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Abstract: 10 

An important question about color vision is: how does the brain represent the color of an object? The 11 

recent discovery of “color patches” in macaque inferotemporal (IT) cortex, the part of brain responsible 12 

for object recognition, makes this problem experimentally tractable. Here we record neurons in three 13 

color patches, middle color patch CLC (central lateral color patch), and two anterior color patches ALC 14 

(anterior lateral color patch) and AMC (anterior medial color patch), while presenting images of objects 15 

systematically varied in hue. We found that all three patches contain high concentrations of hue-16 

selective cells, and the three patches use distinct computational strategies to represent colored objects: 17 

while all three patches multiplex hue and shape information, shape-invariant hue information is much 18 

stronger in anterior color patches ALC/AMC than CLC; furthermore, hue and object shape specifically for 19 

primate faces/bodies are over-represented in AMC but not in the other two patches.  20 
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Introduction 30 

We see the world in color because different objects are composed of materials with different 31 

reflectance spectra. The perception of color involves processing at multiple stages of the visual system. 32 

Recordings in early parts of the visual system reveal double-opponent cells in area V1 1,2 and hue-33 

selective cells in areas V2 and V4 3,4; these cells allow the brain to compute the local hue at each location 34 

across a surface. But color processing does not end with extraction of local hue: the brain needs to 35 

integrate information about hue distributions across space with information about large-scale object 36 

shapes, to enable an organism to recognize and respond appropriately to colored objects. For example, 37 

in Fig. 1a, we readily perceive a red apple, which requires (1) correctly discriminating the object from the 38 

background, and (2) extracting the dominant hue within the object (Fig. 1a).  39 

In theory, there are two possible mechanisms by which the brain could effectively organize information 40 

about the color and shape of colored objects (we use the term “shape” to refer to all aspects of an 41 

object’s identity independent of hue, not simply overall shape). Color and shape information could be 42 

segregated into parallel channels, resulting in shape-invariant color-selective units and color-invariant 43 

shape-selective units (Fig. 1b, top). Alternatively, units could be sharply tuned to both color and shape 44 

(Fig. 1b, bottom). Our ability to name colors independent of shape (e.g., a “red” traffic light or a “red” 45 

apple) supports the first scheme, while our ability to respond to specific color-shape combinations (e.g., 46 

stop at a red traffic light, eat a red apple) supports the second scheme (though it’s also possible such 47 

semantic representations are not directly related to visual representations). In addition to asking how 48 

single cells encode shape and color at different stages of visual processing, we can also ask how the 49 

representation of colored objects at different stages of visual processing is transformed at the 50 

population level: are shape and color co-represented within intermingled cell populations along the 51 

entire visual pathway, or do they become segregated into separate populations?  52 

To clarify how the representation of object color is transformed in the visual system following the 53 

extraction of local hue information at both the single cell and population level, we targeted fMRI-54 

identified “color patches” in inferotemporal (IT) cortex 5 for electrophysiological recordings in three 55 

macaque monkeys.  IT cortex has long been believed to be responsible for the representation of object 56 

shape 6,7, but a recent fMRI study revealed a set of regions in macaque IT selective for colored compared 57 

to grayscale gratings 5. Interestingly, color patches were yoked in position to face patches 5, regions in IT 58 

cortex selective for faces 8. The localization of color patches within IT cortex implicates their role in 59 

representing color within the context of object recognition, while the stereotyped relative localization of 60 

color patches and face patches raises the possibility that a hierarchical functional organization for 61 

processing colored objects exists, mirroring that for processing facial identity in the face patches 9. 62 

Previous studies of color processing in monkeys have mostly used artificial stimuli, such as white noise, 63 

sinusoidal gratings or simple geometric shapes 5,10-12, while  previous studies of object representation in 64 
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IT have mostly used grayscale images, ignoring color variations 13,14. This is unsatisfying, given that 65 

colored objects are the only natural visual inputs. Here, we explored the co-representation of color and 66 

object identity by presenting images of objects systematically varied in color, while recording from color 67 

patches in IT.    68 

Results 69 

Recording sites, connectivity and stimulus generation 70 

We first localized color patches in three monkeys with fMRI using colored versus black-white gratings 5 71 

(Fig. 1c). This revealed the central lateral, anterior lateral, and anterior medial color patches (CLC, ALC, 72 

and AMC) in monkey M1, CLC, ALC, and the anterior fundus color patch (AFC) in monkey M2 (we could 73 

not find AMC in this animal), and CLC, ALC, and AFC in monkey M3 (we could not find AMC in this 74 

animal). Next, we electrically microstimulated color patches while performing simultaneous fMRI (see 75 

Methods), to reveal the anatomical connectivity of color patches, and to potentially identify AMC in 76 

monkeys M2 and M3. This technique has previously been used to study the connectivity of face patches 77 
15, and to reveal a place-selective region downstream of another place-selective region that had been 78 

identified using fMRI 16. Stimulating ALC in monkey M2’s left hemisphere activated three additional 79 

patches. Two of these patches overlapped with AFC and CLC identified by the color localizer (Fig. 1d), 80 

while one of these patches was located anterior to the stimulation site, on the ventral surface of the 81 

inferotemporal gyrus medial to the anterior middle temporal sulcus. Based on its location and 82 

connectivity to ALC, we designated this patch AMC (Fig. 1c, d). Possibly this patch was actually missing 83 

and we found another one, however, importantly, physiology was consistent between monkeys for AMC 84 

identified in the two ways. Furthermore, stimulating CLC in the right hemisphere of monkey M2 85 

activated a patch overlapping with ALC as identified by the color localizer (Supplementary Fig. 1). Overall, 86 

these results suggest that color patches in IT cortex form a strongly and specifically interconnected 87 

network, similar to face patches 15, and allowed us to identify a color patch anterior to ALC in an animal 88 

in which it was missing based on the color localizer experiments. 89 

We next targeted middle color patch CLC, and anterior color patches ALC and AMC for 90 

electrophysiological recordings. For comparison, we also targeted several sites in IT outside the color 91 

patches, including face patch AM. To study the co-representation of color and object shape, we 92 

generated a stimulus set of 82 images from 10 different categories (Supplementary Fig. 2a), each 93 

rendered in 8 different hues (Fig. 1e; see Methods).  In this way, we varied hue information and object 94 

shape information independently and simultaneously. Grayscale images and the original color images 95 

were also included in the stimulus set.   96 

Representation of hue by neurons in color patches 97 
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Color stimuli were presented for 200 ms (ON period) interleaved by a gray screen for 200 ms (OFF 98 

period) during recording. The full stimulus set was presented 7-10 times for each cell recorded. 99 

Responses of all cells in each patch as well as cells outside the color patches to grayscale images and a 100 

subset of color images are shown in Fig. 2.  ANOVA analysis was performed to test the significance of 101 

color tuning (see Methods). 74.7% (65/87) of cells recorded in CLC, 84.6% (55/65) of cells in ALC and 102 

88.9% (80/90) of cells in AMC were significantly color tuned (ANOVA, p<0.001); outside the color 103 

patches, only 27.3% (9/33) of cells were significantly color tuned. Within color patches, only significantly 104 

tuned cells were used for further analysis.  105 

Responses to the 10 color conditions for all color-selective cells, grouped according to object category, 106 

are shown in Fig. 3a. Each row represents one cell; cells in each patch are sorted according to hue 107 

preference, computed using responses of each cell to 8 hues averaged across all 82 objects. There is 108 

clear consistency of hue tuning across categories, especially for ALC and AMC. Hue consistency was 109 

quantified by computing the correlation of hue tuning across categories (Supplementary Fig. 3a; see 110 

Supplementary Fig. 3b for correlations between all pairs of categories). We found all neurons 111 

demonstrated a positive correlation, with ALC and AMC significantly more consistent than CLC 112 

(W(65,55)=3215, p=2*10-4 between CLC and ALC; W(65,80)=3473, p=4*10-7 between CLC and AMC; 113 

W(55,80)=3767, p=0.91 between ALC and AMC, Wilcoxon rank sum test; average correlation value: 114 

0.533 for CLC, 0.686 for ALC, 0.706 for AMC, and 0.119 for outside color patches). Outside the color 115 

patches, consistency of hue tuning was much lower (Supplementary Fig. 3a, W(33,200)=803, p=5*10-17, 116 

Wilcoxon rank sum test).  117 

We observed a difference between hue tuning in CLC/ALC compared to AMC. Most AMC cells preferred 118 

red or yellow to other hues, leading to an under-representation of green and blue (Fig. 3a, arrow); in CLC 119 

and ALC, different hues were more evenly represented (Fig. 3a; the proportion of cells preferring the 4 120 

hues, from purple to green in CLC, ALC and AMC is 33.9 %, 47.3 % and 8.7 %. Chi-square test, χ2(1)=12.61 121 

and p=3*10-4 between CLC and AMC; χ2(1)=23.11 and p=2*10-6 between ALC and AMC; χ2(1)=2.22 and 122 

p=0.13 between CLC and ALC). Multidimensional scaling (MDS) analyses on population responses 123 

revealed an additional difference in hue representation between AMC and the other two patches: In CLC 124 

and ALC, the neural representation of all 8 hues is homogeneous, with gray located in the center of eight 125 

hues; in AMC, yellow is over-represented, with gray located in the periphery, very close to cyan and 126 

green (Fig. 3b). Note that gray is surrounded by the eight hues in the original CIE color space (Fig. 1e), 127 

analogous to the population representation in ALC visualized with MDS.  128 

We quantified the transformation in hue representation across CLC, ALC, and AMC by computing the 129 

“neural” distance between neighboring hues based on population responses. AMC neurons displayed 130 

stronger inhomogeneity in distance between neighbors than the other two patches (Fig. 3c). The 131 

difference in color tuning between CLC/ALC and AMC was further confirmed by representation similarity 132 
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matrices quantifying the correlation between mean population responses to pairs of colors in each of 133 

the three patches (Fig. 3d). The correlation between gray and cyan/green is evident in AMC, but almost 134 

absent in the other two patches (mean correlation=0.02±0.08 for CLC; -0.02±0.12 for ALC; 0.45±0.09 for 135 

AMC; p<0.001 between CLC and AMC; p<0.001 between ALC and AMC; p=0.385 between CLC and ALC, 136 

20000 iterations of bootstrapping). In all three patches, the representation of the original color images 137 

was closest to yellow/red (Fig. 3b, d). This could be due to the fact that pixel intensities of the original 138 

color images turned out to be tightly distributed around yellow, especially for the faces and bodies 139 

(Supplementary Fig. 2b-h).  This last fact could also explain why AMC preferred red/yellow hues: it could 140 

be biased to represent the color of faces and bodies. However, it’s worth noting that AMC neurons 141 

showed preference for red/yellow even for objects that are not naturally red/yellow, e.g. grapes, 142 

watermelons, and abstract shapes without any natural color association (Fig. 3e). Thus AMC cells were 143 

not simply over-representing correctly-colored objects. 144 

One concern is that the preference for red/yellow observed in AMC could be due to undersampling in 145 

our single-unit recordings. We recorded from AMC in ten different penetrations in two monkeys, and 146 

results were consistent across both animals. To further address this concern, we performed an fMRI 147 

experiment in which we presented red, yellow, blue, and grayscale monkey faces (see below for 148 

rationale for showing monkey faces). Contrasting red/yellow versus grayscale monkey faces revealed 149 

activation in CLC, ALC, and AMC (Supplementary Fig. 4a). Importantly, activation to red/yellow was 150 

significantly stronger than blue in AMC, but not CLC/ALC (Supplementary Fig. 4b). The presence of the 151 

bias for red/yellow in the global AMC fMRI signal shows that it is not due to selective sampling. 152 

We also compared sharpness of hue tuning across the three patches, and found evidence for gradual 153 

sharpening from CLC to ALC to AMC (Supplementary Fig. 5). Overall, the results so far show that (1) each 154 

color patch contains a large population of hue-tuned cells, and (2) a transformation in hue tuning occurs 155 

between CLC/ALC, where different hues are uniformly represented, and AMC, where red and yellow are 156 

over-represented compared to green/blue. 157 

Representation of object shape by neurons in color patches 158 

Thus far, we have examined tuning to hue, averaged across object identity. However, since the color 159 

patches have a stereotyped location relative to face patches, which represent facial shape, a natural 160 

question is: how is object shape represented across color patches? To quantify the representation of 161 

object shape, we computed responses to 82 objects averaged across 8 hues. MDS was conducted on 162 

population responses of color-selective cells in three patches (Fig. 4a). All three patches displayed clear 163 

grouping according to object category. But the amount of information about object shape was very 164 

different between the three patches: the accuracy for identifying images, quantified by a nearest 165 

neighbor classifier (see Methods), was significantly higher in CLC than ALC across all ten categories (Fig. 166 

4b, p<0.05, 20000 iterations of random sampling with replacement, cell numbers were equalized to 55 167 
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for all three patches). Comparing ALC with AMC, identification accuracy was significantly higher in AMC 168 

for humans and monkeys (p<0.05) but not other categories (Fig. 4b). Comparing CLC with AMC, accuracy 169 

was significantly higher for all categories (p<0.05) except from monkeys (p=0.496). A 2-way ANOVA 170 

analysis to test significant interaction between area (2 levels) and category (10 levels) revealed 171 

significant interactions for ALC and AMC (F(9)=2.03, p=0.040), CLC and AMC (F(9)=3.36, p=0.001), but 172 

not ALC and CLC (F(9)=0.98, p=0.459).  173 

Could the shape information observed in the color patches be a vestige of low-level shape selectivity 174 

present in presumptive inputs to the color patch system, e.g., orientation-tuned cells in area V4? To 175 

address this, we compared object shape representations in each color patch with those in two models, 176 

AlexNet 17 and HMAX 18, a model for visual processing in V1-V4. The results show that the shape 177 

representations in CLC, ALC and AMC are high-level, consistent with those in other parts of IT cortex 178 

(Supplementary Fig. 6a-d). Note that here we only investigated representation of shape independent of 179 

hue, thus the similarity between color patches and other regions in IT (Supplementary Fig. 6a) is 180 

restricted to shape and does not indicate anything about color representation. 181 

Within the face patch system, the most salient difference between patches is how they represent facial 182 

identity across different views, with an increasingly view-invariant representation as one moves anterior 183 
9. Does a similar transformation in view-invariant object identity occur in the color patches? We 184 

presented facial images of different identities at eight hues and three views: left/ right profiles and 185 

frontal (Supplementary Fig. 2i). In AMC, we found cells mirror symmetrically-tuned to views (Fig. 4c, d 186 

shows one example cell). The population response showed a correlation between responses to left and 187 

right profile views of the same identity (Fig. 4e, f; t(68)=-4.02, p=1*10-4 between CLC and AMC; t(82)=-188 

3.48, p=8*10-4 between ALC and AMC; t(64)=-1.22, p=0.23 between CLC and ALC, Student’s t-test), 189 

similar to anterior face patch AL 9. This mirror symmetric view invariance was weaker in CLC and ALC (Fig. 190 

4e, f). This result shows that the representation of facial shape in AMC is not simply inherited from CLC.  191 

Co-representation of hue and shape by neurons in color patches 192 

The analyses so far have examined color and shape representations in isolation, and revealed that both 193 

color and shape information are present in all three color patches. To gain a full picture of information 194 

flow across patches, we next examined co-representation of the two information channels across 195 

patches. 196 

We first conducted MDS analyses on responses to all human face images in the stimulus set (Fig. 5a). We 197 

found that the neural representation of colored faces differed between the three patches: although all 198 

three patches showed grouping of images according to hue, this grouping was clearer in ALC and AMC 199 

than CLC. Outside the color patches, images were grouped according to identity rather than hue. This 200 

difference is illustrated by similarity matrices (Fig. 5b; for full similarity matrices see Supplementary Fig. 201 
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7): the 11*11 squares along the diagonal reflecting hue-specific representation are strongest in ALC, 202 

followed by AMC, and least clear in CLC; the para-diagonal stripes indicating hue-invariant identity 203 

information are only clearly observed in CLC but not the other two patches. Outside the color patches, 204 

strong para-diagonal stripes are visible. To quantify relative contributions of hue and identity for each 205 

category, we averaged correlation coefficients between population responses to images with the same 206 

hue but different identity or same identity with different hue (Fig. 5c). We found comparable amounts 207 

of hue and identity information for all 10 categories in CLC (p=0.053, 0.359, 0.203, 0.128, 0.006, 0.025, 208 

0.421, 0.001, 0.287, 0.329, 20000 iterations of bootstrapping), but a clear bias for hue information in 209 

ALC (p=0, 0, 0, 0, 0, 0, 0.027, 0, 0, 0.004). AMC was similar to ALC, showing a strong bias for hue, with 210 

one prominent exception: for the category of monkey images, hue and identity information were 211 

comparable (p=0.34). The presence of hue-invariant identity information about monkeys in AMC is 212 

consistent with the superior ability to identify monkeys compared to other objects using AMC 213 

population responses (Fig. 5b). The enhanced representation of monkey identities compared to other 214 

objects in AMC adds support to our hypothesis that it is biased to represent colored faces and bodies. 215 

Outside the color patches, there was significantly more information about identity compared to hue for 216 

all the natural image categories (Fig. 5c). 217 

We further analyzed the co-representation of hue information and category information using 218 

responses averaged across all identities within one category. This revealed a bias for category 219 

information in CLC and IT regions outside the color patches, and hue information in ALC and AMC (Fig. 220 

5e, f).   Examination of the time course of color information and identity information in all three patches 221 

revealed that color was always faster than identity, even in CLC where identity information was slightly 222 

stronger at the peak (Fig. 5d, g). To quantify the difference in temporal dynamics, we defined latency as 223 

the first time point hue/shape information differed significantly from baseline (p<0.01, 20000 iterations 224 

of bootstrapping, note that the each time point t indicates a time window [t-25 ms, t+25 ms]). In all 225 

cases, color was faster than shape (shape identity vs. color: i.d.=50 ms and color=25 ms for CLC, i.d.=75 226 

ms and color=50 ms for ALC, i.d.=75 ms and color=50 ms for AMC; shape category vs. color: category=50 227 

ms  and color=25 ms for CLC, category=75 ms and color=25 ms for ALC, category=75 ms and color=50 ms  228 

for AMC). 229 

Previous studies on object representation in IT from other labs employed linear classifiers to quantify 230 

the amount of “linearly” decodable information from population response of neurons 14 19. This provides 231 

a useful way to measure whether a particular dimension of information coded by a certain brain area is 232 

“untangled” from other dimensions. We applied the same method to our data to quantify the amount of 233 

shape-invariant hue information and hue-invariant shape information. Consistent with our analyses with 234 

similarity matrices, we found that shape-invariant hue information was higher in anterior color patches 235 

than in CLC, while hue-invariant shape information showed the opposite trend (Fig. 6). Thus suggests 236 
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that hue information does indeed become untangled from shape information along the color patch 237 

pathway. 238 

Co-representation of hue and object shape at the single-cell level 239 

So far, we have shown that all three patches contain information about both object shape and hue. 240 

What is the relative contribution of these two variables within single cells? Furthermore, what 241 

integration rule is used by single cells in color patches to combine hue and shape information? To 242 

answer these two questions, we performed a 2-way ANOVA analysis on single cell responses (Fig. 7a), 243 

with 82 levels of shape and 8 levels of hue. A scatter plot of explained variance due to hue versus that 244 

due to shape revealed an inverse relationship between the two, as expected (Fig. 7b1). Consistent with 245 

previous population analyses, AMC and ALC neurons are more biased to hue than CLC neurons (Fig. 7b2): 246 

ALC and AMC are significantly more hue-biased than CLC (t(118)=-7.61, p=7*10-12 and t(143)=-9.0, 247 

p=2*10-15 respectively, Student’s t-test); CLC is significantly more hue-biased than outside (t(96)=-6.1, 248 

p=3*10-8); ALC and AMC are not significantly different (t(133)=0.2, p=0.85). However, it is worth noting 249 

that all three color patches did carry a significant amount of shape information. In CLC, the mean 250 

amount of variance accounted for by shape was 37.4%. In ALC, the mean amount of variance accounted 251 

for by shape was 18.8%, while in AMC, it was 20.2% (Fig. 7b2; note that given noise in the data, the 252 

relative contribution from shape is over-estimated, since there are more parameters for shape (82) than 253 

for hue (8)). We performed similar analysis, but using 10 coarse shape categories or shape-within-254 

categories (on average 8.2 shapes in each category) to define the shape variables. We found that in 255 

these two cases, AMC and ALC neurons, but not CLC neurons, were clearly hue biased (Fig. 7b3-b4). 256 

Comparing four regions for coarse shape categories: ALC and AMC are significantly more hue-biased 257 

than CLC (t(118)=-4.5, p=1*10-5 and t(143)=-4.6, p=8*10-6 respectively, Student’s t-test); CLC is 258 

significantly more hue-biased than outside (t(96)=-7.9, p=4*10-12); ALC and AMC are not significantly 259 

different (t(133)=0.6, p=0.5). Comparing four regions for shape-within-categories: ALC and AMC are 260 

significantly more hue-biased than CLC (t(118)=9.0, p=3*10-15 and t(143)=9.5, p=3*10-17 respectively, 261 

Student’s t-test); CLC is significantly more hue-biased than outside (t(96)=-6.5, p=3*10-9); ALC and AMC 262 

are not significantly different (t(133)=-0.8, p=0.4). As expected, all color patch neurons show a 263 

significant main effect for hue (ANOVA, p<0.001), while most color patch neurons (with the exception of 264 

2 ALC neurons and 1 AMC neuron) showed a significant main effect for shape (Fig. 7b5). Finally, we 265 

found a large portion of color patch neurons showed a significant interaction between hue and shape 266 

(41/65 (=63%) CLC cells, 40/55 (=73%) ALC cells, 47/80 (=59%) AMC cells, and 0/33 cells outside color 267 

patches, Fig. 7b6).     268 

The nonlinear interaction between shape and hue is further supported by comparison of MDS analysis 269 

of shape responses at the best and worst hues. If cells were linearly adding the two variables, then the 270 

MDS plots at the two hues should be identical; however, we found that shape representation at the 271 
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worst hue was compressed compared to that at the best hue (Fig. 7c1, c2; t(96)=6.4 and p=7*10-9 272 

between outside vs. CLC; t(86)=11.8 and p=1*10-15 between outside and ALC; t(111)=9.0 and p=6*10-15 273 

between outside and AMC, Student’s t-test). Overall, these results suggest that cells in color patches are 274 

not simply summing shape and color inputs, but are nonlinearly combining the two.  275 

The presence of nonlinear interaction between shape and hue raises the question whether the main 276 

effects for hue and shape are real, i.e. the main effects may appear only in some conditions but not at all 277 

in others. To address this, for each cell in each patch, we quantified hue tuning for each shape by 278 

computing the variance of responses across hue to the shape, and selected 27 shapes with the best and 279 

worst hue tuning. Similarly, we selected 3 hues with the best and worst shape tuning for each cell. We 280 

computed the correlation between hue tuning for the “best” and the “worst” shapes, and did the same 281 

for shape tuning. We found all cells except 1 ALC cell showed positive correlation between hue tuning 282 

for the “best” and the “worst” shapes, and most cells (65/65 CLC cells, 51/55 ALC cells, 71/80 AMC cells) 283 

showed positive correlation between shape tuning for the “best” and the “worst” hues. Furthermore, 284 

we performed ANOVA on the “worst” shapes/hues, and a high percentage of cells showed significant 285 

(p<0.001) main effects for hue (34/65 CLC cells, 42/55 ALC cells, 69/80 AMC cells)/shape (64/65 CLC cells, 286 

47/55 ALC cells, 69/80 AMC cells).We note that different selection criterion was applied to color patches 287 

and neurons outside the color patches in the above two analyses (Figs. 5 and 7): while only color 288 

selective cells were used for color patches, all cells were pooled for “outside”. However, all the results 289 

comparing color patches to outside the color patches remained consistent when we pooled all cells in 290 

color patches. 291 

 292 

Discussion 293 

In this study, we found that three macaque color patches, CLC, ALC, and AMC, all encode significant 294 

information about both hue and object identity. Two clear transformations occur across the three 295 

patches. The first transformation, from CLC to ALC, reduces information about object identity. The 296 

second transformation, from ALC to AMC, mainly affects representation of hue: color space is 297 

represented in a dramatically distorted way in AMC, with over-representation of yellow and red, the 298 

natural colors of mammal faces and bodies. Furthermore, AMC develops an expanded representation of 299 

primate faces compared to other categories, displaying hue-invariant representation of monkey identity. 300 

Our study broadens our conception of the function of IT cortex. A generally accepted notion is that the 301 

purpose of IT is to represent object identity invariant to accidental changes, and this is achieved through 302 

a hierarchy culminating in cells in anterior IT tuned to object identity invariant to accidental changes 303 
9,18,20. For example, in the face patches, tuning to facial identity becomes more invariant to view going 304 

from ML/MF to AL to AM 9. Applying this principle to colored objects, one might expect to find a 305 
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sequence of areas tuned to object hue and shape combinations that show increasing invariance to 306 

accidental transformations in view, lighting, etc. (Fig. 8b). Instead, we found the existence of a 307 

specialized network in which shape information decreases along the IT hierarchy, while hue information 308 

increases (Fig. 8a). Since shape is one of the strongest cues to object identity, this calls into question the 309 

current picture of IT as a monolithic hierarchical feedforward network for computing object identity 20. 310 

IT appears to generate an array of high-level representations of objects that can facilitate different 311 

object-related tasks, including the fundamental task of identifying the color of an object.   312 

What is the role of AMC? Why should there exist an area with neurons that represent hue irrespective 313 

of shape, but mainly for red and yellowish things, but then also the shape of faces irrespective of hue? 314 

At first glance, this seems unparsimonious. One possible explanation is that AMC provides an important 315 

intermediate link between a multi-purpose shape-invariant hue representation and a representation 316 

specialized for the color of animal faces/bodies. The diversity in responses to different faces in AMC 317 

could compensate for the relative homogeneity in their responses to hues, exploiting the coding space 318 

previously occupied (in ALC) by bluish hues. This would facilitate the wiring of classifiers trained to 319 

identify faces using both shape and color cues. Future experiments exploring responses in color patches 320 

during performance of active tasks including face and color categorization may shed further light on the 321 

functional role of each patch. 322 

Few previous studies have examined color tuning in IT cortex.  Most have reported aggregate statistics 323 

based on random sampling of IT cortex 21-25, and have come to conflicting conclusions regarding the 324 

prevalence of hue-tuned cells, from 15% 21 to 69% 22, as well as the extent to which shape and hue 325 

interact in single cells; Komatsu and Ideura 22 reported no interaction, while Edwards et al. 23 reported 326 

strong nonlinear interaction. One pioneering study of color transformations in IT reported two clusters 327 

of color-selective cells in IT cortex, one in posterior and one in anterior IT, and showed a difference 328 

between these two regions in their color tuning as a function of luminance 12. Our study shows that 329 

there are at least three clusters of color-selective cells in IT that are strongly anatomically connected. 330 

Most importantly, our study demonstrates the importance of (1) studying the co-representation of color 331 

and object shape within each color patch, and (2) studying multiple patches within the IT color network 332 

using the same stimuli. Only by taking both of these steps, could we reveal the transformations in the 333 

brain’s representation of colored objects for the first time.  334 

 335 

 336 

 337 

 338 
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 339 

 340 

 341 

 342 

 343 

 344 

 345 

 346 

 347 

Methods 348 

 349 

Color Patch Localization 350 

 351 

All procedures conformed to local and US National Institutes of Health guidelines, including the US 352 

National Institutes of Health Guide for Care and Use of Laboratory Animals. All experiments were 353 

performed with the approval of the Caltech Institutional Animal Care and Use Committee (IACUC). 354 

 355 

Four male rhesus macaques were trained to maintain fixation on a small spot for juice reward (three of 356 

the animals were used for color patch recordings, while the fourth animal was used solely for control 357 

recordings outside color patches). Monkeys were scanned in a 3T TIM (Siemens, Munich, Germany) 358 

magnet equipped with AC88 gradient insert while passively viewing images on a screen. Feraheme 359 

contrast agent was injected to improve signal/noise ratio. Color patches were determined by identifying 360 

regions responding significantly more to moving equiluminant red/green color gratings (2.9 cycles per 361 

degree, drifting 0.75 cycles per s) than moving black-white gratings, the same stimuli as a previous study 362 
5, and were confirmed across multiple independent scan sessions. In monkey M1, color patches CLC, ALC 363 

and AMC were found bilaterally. In monkey M2, color patches CLC and ALC were found bilaterally; color 364 

patches AMC and AFC were found unilaterally in the left hemisphere (AMC was found by 365 

microstimulating ALC in the same hemisphere, see below). In monkey M3, color patches CLC and ALC 366 

were found bilaterally; color patch AFC was found unilaterally in the left hemisphere. 367 

 368 

Microstimulation 369 
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 370 

To reveal the anatomical connectivity of color patches and to localize the most anterior color patch AMC 371 

in monkey M2, we stimulated ALC 15. The stimulation protocol followed a block design. We normally 372 

interleaved 9 blocks of fixation-only with 8 blocks of fixation plus electrical microstimulation; we always 373 

started and ended with a fixation-only block. During microstimulation blocks we applied one pulse train 374 

per second, lasting 200 ms with a pulse frequency of 300 Hz. Bipolar current pulses were charge 375 

balanced, with a phase duration of 300 µs and a distance between the two phases of 150 µs. We used a 376 

current amplitude of 300 µA. Stimulation pulses were delivered with a computer-triggered pulse 377 

generator (S88X; Grass Technologies) connected to a stimulus isolator (A365; World Precision 378 

Instruments),which interfaced with different and indifferent electrodes through a coaxial cable. All 379 

stimulus generation equipment was stored in the scanner control room; the coaxial cable was passed 380 

through a wave guide into the scanner room. We performed electrophysiological recording at the site of 381 

stimulation immediately prior to stimulation, to confirm correct electrode placement, as revealed by a 382 

high number of hue-selective units.  383 

 384 

Single-unit recording 385 

 386 

Tungsten electrodes (18–20 Mohm at 1 kHz, FHC) were back loaded into plastic guide tubes. Guide 387 

tubes length was set to reach approximately 3–5 mm below the dura surface. The electrode was 388 

advanced slowly with a manual advancer (Narishige Scientific Instrument, Tokyo, Japan). Neural signals 389 

were amplified and extracellular action potentials were isolated using the box method in an on-line 390 

spike sorting system (Plexon, Dallas, TX, USA). Spikes were sampled at 40 kHz. All spike data was re-391 

sorted with off-line spike sorting clustering algorithms (Plexon). Only well-isolated units were considered 392 

for further analysis. We targeted patches CLC (n=35; right hemisphere) and AMC (n=24; right 393 

hemisphere) in monkey M1, patches CLC (n=52; right hemisphere), ALC (n=43; left hemisphere) and 394 

AMC (n=66; left hemisphere) in monkey M2, and patch ALC (n=22; right hemisphere) in monkey M3 for 395 

single-unit recordings. In addition, we targeted face patch AM (n = 10; right hemisphere) and a region of 396 

anterior IT on the ventral bank of the inferotemporal gyrus outside the color patches in M1 (n=10; right 397 

hemisphere), and a region of middle IT on the ventral bank of superior temporal sulcus outside the color 398 

patches in M4 (n = 13; left hemisphere). Electrodes were lowered through custom angled grids that 399 

allowed us to reach the desired targets; custom software was used to design the grids and plan the 400 

electrode trajectories 26. For each patch, results were qualitatively the same across different monkeys 401 

and therefore were pooled together for population analyses. Multiple different tracks were used to 402 

target each patch; in particular, for AMC, we designed ten distinct approach angles using different grids 403 

to ensure even sampling.   404 

  405 

Behavioral Task and Visual Stimuli 406 
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 407 

Monkeys were head fixed and passively viewed the screen in a dark room. Stimuli were presented on a 408 

CRT monitor (DELL P1130). The intensity of the screen was measured using a colorimeter (PR650, Photo 409 

Research) and linearized for visual stimulation. Screen size covered 27.7*36.9 visual degrees and 410 

stimulus size spanned 5.7 degrees. The fixation spot size was 0.2 degrees in diameter. Images were 411 

presented in random order using custom software. Eye position was monitored using an infrared eye 412 

tracking system (ISCAN). Juice reward was delivered every 2–4 s if fixation was properly maintained.  413 

 414 

For visual stimulation, all images were presented for 200 ms interleaved by 200 ms of a gray screen. 415 

Each image was presented 7–10 times to obtain reliable firing rate statistics. In this study, 2 different 416 

stimulus sets were used: 417 

1) A set of 82 images of 10 different categories, varied in 8 different hues. Original images and 418 

grayscale images with the same luminance profile were also presented (Supplementary Fig. 419 

2a, for details see below). 420 

2) A set of 33 human face images (Supplementary Fig. 2i), 3 different views of 11 identities, 421 

varied in 8 different hues. 422 

 423 

Color stimulus generation 424 

 425 

For our color stimuli, we started with a set of 55 object images collected from the internet, and 11 426 

frontal human faces from an on-line database (FEI face database: 427 

http://fei.edu.br/~cet/facedatabase.html). We transformed the color of each image in the following way: 428 

For a given pixel with RGB value (r,g,b), its chromaticity coordinates and luminance (u,v,L, CIE 1960) 429 

were estimated by first computing the frequency spectrum of the pixel by summing the frequency 430 

spectra for r, g, and b, each measured separately using a spectrophotometer (PR650, Photo Research), 431 

and then converted into chromaticity coordinates (http://www.cvrl.org). The mean luminance of each 432 

image was equalized to the background (2.9 cd/m2). We then computed the distance of chromatic 433 

coordinates of each pixel to “white” (u=0.2105, v=0.3158, filled circle in Fig. 1e). Eight different colors 434 

with the same distance but varying angles (open circles in Fig. 1e, starting from 0°, going clockwise at 45° 435 

step) were then computed and converted back into an RGB value keeping the luminance (L) unchanged. 436 

Repeating this for every pixel resulted in 8 images of pure hues (Fig. 1e right). A grayscale image with 437 

same luminance, but “white” chromatic coordinate, was also generated. The stimulus set included 438 

simple geometric patterns (8th and 9th row in Supplementary Fig. 2a). For these images, we set the hue 439 

of the original image to orange, with mean luminance equal to background. We also included a category 440 

of phase scrambled images (last row in Supplementary Fig. 2a). Eight images from the first nine 441 

categories were randomly selected and phase-scrambled, keeping the relative phase between different 442 

cone components constant.    443 
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The other stimulus set was generated in the same way, but using only face images with different head 444 

orientations (left profile, frontal and right profile, Supplementary Fig. 2i). 445 

Color selectivity 446 

For each repetition of the stimulus set, responses to each of the eight hues were averaged across 82 447 

objects. Classical analysis of variance (ANOVA) was performed to test the statistical significance of the 448 

differences among eight hue groups, each group containing multiple repetitions of the stimulus set. Only 449 

significantly tuned cells (p<0.001) were used for further analysis.  450 

Multi-dimensional scaling 451 

The number of spikes in a time window of 50-350 ms after stimulus onset was counted for each stimulus. 452 

The responses of each cell to all stimulus conditions were normalized to 0 mean and unit variance. To 453 

study the neural representation of a single feature, such as hue (Fig. 3b) or object shape (Fig. 4a), 454 

responses were averaged across the irrelevant feature (shape in Fig. 3b and hue in Fig. 4a). Classical 455 

multi-dimensional scaling was performed on the population responses in each patch, using a Euclidean 456 

distance metric and the MATLAB command cmdscale.  457 

Neural distance 458 

The responses of each cell to all stimulus conditions were normalized to 0 mean and unit variance. 459 

Euclidean distance between the normalized population responses to two stimulus conditions was used 460 

to quantify the “neural” distance between these two conditions (Fig. 3c). 461 

Similarity matrix 462 

Based on the same normalized population response, an n x n similarity matrix of correlation coefficients 463 

was computed between the population response vectors (across all color-selective cells, averaged over 464 

stimulus repeats) to each of the n interested conditions.  465 

Decoding analysis 466 

To quantify the amount of information about object shape in all three patches, we trained a nearest 467 

neighbor classifier: the population response for one particular object averaged across hues in two thirds 468 

of the trials was used to define a “template” response for that object. For testing, the population 469 

response to one image averaged across the remaining one third of the trials (but not across hues) was 470 

compared to each of the 82 “templates”, and the object “template” with minimal distance to actual 471 

response was defined as the output of the classifier.  472 

We also employed SVM decoding models as in previous papers 14,19. In brief, we randomly selected a 473 

number of units from each area, and trained an SVM model for each selection to decode hue 474 
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information independent of shape or shape information independent of hue using “one vs. rest” 475 

approach. We used half the trials to train the SVM model and the remaining half to validate the model. 476 

The results shown are validated accuracies. 477 

Convolutional neural network modeling 478 

 479 

To investigate shape representation in three color patches, we loaded 82 objects with 8 different hues 480 

into two pre-trained neural networks: 1) a matlab implementation of Alexnet 17 : 481 

http://www.vlfeat.org/matconvnet/pretrained/. This network contains 21 layers: 1st, 5th, 9th, 11th and 482 

13th layers are the outputs of convolution units; 2nd, 6th, 10th, 12th and 14th, 17th and 19th layers are the 483 

results of rectification; 3rd and 7th layers are the results of normalization; 4th, 8th, 15th layers are the 484 

results of max pooling; 16th, 18th and 20th layers are fully connected layers; 21st layer is the output layer 485 

(softmax). This network has been pre-trained to identify a thousand objects.                                                                    486 

2) a matlab implementation of HMAX model 18: http://maxlab.neuro.georgetown.edu/hmax.html#code. 487 

This network implements the basic architecture of the HMAX model (S1, C1, S2, C2) and has been pre-488 

trained with a set of random natural images. Activations of each unit to each object were averaged 489 

across hues to analyze the representation for shape alone. For the case of the HMAX model, since the 490 

network only allows grayscale images as input, we presented the grayscale version of the 82 objects to 491 

the network to analyze shape representation.  492 

Population statistics 493 

To determine statistical significance for parameters estimated using population responses, such as 494 

correlation, a bootstrap method was employed: neurons were randomly sampled from the population 495 

with replacement; 20000 bootstrap samples with equal numbers of neurons were created. A population 496 

statistic was computed for each bootstrap sample. The P-value of the null hypothesis was determined by 497 

comparing population statistics from 20000 iterations of bootstrapping. 498 

 499 

 500 

 501 

 502 

 503 

 504 

 505 

 506 
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Figure legends: 592 

Figure 1. Recording sites, connectivity, and color stimuli. 593 

a, To identify the correct color of an  object, e.g. an apple (left), local hue information (right) needs  to 594 

be integrated with global shape information. b, Schemes for co-representing color and object shape 595 

information in visual system. Initially, before the visual system has explicitly segmented objects, color 596 

information and object shape information are largely entangled, with individual cells participating in the 597 

coding of multiple hues and object shapes. Two main strategies could be used to represent colored-598 

objects in an organized way: 1) segregation of color and object information into parallel channels, 599 

resulting in object shape-invariant color-selective units and color-invariant shape selective units (top); 2) 600 

formation of units sharply tuned to both color and object shape (bottom). c, Coronal and Sagittal slices 601 

showing location of fMRI-identified face (blue) and color patches (yellow) in one monkey (M2) targeted 602 

for recording; dark black line indicates electrode. The most anterior color patch was not observed with 603 

fMRI using the color localizer in this animal, and was located by electrical microstimulation in ALC 604 

(bottom panel, changes in BOLD signal of the identified voxels during microstimulation shown below). 605 

Source: Tsao lab. d, Comparison between color patches identified by color localizer (top) and by 606 

microstimulation (bottom). The contrasts are overlaid on high-resolution coronal slices. Asterisk (*) 607 

indicates the stimulation site (ALC). The anterior-posterior position of each slice in mm relative to the 608 

interaural line is given in the top right corner. e, 82 images of 10 categories were used (see 609 
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Supplementary Fig. 2a for all the stimuli). Each image underwent a series of transformation in hues. For 610 

each pixel of the image, luminance was kept constant, while chromatic coordinates (CIE 1960) fell on a 611 

circle with the same distance to “white” (filled circle) as the original pixel. Eight hues with different 612 

angles were used (open circles, starting from 0°, going clockwise at 45° step). A grayscale image with the 613 

same luminance and the natural color image were also presented. 614 

Figure 2. Responses of color patch neurons to the color stimuli 615 

Responses of all neurons in three patches to all grayscale images, colored human faces, monkey faces 616 

and magic cubes, sorted according to hue preference of the average response across all 82 stimuli. 617 

Color-selective cells and non-selective cells are shown separately. Responses of IT cells outside color 618 

patches and cells in face patch AM are also shown. For each cell, baseline was subtracted and the 619 

response was normalized.  620 

Figure 3. Representation of color by color-selective neurons in color patches. 621 

a, Responses of all color-selective neurons averaged across stimuli within each category to images of 8 622 

different hues, together with gray (left-most column) and natural color (right most-column), sorted in 623 

this same way as Fig. 2. b, Neural representation of colors in the activities of color-selective neurons. 624 

Shown are two-dimensional plots of the results of multi-dimensional scaling (MDS) analyses conducted 625 

for neurons in three color patches. Responses to each color condition were averaged across all mammal 626 

images (humans faces, monkey faces, and mammal bodies; these were selected because color tuning 627 

was most consistent between these three categories across all three patches, see Supplementary Fig. 628 

3b). Original color is indicated by a disk of mixed color. c, Neural distances of each hue to its two 629 

neighboring hues, for all three patches, computed using population responses of color-selective cells.  630 

Error bars represent s.d. of 20000 iterations of bootstrapping. Inhomogeneity was quantified by 631 

computing the ratio between the s.d. of the 8 bars and the mean of the 8 bars: 0.21±0.02 for CLC; 632 

0.12±0.02 for ALC; 0.35±0.02 for AMC (p<0.001 between CLC and AMC; p<0.001 between ALC and AMC; 633 

p=0.0103 between CLC and ALC, 20000 iterations of bootstrapping, see Methods). d, Population 634 

similarity matrices of 10 color conditions in three color patches. A 10*10 matrix of correlation 635 

coefficients was computed between responses of all color-selective neurons averaged across objects. e, 636 

For five different types of objects: grapes, watermelon, birds, gratings and rubik’s cube, the number of 637 

AMC cells preferring each of the eight hues was counted. In all five cases, the distribution was 638 

significantly different from homogeneity (chi-square test: p<0.001; χ2(7)=26.3, 28.6, 31.0, 38.6 and 28.4 639 

respectively).  640 

Figure 4. Representation of object shape by color-selective neurons in color patches. 641 
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a, Neural representation of object shapes in the activities of color-selective neurons for three patches, 642 

shown as two-dimensional MDS plots. Responses to each object shape were averaged across 8 hues. b, 643 

Decoding accuracies for identifying one object out of 82 objects based on population responses in three 644 

color patches, averaged across object identities within each category (see Methods). Error bars 645 

represent s.e. Dashed lines indicate chance level (1/82=1.2%). c, Raster plot showing responses of an 646 

AMC neuron to colored human faces of 11 identities at three views: frontal, left- and right-profile 647 

(Supplementary Fig. 2i). d, The same response in (c) averaged across 8 hues, showing strong correlation 648 

between left- and right-profiles, but not between frontal and profile views. e, Correlation between 649 

responses to left and right profile views was computed across identities for each cell. Mean and s.e. of 650 

all neurons in three patches are plotted (n=26 CLC cells; n=40 ALC cells; n=44 AMC cells). Student’s t-test 651 

was used to determine statistical significance between patches (*=p<0.05, **=p<0.01). f, Population 652 

similarity matrices of 11 identities*3 views in three color patches. The paradiagonal stripes in AMC 653 

indicate high correlation between responses to mirror-symmetric views of the same identity (red 654 

arrows). 655 

Figure 5. Co-representation of hue and object identity in color patches. 656 

a, Comparison of MDS plots of responses to all human face images in all three color patches and outside 657 

color patches. For clarity, the original natural color images are not shown. In ALC and AMC, images were 658 

clearly grouped according to hue, while in CLC this grouping is less clear. Outside the color patches, 659 

images were grouped according to identity, but not hue. b, Population similarity matrices computed 660 

from responses to human face images in three color patches and outside color patches. Correlation 661 

coefficients were computed between responses to 11 identities and 8 hues. c, Hue information and 662 

identity information for images of 10 categories in three color patches and outside color patches. Hue 663 

information was quantified as the mean correlation between responses to images with the same hue 664 

but different identity within the same category, while identity information was quantified as the mean 665 

correlation between responses to images of the same identity with different hues. Note that here we 666 

are quantifying shape-invariant hue tuning, which will be affected by both shape tuning and color tuning; 667 

in particular, cells with strong shape tuning will show low shape-invariant hue tuning, even if they have 668 

perfectly consistent hue tuning across shapes. Error bars represent s.d. of 2000 iterations of 669 

bootstrapping. Statistical significance was determined between hue and identity information for each 670 

category in three color patches and outside color patches (*=p<0.05, **=p<0.01). d, Amplitude of hue 671 

and identity information for three patches and outside color patches, computed over a 50 ms sliding 672 

time window, were averaged across all 10 categories. Shaded regions indicate s.d. estimated by 2000 673 

iterations of bootstrapping. e, Co-representation of hue and category in all three patches and outside 674 

color patches. Responses of each cell were averaged across different identities within a category. A 675 

matrix of correlation coefficients was computed between responses to 10 categories* 8 hues. f and g, 676 

Same as (c) and (d), but for hue and category information quantified by matrices in (e), **=p<0.01. 677 
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Figure 6. Decoding shape-invariant color and color-invariant shape from color patches. 678 

 679 

a1, Svm models were trained to classify hues independent of shape. Population response of different 680 

number of randomly selected units was used as the input to the model. Half of the trials were used for 681 

training and the rest half for cross-validation. Shape-invariant hue could be significantly better decoded 682 

by AMC and ALC population than than CLC (for 50 units, p<0.01 for both comparisons, 2000 iterations of 683 

bootstrapping). Furthermore, ALC shows better overall decoding than AMC (p=0.013). Dashed line 684 

indicates chance level (1/8=12.5%). Results are averages across 2000 iterations of random sampling. 685 

Errorbars represent s.d. a2, similar to (a1), but only quantifies decoding accuracy for two hue categories: 686 

red and yellow. Decoding based on AMC is better than ALC, but not significant (p=0.185). a3, similar to 687 

(a1), but for a combined population of anterior color patch neurons. b, similar to (a1), but for hue-688 

invariant shape decoding. CLC is significantly better than ALC and AMC (for 50 units, p<0.01 between 689 

CLC and ALC, p=0.028 between CLC and AMC). Furthermore, neurons outside color patches shows 690 

better performance than color patch neurons, but only significantly better than ALC and AMC (For 25 691 

units, p<0.01 between outside and ALC, p=0.019 between outside and AMC and p=0.186 between 692 

outside and CLC). Dashed line indicates chance level (1/82=1.2%). 693 

 694 

Figure 7. Analysis of single-cell responses. 695 

a, Responses of 12 example neurons to the full stimulus set. Each row represents one color condition, 696 

and each column represents one object shape. b, 2-way ANOVA analysis examining main effects of 697 

shape and hue, as well as interactions.  2-way ANOVA analysis with 8 levels of hue and 82 levels of shape 698 

was performed on responses of each individual neuron. b1, Relationship between explained variances 699 

by two main effects for all neurons. Lines represent linear fits to cells in each patch. b2, Distribution of 700 

shape preference in all three patches and outside the color patches, defined by the explained variance 701 

by shape divided by the sum of both main effects. Arrows indicate population averages. b3, similar to 702 

(b2), but using only coarse shape categories as shape variables. b4, similar to (b2), but using only fine 703 

shapes within each shape category as shape variables. ANOVA analysis was carried out for each shape 704 

category independently, with 8 levels of hue and n levels of shape (n=number of shapes within this 705 

shape category). For each neuron, shape preference was computed and averaged across categories. b5, 706 

For 2-way ANOVA with 8 levels of hue and 82 levels of shape, F-values for both main effects are plotted 707 

against each other in log-scale. Gray lines indicate significance level (p=0.001). b6, Distribution of F-708 

values for the interaction between hue and shape. Gray dashed lines indicate significance level 709 

(p=0.001). c1, For each cell in ALC, we determined the best hue and the worst hue based on responses 710 

to 8 hues averaged across 82 object shapes. MDS analyses were conducted on shape responses for the 711 

best hue or the worst hue of each cell. Two MDS plots are shown at the same scale. c2, For each cell, the 712 

ratio between standard deviations of shape responses at the worst hue and the best hue was computed. 713 
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If the cells were linearly adding hue and shape, the two standard deviations should be identical. 714 

Therefore the ratio between these two reflects the extent of nonlinearity in the interaction of hue and 715 

shape. **=p<0.01, Student’s t-test.  716 

 717 

Figure 8. Extending the conventional view of IT: a theory of color processing in IT. 718 

a, Schematic summary of the co-representation of hue and object shape in three color patches. Here, 719 

each oval represents the receptive field of one “idealized” color neuron in the 2-d object space spanned 720 

by hue and object shape. b, Conventional view of IT predicts that the major transformation of colored-721 

object representation from posterior to anterior IT is the generation of invariance to accidental changes 722 

(e.g., view). Here each ellipsoid represents the receptive field of one “idealized” neuron in the 3-d object 723 

space spanned by hue, shape, and view. For both posterior and anterior IT, two dimensional slices at a 724 

fixed “view” should look the same as the schematic for CLC (a1).  725 
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