/RALY (MIM: 600201) were 

previously reported to be associated with melanoma, non-melanoma skin cancer, 

squamous cell carcinoma, or basal cell carcinoma 40-44. Also, the two breast cancer risk 

loci near FGFR2 (MIM: 176943) and FGF3/FGF4 (MIM: 164950 / 164980) as well as the 

thyroid cancer risk loci near NRG1 (MIM: 142445) and FOXE1 (MIM: 602617) were 

previously described 45-48. The only potentially novel finding was the SNP rs77909434 on 

chromosome 13 showing borderline genome-wide association with melanoma (MAF in 

cases = 5.3%; MAF in controls = 3.4%; P = 1.5x10-8) located 53 kb downstream of the 

Fibroblast Growth Factor 9 gene (FGF9, MIM: 600921) on chromosome 13. Since 

multiple phenotypes were involved in the genome-wide explorations, this SNP would not 

have passed the Bonferroni multiple testing correction for multiple GWAS. Further 
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exploration in larger studies are warranted to substantiate this suggestive finding. We 

present GWAS Manhattan and QQ plots for all nine cancer traits in Figure S4. 

Owing to the smaller sample sizes compared to the studies included in the NHGRI-EBI 

GWAS Catalog, only 8 of 253 catalog SNPs exceeded the genome-wide significance 

(Table S5). However, we found catalogued risk SNPs in Table 2 were markedly enriched 

in the top 1% of GWAS associations, especially for the larger case/control studies. For 

example, 27 out of the 93 GWAS Catalog PCa risk SNPs fall in top 1% of associated 

SNPs in the MGI GWAS (with P<0.0083) (Table S8). 

Replicability of PRS Primary Cancer association: PRS integrates multiple SNPs, 

weighted by prior effect estimates and is expected to substantially improve the power to 

detect an association compared to an analysis with individual variants. To evaluate the 

association of PRS with the primary cancer trait, we estimated the OR for patients in the 

top risk quartile compared to the bottom quartile (PRS OR). Six of the 12 cancer PRS 

revealed an at least twofold enrichment of cases with PQ1vsQ4 < 2.0x10-10; all of which also 

showed strong positive correlation between the MGI and GWAS reported estimates (see 

above): female breast cancer (PRS OR  = 2.3 [95% CI: 2.0;2.7], P Q1vsQ4 = 2.5x10-29), 

prostate cancer (PRS OR = 3.3 [95% CI: 2.7;3.9], P Q1vsQ4 = 3.7x10-43), melanoma (PRS 

OR = 2.4 [95% CI: 2.0;2.8], P Q1vsQ4 = 2.6x10-31), basal cell carcinoma (PRS OR = 2.7 

[95% CI: 2.2;3.2], P Q1vsQ4 = 1.1x10-27), squamous cell carcinoma (PRS OR = 2.0 [95% 

CI: 1.6;2.5], P Q1vsQ4 = 2.0x10-10), and thyroid cancer (PRS OR = 3.2 [95% CI: 2.5;4.5], P 

Q1vsQ4 = 1.8x10-18) (Figure 1A-F, Table 2).  

The corresponding P-values obtained from Firth's bias-reduced logistic regression using 

continuous PRS were even stronger as expected and indicated that these six cancer traits 
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would withstand a Bonferroni multiple testing correction in a phenome setting (1,711 

traits; PPRS < 2.9 x 10-5): female breast cancer (PPRS=3.6x10-37), prostate cancer 

(PPRS=3.8x10-69), melanoma (PPRS=6.7x10-36), basal cell carcinoma (PPRS=3.3x10-44), 

cutaneous squamous cell carcinoma (SCC, PPRS=1.8x10-18), thyroid cancer (MIM: 

188550) PPRS=4.8x10-19) (Table 2, Table S3). We excluded the remaining six cancer traits 

from further investigation, because in this initial analysis they showed only little or 

moderate association (PRS OR < 1.5) and consequently only modest power for 

subsequent exploration of phenome-wide associations (Table 2). 

PRS PheWAS: Next, we evaluated each of the six remaining PRS that were strongly 

associated with the primary cancer trait across a collection of 1,711 EHR-derived 

phenotypes (not limited to cancer traits) with at least 20 cases each (Table S1). For each 

of the six cancer PRS, we found strongest associations with their primary traits, except 

for squamous cell carcinoma PRS which revealed its strongest association with the more 

general skin cancer trait definition (PPRS = 7.2x10-61) (Figure 2). Overall, we found no or 

little sign for inflation in our PheWAS results (median chi-squared based Lambda  1.16). 

Notably, we observed deflation for some PRS PheWAS that might be caused by lack of 

power especially for the phenotypes with small number of cases (Figure S5). We 

displayed the results from the three type of sensitivity analyses PheWAS next to the 

original results:  conditional logistic regression results from 1:10 matched (for age, sex 

and first four PCs) case-control studies; adjusting for 20 principal components; using  

unweighted sum of risk allele counts instead of weighted PRS (Figures S6-11). The 

results remained robust with respect to these design and analytic choices. 
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Secondary Associations: In addition, we identified for each PRS novel associations with 

secondary traits besides their primary traits (Figure 2 A-F, Table S9). For example, we 

observed associations of the three skin cancer PRSs (PRS for melanoma, basal cell 

carcinoma, and squamous cell carcinoma) with overall skin cancer and  other skin cancer 

sub categories – expected due to their overlapping SNP sets – but also significantly 

associated with multiple dermatologic phenotypes, e.g. actinic keratosis (PPRS < 

1.2x10-10) and other degenerative skin conditions or disorders, all potential pre-cancer 

stages (Figure 2C,D,E). 

Similarly, the female breast cancer PRS was associated not only with breast cancer (PPRS 

=3.6x10-37) but also with acquired absence of breast (PPRS=2.4x10-14), abnormal 

mammogram (PPRS =1.3x10-8), benign neoplasms of the breast (PPRS =1.8x10-7) and 

benign mammary dysplasias (PPRS =1.2x10-5) (Figure 2A). The PRS originally 

constructed for prostate cancer was associated with prostate cancer (PPRS =3.8x10-69), 

as expected, but also with four additional traits: elevated prostate specific antigen (PPRS 

=9.3x10-27), erectile dysfunction (PPRS =6.3x10-15), urinary incontinence (PPRS =6.6x10-11), 

frequency of urination and polyuria (PPRS =2.9x10-6), and hyperplasia of prostate (PPRS 

=3.6x10-6) (Figure 2B, Table S9). 

While all of the above mentioned secondary trait associations were in the same effect 

orientation as their primary traits, i.e. increasing PRSs were associated with increased 

risk for the secondary trait, we observed an association of increasing thyroid cancer PRS 

with decreased risk for hypothyroidism (PPRS =7.0x10-10) (Figure 2F). 

Exploring Secondary PRS PheWAS Associations via Exclusion PRS PheWAS: 

Since we already applied exclusion criteria to the controls during our phenome 
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generation, e.g., individuals with elevated prostate specific antigen levels were excluded 

from being controls for prostate cancer and vice versa, we could not adjust for the primary 

cancer traits as a predictor in logistic regression models to identify independent 

secondary PRS PheWAS associations due to the issue of complete separation. To 

alternatively explore the secondary associations in PRS PheWAS (Figure 2), we 

proposed and performed “exclusion PRS PheWAS” by removing subjects affected with 

the cancer or related cancer traits for which the PRS was constructed. After removing all 

breast cancer cases (N = 1,894) no association with breast cancer PRS remained 

significant, e.g., acquired absence of breast (PPRS = 0.52), abnormal mammogram (PPRS 

= 0.76) or benign neoplasms of the breast (PPRS = 0.49), indicating that the secondary 

trait associations were driven by the primary trait (Figure S12A). However, we noted that 

the majority of cases of the non-neoplasm phenotype “Acquired absence of breast” 

(>94.4%; 624 of 661) were removed in this step as they are highly correlated with breast 

cancer. We made similar observations for prostate cancer PRS where none of the 

previously detected secondary trait associations remained phenome-wide significant after 

removing all 1,425 prostate cancer cases (Figure S12B). 

In contrast, we found a markedly stronger association between hypothyroidism and 

thyroid cancer PRS after removing 472 thyroid cancer cases (PPRS = 4.7x10-19) compared 

to the full analysis (PPRS = 7.0x10-10) which is consistent with the effect orientations 

between thyroid cancer PRS and hypothyroidism (Figure 2F). 

To account for the substantial overlap between skin cancer sub types, e.g. 253 of the 

1,404 individuals affected with melanoma are also affected by basal and/or squamous 

cell carcinoma (Figure S13) and to account for the likely intensified skin cancer screening 
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of individuals that were diagnosed with skin cancer once in their life time, we excluded 

any type of skin cancer (N = 3,910) and repeated the PheWAS for melanoma, basal cell 

carcinoma, and squamous cell carcinoma PRS. After doing so, only actinic keratosis 

remained statistically associated with squamous cell carcinoma PRS while all of the 

previously observed associations mainly driven by skin cancer diagnoses disappeared 

(Figure 2C-E and Figure S12C-E). The association between squamous cell carcinoma 

PRS and actinic keratosis was less pronounced after excluding skin cancer cases but still 

remained phenome-wide significant (PPRS = 2.3x10-36 versus PPRS = 1.1x10-12). 

To further understand the discovered secondary associations in the PRS PheWAS 

analyses (Figure 2 and Figure S12), we conducted a simple follow-up analysis by 

stratifying the data into PRS deciles. We only discuss selected secondary trait 

associations for the prostate cancer (PCa), squamous cell carcinoma (SCC) and thyroid 

example in the main text and relegate their comprehensive analysis and a similar analysis 

of breast cancer, melanoma and basal cell carcinoma PRS to the supplemental material 

(Table S10). For prostate cancer, we stratified a total of 12,026 male individuals in MGI 

with age ≥30 years into deciles of PCa PRS. The observed PCa PRS associations in the 

PheWAS analysis are further supported by their respective increasing trait prevalences 

that are observed across 10 PCa PRS decile-stratified strata (Figure 3A; Table S10). 

These strata were not adjusted for confounders, but it is less likely that PRS is strongly 

associated with other covariates. A striking observation is that the proportion of PCa 

cases in lowest versus highest decile of PCa PRS is 5.4% versus 23.4% (=18.0% [95% 

CI, 15.2 to 20.7%]; P=8.3x10-36) emphasizing that the PRS can distinguish well between 

high and low risk individuals in a realistic academic medical center population. 
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Focusing on the secondary traits that reached phenome-wide significance with the PCa 

PRS, all these traits are known to be associated with PCa: erectile dysfunction (ED), and 

urinary incontinence (UI) – which commonly follows invasive surgical removal of the 

prostate – and elevated prostate specific antigen levels (ePSA) – which is a known 

biomarker for an increased PCa risk being closely monitored after prostatectomy. For 

example, when comparing the lowest versus the highest PRS risk decile, we found 

significant differences for ePSA (3.9% versus 11.2%; =7.3% [95% CI, 5.1 to 9.5%]; 

P=2.0x10-36), ED (9.7% versus 17.1%; =7.4% [95% CI, 4.6 to 10.2%]; P=1.4x10-7), and 

UI (4.7% versus 11.9%; =7.2% [95% CI, 5.0 to 9.5%]; P=2.0x10-10). To test whether 

these associations are early indicator for PCa or whether they are driven by the fact that 

subjects affected by these secondary traits are also PCa cases (perhaps as a side effect 

of PCa treatment), we removed PCa cases and evaluated secondary disease prevalence 

across PCa PRS deciles. By doing so, prevalence of all secondary traits became roughly 

constant across PRS strata (Figure 3A; Table S10) and can be illustrated by the 

comparison of the proportions of the lowest versus the highest PRS risk decile: ePSA 

(2.8% versus 2.2%, =-0.6% [95% CI, -1.9 to 0.8%]; P=0.44), ED (7.6% versus 6.5%, =-

1.1% [95% CI, -3.2 to 1.0%]; P=0.34), and UI (3.0% versus 2.8%, =0.2% [95% CI, -1.6 

to 1.3%]; P=0.90). Based on these observations, we hypothesize that the association of 

PCa PRS on the secondary traits ePSA, ED, and UI were driven by the PCa diagnosis, 

through either prior symptoms of PCa or prescribed medication, chemotherapy or surgical 

procedures for prostate removal (Table S10). 

For SCC PRS stratification, there was a gradual increase of individuals affected with SCC 

with increasing PRS risk deciles, a trend that was also noted for actinic keratosis, 
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dermatitis due to solar radiation, and seborrheic keratosis (Figure 3B). However, when 

excluding cases with skin cancer, the upward trend for the latter two phenotypes 

disappeared. The previously observed difference between the top and bottom PRS risk 

decile of individuals affected with actinic keratosis (5.5% versus 13.2% (=7.7% [95% CI, 

6.1 to 9.3%]; P=4.0x10-21) was markedly reduced after excluding skin cancer cases but 

still remained significant (2.8% versus 5.1% (=2.4% [95% CI, 1.3 to 3.5%]; P=1.6x10-5) 

(Table S10) suggesting the potential for common genetic risk profiles between SCC and 

actinic keratosis. Since actinic keratosis is a known precursor for squamous cell 

carcinoma49, our approach indicated that it is possible to identify phenotypic risk factors 

through phenome-wide association scans and careful follow-up investigation of primary 

and secondary diagnoses. 

Finally, we found an attenuated association between increasing thyroid cancer PRS and 

reduced risk for hypothyroidism: within all 25,681 samples >= 30 years of age the 

difference between bottom and top decile was =-3.5% ([95% CI, -5.4 to -1.6%]; 15.1% 

versus 11.5%; P=2.5x10-4) and after excluding 452 thyroid cancer cases it increased to 

=-5.3% ([95% CI, -7.1 to -3.5%]; 14.4% versus 9.1%; P=4.5x10-9) (Table S10). Several 

studies previously reported genetic overlap of a subset of thyroid cancer risk variants and 

variants associated with serum levels of thyroid stimulating hormone (TSH) which 

matches the current observed association between thyroid cancer risk and risk for 

hypothyroidism 47; 48. 

To further our understanding of the observed secondary associations, we take advantage 

of the temporally resolved electronic health records data and explore the temporal order 

in which the diagnoses appear. Figure 4 shows that actinic keratosis diagnosis mostly 
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precedes the diagnosis of squamous cell carcinoma and sometimes by even 10 years. 

Erectile dysfunction or hypothyroidism, known side-effects of treatment of prostate and 

thyroid cancer (respectively), are mostly identified within a short timeframe of primary 

cancer diagnosis. Whereas elevated PSA, used as a screening tool for prostate cancer 

with known shared genetic correlation is observed mostly prior to a prostate cancer 

diagnosis and also after treatment as a prognostic marker. Having access to the 

electronic health records enables us to explore these temporally ordered data patterns 

and understand the explanation behind these secondary associations. 

 

Discussion 

Integration of large-scale biorepositories such as genetic data with EHRs are becoming 

increasingly common and indispensable for next-generation etiology studies. In this 

paper, we proposed, demonstrated and tested trait-specific PRS that summarize the 

results of large population-based GWAS studies towards cancer risk prediction in an 

actual academic medical center population managed by Michigan Medicine. Data 

repositories like MGI, allow us to explore many traits simultaneously whereas population-

based case-control studies focus on one specific trait. It is indeed encouraging that the 

results of population-based studies corroborate with the phenotypes computed from EHR 

data. We found improved trait prediction power of the composite PRS compared to single-

SNP analyses. We also replicated catalogued associations of SNPs for some cancer 

traits, observed excellent correspondence of effect estimates and discovered novel 

secondary trait associations with cancer PRS that were not driven by the primary cancer 
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diagnoses. To our knowledge this is the first comprehensive PRS PheWAS study and the 

first PheWAS study focused on cancer. 

We have introduced several novel analytic strategies in this paper. We presented a 

principled framework and quality-control pipeline to create a PRS from a large curated, 

public database and to perform PRS PheWAS in a potentially biased sample. We 

introduced a primary PheWAS using Firth's bias-reduced logistic regression which has 

the advantage of resolving the problem of separation in logistic regression and providing 

well-controlled type I error rates for unbalanced case control studies with relatively small 

sample counts 31; 32; 50. These issues are often present in large EHR-based phenomes 

where controls are frequently hundredfold more abundant than cases. In addition, we 

conducted thorough sensitivity analyses to check the robustness of our findings by using 

PheWAS with unweighted risk allele counts, adjusting for 20 PCs and PRS PheWAS 

based on matched controls. All our reported results remained robust under these 

sensitivity analyses. 

To distinguish PRS-trait associations that truly derive from a shared genetic risk profile 

from secondary associations that are potentially driven by the primary trait (for example 

urinary incontinence or erectile dysfunction following prostate cancer treatment), we 

further introduced a modified PRS PheWAS approach that excludes the PRS’s underlying 

cancer traits. While reducing overall sample size, this “exclusion PRS PheWAS” approach 

is statistically preferable in contrast to a PRS PheWAS that conditions on the primary 

cancer trait. A conditional PheWAS approach is often affected by unilaterally applied 

exclusion criteria of controls that occur during the phenome construction, e.g. PCa cases 

were excluded from being eligible controls for elevated PSA levels and vice versa. Our 
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approach could directly discard trait associations driven by the primary cancer diagnosis 

and has the potential to identify clinically useful diagnostic traits among many that are 

conveniently measured in panel tests of biomarkers. When an association with a 

secondary trait disappears by removing the primary cancer cases in an exclusion 

PheWAS, there can be several alternative explanations: truly shared genetic correlation, 

intensified screening/examination due to detection of an initial cancer, a screening 

biomarker/pre-cancer phenotype or simply post treatment effects. We used the temporal 

ordering of the diagnoses to understand which of the above explanations appear plausible 

for a given scenario. Further exploration of our findings in larger biobank studies, like the 

UK Biobank study, is warranted and will empower a deeper understanding of relevant 

pre-cancer traits 51.  

There are several limitations to the current study. We decided to rely on the associations 

reported in the NHGRI-EBI GWAS Catalog instead of focusing on the latest and largest 

GWAS study specific for each cancer trait. Our rationale for choosing the NHGRI-EBI 

GWAS Catalog as our source for extracting summary statistics were primarily three-fold: 

(1) Data quality: Summary statistics in the GWAS Catalog underwent a detailed expert 

curation and harmonization 28; 52 that avoids redundancy, allows reliable SNP position 

extraction, and most importantly ancestry matching; We wanted to use a database that is 

publicly accessible and applies the same set of criteria to update reported results across 

a wide variety of phenotypes. (2) Reproducibility: We provided detailed instructions on 

how to extract and filter GWAS Catalog summary statistics to construct PRS. This will 

allow interested readers to easily apply our approach to the regularly updated GWAS 

catalog versions or to a different ancestry group and/or broad set of disease categories 
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without requiring detailed and deep literature searches that could be somewhat 

subjective. (3) Scalability to Multiple Phenotypes: One can construct PRS for specific 

cancers of primary interest from the latest GWAS meta-analyses following the same 

prescriptions we provided. Using the latest GWAS result is likely to enhance power of a 

PRS PheWAS. Similarly using a PRS that is based on a truly polygenic model with many 

more variant (or the entire genome) instead of considering the GWAS hits may reveal 

new associations. 

We restricted our analysis to GWAS results from studies of broad European ancestry to 

match them to our cohort of predominantly European ancestry and to allow an extra 

filtering of potential swaps in directionality of risk allele in published GWAS studies that 

otherwise could have negatively affected the correlative properties of our constructed 

PRS. One could modify or extend construction of PRS based on global ancestry, 

functionality of the variant and use other weighting schemes. Stratifying the present 

analysis by young onset cancers, metastatic/aggressive cancers or tumor subtype will 

shed further insight into cancer biology, cancer genetics and specificity of the PRS-cancer 

association. We have mostly ignored the temporal ordering in the diagnoses codes by 

defining dichotomous phenotypes of interest. Exploring the time-stamped data in greater 

detail may be instrumental in understanding the secondary associations like the negative 

association between hypothyroidism and thyroid cancer PRS. 

Though we note some very encouraging and promising results for the cancer traits with 

modest number of cases and controls and with a larger number of variants reported in 

the NHGRI-EBI GWAS catalog, we also note that the correlation of effect estimates or 

the PRS-cancer association was not very strong for some cancers (Table 2). This could 
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be due to limited sample size/power, heterogeneity in the definition of the cancer 

phenotype, incomplete specification of PRS, differences in allele frequencies in the MGI 

population, or misclassification of ICD-9 codes. To address concerns with 

misclassification we conducted detailed chart review of 50 randomly sampled cases with 

at least one cancer PheWAS code and verified their primary and secondary cancer 

diagnosis. We could verify 149 of the 151 diagnoses and found 49/50 patients to have 

accurate record of their cancer diagnosis. Based on this we conclude that the rate of 

misclassification will likely be low for ICD 9 codes associated with cancer.  

In this paper, we have focused on cancer traits. The low misclassification rate of cancer 

traits, typical within academic health and cancer centers, along with effective sensitivity 

analyses partly protect the results against imprecise case definitions and confounding. 

For non-cancer disease traits, more stringent ICD-9 defined cases, e.g., by repeated ICD-

9 diagnoses, of adequate sample sizes might alleviate the biases from case 

misclassification.  Future analysis will need to control for potentially different levels of 

misclassification error across phenotypes. 

Our phenome comprised a total of 1,711 ICD9-based phenotypes and by its implemented 

design of hierarchical phenotypes with different levels of specificity induce a certain 

degree of redundancy. While we applied the multiple testing correction for 1,711 

performed tests, we acknowledge that this threshold might be too conservative. For 

examples, we estimated a maximal set of 1,452 phenotypes with all pair-wise correlations 

r2 < 0.5 before applying any exclusion criteria to the controls. In addition, the PheWAS 

approach often applies similar exclusion criteria to related phenotypes and thereby further 
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reduces the observable independence of case-control studies. Future studies are needed 

to determine the effective number of independent tests in such a phenome-wide analysis. 

Besides the ICD-9 codes used for case and control definitions, EHR databases generally 

contain vast amount of additional patient information including ICD-10 codes, temporal 

laboratory tests, drug prescriptions, inpatient and outpatient records, etc. Future analyses 

that leverage these heterogeneous data sources that might be predictive of disease 

outcomes could further improve disease risk predictions. It will be interesting to study 

whether PRS for cancer risk behaviors like smoking, alcohol and obesity predict cancer 

phenotypes. Tailored and validated models capable of integrating multiple sources of 

molecular and environmental data data for predicting risks of disease will be crucial.  
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Supplemental Data 

Supplemental Data include 13 figures and 10 tables. 
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Figure 1. Calibration of association parameters 

Calibration of association parameters between the MGI-GWAS and NHGRI-EBI GWAS 

Catalog derived effect estimates [log(OR)] for (A) breast cancer (females only), (B) 

cancer of prostate, (C) melanoma, (D) basal cell carcinoma, (E) squamous cell 

carcinoma, and (F) thyroid cancer. The agreement of two sets of SNP-specific beta 

coefficients (non-reference allele is the effect allele), their Pearson Correlation 

(Coefficient 𝜌, incl. 95% confidence interval and P) and Lin’s correspondence correlation 

(coefficient CCC; incl. 95% confidence interval) are shown; dashed line: perfect 

concordance; solid line: fitted line. 

 

Figure 2. PRS PheWAS plots 

PRS PheWAS plots for (A) breast cancer (females only), (B) cancer of prostate, (C) 

melanoma, (D) basal cell carcinoma, (E) squamous cell carcinoma, and (F) thyroid 

cancer. 1,711 traits are grouped into 16 color-coded categories as shown on the 

horizontal axis; the p-values for testing the associations of PRS with the traits are minus 

log-base-10-transformed and shown on the vertical axis. Triangles indicate phenome-

wide significant associations with their effect orientation (up-pointing = risk increasing; 

down-pointing = risk decreasing). PRS upon multiplicity adjustment (see Methods). The 

solid horizontal line for P=2.9 x10-5 cut-off. 
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Figure 3. Proportion of primary and secondary traits stratified by PRS deciles 

Percentage of primary and selected secondary traits in each cancer PRS category for (A) 

prostate cancer, (B) squamous cell carcinomas, and (C) thyroid cancer. Observed 

percentages in the MGI database as represented by the height of bars for each of 10 

increasing decile-stratified PRS strata from left to right. The PRS’s underlying trait is 

shown on top and secondary traits below with (blue) and without (green) overlapping 

relevant cancer cases. Only individuals with age≥30 years were included in each analysis, 

with the prostate cancer PRS example only includes male individuals (see Table S10 for 

detailed sample sizes and percentages). 

 

Figure 4. Temporal order of diagnoses: (A) elevated PSA levels (ePSA) and PCa in 

452 individuals with PCa and ePSA; (B) erectile dysfunction (ED) and prostate cancer 

(PCa) in 575 individuals with ED and PCa; (C) actinic keratosis (AK) and squamous cell 

carcinoma (SCC) in 286 individuals with AK and SCC; and (D) hypothyrodism (HT) and 

thyroid cancer (TCa) in 298 individuals with HT and TC. The time of the first non-cancer 

diagnosis relative to the cancer diagnosis is shown in weeks; before (blue) and after (red) 

the cancer diagnosis.
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Tables 

Table 1 Demographics and clinical characteristics of the final analytic data set  

Characteristic Analytic Data Set 

N 28,260 

Females, N (%) 15,113 (53.5%) 

Mean Age, years (S.D.) 54.1 (15.9) 

Total number of ICD9 code days 3.5 million 

Number of unique ICD9 codes 10,322 

Median number of visits per participant 23 

Median days between first and last visit 1,265 

Median ICD9 code days per participant 28 
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Table 2. Association analysis of cancer traits with at least five NHGRI EBI GWAS Catalog risk SNPs and more than 250 cases 
in MGI.  

Cancer Trait a N Cases 
N 

Controls 

N 
Risk SNPs 
used for 

PRS b 

Effect Size Correlation 
[𝝆̂] between GWAS 
Catalog and MGI 

[95% CI] 

Effect Size 
Correspondence 

(Lin's CCC) 
MGI versus GWAS 

Catalog 
[95% CI] 

Estimated PRS-Cancer Association 

PRS Odds Ratio  
[95% CI] 

Pc 

Continuous PRS 
(normalized by 

IQR) Point 
Estimate 
 [95% CI] 

Pd 

Breast cancer [female] e 1,827 11,073 78 0.67 [0.53,0.78] 0.64 [0.51, 0.75] 2.3 [2.0,2.7] 
2.5x10-29 

1.6 [1.5,1.7] 
3.6x10-37 

Cancer of prostatee 1,425 9,793 93 0.81 [0.73,0.87] 0.74 [0.66, 0.81] 3.3 [2.7,3.9] 
3.7x10-43 

2.0 [1.9,2.2] 
3.8x10-69 

Melanomas of skine 1,404 23,798 16 0.92 [0.77,0.97] 0.91 [0.77, 0.97] 2.4 [2.0,2.8] 
2.6x10-31 

1.6 [1.5,1.7] 
6.7x10-36 

Basal cell carcinomae 1,124 23,798 19 0.88 [0.71,0.95] 0.85 [0.68, 0.94] 2.7 [2.2,3.2] 
1.1x10-27 

1.8 [1.6,1.9] 
3.3x10-44 

Cancer of bladder 978 26,748 16 0.65 [0.22,0.86] 0.57 [0.22, 0.79] 1.4 [1.2,1.7] 
0.00018 

1.2 [1.1,1.3] 
4.9x10-6 

Non-Hodgkins lymphoma 878 26,794 18 0.51 [0.05, 0.79] 0.24 [0.028,0.43] 1.3 [1.1,1.6] 
0.0063 

1.1 [1.0,1.3] 
0.0029 

Colorectal cancer 718 22,183 42 0.48 [0.21,0.68] 0.39 [0.17,0.58] 1.3 [1.1,1.6] 
0.011 

1.2 [1.1,1.3] 
0.00078 

Squamous cell carcinomae 703 23,798 5 0.95 [0.39,1.00] 0.92 [0.57, 0.99] 2.0 [1.6,2.5] 
2.0x10-10 

1.6 [1.5,1.8] 
1.8x10-18 

Malignant neoplasm of kidney, except pelvis 613 26,748 7 0.33 [-0.57,87] 0.053 [-0.094, 0.20] 0.98 [0.77,1.3] 
0.89 

0.99 [0.89,1.1] 
0.86 

Cancer of bronchus, lung 570 27,596 9 0.90 [0.60,0.98] 0.82 [0.53, 0.93] 1.2 [0.91,1.6] 
0.13 

1.1 [0.99,1.2] 
0.091 

Thyroid cancere 472 26,692 8 0.97 [0.82,0.99] 0.94 [0.82, 0.98] 3.2 [2.5,4.5] 
1.8x10-18 

1.7 [1.4,1.9] 
4.8x10-19 

Cancer of brain and nervous system 321 27,069 9 0.79 [0.26,0.95] 0.66 [0.25,0.87] 1.3 [0.92,1.7] 
0.13 

1.2 [1,1.4] 
0.042 

 

a  underlying ICD9 codes are listed in Table S4  
b GWAS Catalog SNPs after quality control; corresponding summary statistics are listed in Table S2, and Table S5 
c Odds ratio for each cancer with top PRS quartile compared to bottom PRS quartile. Point estimates, confidence intervals and P- values are obtained by fitting 
Firth's Bias-Corrected Logistic Regression. 
d Association of each cancer with continuous PRS that were normalized by their interquartile ranges. Point estimates, confidence intervals and P- values are 
obtained by fitting Firth's Bias-Corrected Logistic Regression. 
e  OR>1.5, Pcontinous PRS<2.9 x 10-5, selected for PRS-PheWAS analysis 
Notes: PRS = polygenic risk score, CI = confidence interval, IQR = interquartile range.
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Dermatitis due to solar radiation
Chronic dermatitis due to solar radiation

Skin cancer

Melanomas of skin, dx or hx

Melanomas of skin

Other non−epithelial cancer of skin
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Degenerative skin conditions and other dermatoses

Actinic keratosis

Seborrheic keratosis

Dermatitis due to solar radiation
Chronic dermatitis due to solar radiation

Skin cancer

Melanomas of skin, dx or hx

Melanomas of skin

Other non−epithelial cancer of skin

Basal cell carcinoma

Squamous cell carcinoma

Carcinoma in situ of skin

Neoplasm of uncertain behavior of skin
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