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Abstract

Independent component analysis (ICA) has been used extensively for artifact

removal and reconstruction of neuronal time-courses in electroencephalography

(EEG). Typically, ICA is applied on wide-band EEG (for example 1 to 100 Hz or

similar ranges). Since EEG captures the activities of a large number of sources and

the fact that number of the components separated by the ICA is limited by the

number of the sensors, only the stronger sources (in terms of magnitude and

duration) will be detected by the ICA, and the activity of weaker sources will be

lost or scattered amongst the stronger components. Because of the 1/f nature of

the EEG spectra this biases components to the lower frequency ranges. Here we

used a versatile combination of a filter bank, PCA and ICA, calling it multi-band

ICA, to both increase the number of the ICA components substantially and

improve the SNR of the separated components. Using band-pass filtering we break

the original signal mixture into several subbands, and using PCA we reduce the

dimensionality of each subband, before applying ICA to a matrix containing all the

principal components from each band. Using simulated sources and real EEG of

participants, we demonstrate that multi-band ICA is able to outperform the

traditional wide-band ICA in terms of both signal-noise ratio of the separated

sources and the number of the identified independent components. We successfully

separated the gamma-band neuronal components time-locked to a visual stimulus,

as well as weak sources which are not detectable by wide-band ICA.
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1. Introduction

Electroencephalography (EEG) is the scalp recording of neuroelectrical activities.

Due to its millisecond temporal resolution, simplicity, and low cost, it is the most

popular technique for the study of brain dynamics. These advantages come with a

cost, that is the EEG signals are contaminated with various types of noise and

artifacts, that makes physiological interpretation of raw EEG extremely difficult.

Hence, advanced signal processing techniques are necessary in order to extract

meaningful information from the recordings. Typically, the EEG is divided into

several frequency bands, delta (0-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), beta

(12-30 Hz), and gamma (30 to 100 Hz). The most common known artifacts are

ocular and cardiac artifacts, muscle, sensor, and line noise. Each of these has a

certain band-width, for example, ocular artifacts (eye blinks and movement) are

predominantly in the lower frequencies while the muscle artifact is scattered in the

beta and gamma bands. Numerous techniques have been been proposed to remove

these artifacts form the EEG, for example, using regression of the

electrooculographic (EOG) signal to remove the ocular artifact [17, 50, 14, 16, 51].

However, there are a few deficiencies associated with the regressors, making their

application suboptimal, for example, the simple regressors may overcompensate the

ocular artifact and produce new artifacts due to the differences between the EOG

and EEG transfer function [48, 41, 28]. Another problem is the cancellation of the

common neuronal information between the EOG and EEG [28]. Moreover, the

application of the regressors is limited by noise which can be picked up by a

reference electrode [44], hence not every artifact can be eliminated by regression,

for example, muscle artifact. Nevertheless, the adaptive methods [1, 38] are still the

most effective tools for rejection of certain artifacts such as gradient artifacts which

is induced by the magnetic resonance imaging (MRI) machine during concurrent

EEG/fMRI (functional MRI) recording.

Spatiotemporal filtering using a dipole model was proposed by Berg and

Scherg [5] as an approach for removal of the ocular artifact. Its major limitation is

the reliance on a prior specification of the number and location of the dipoles [31].

As a more effective alternative to dipole modeling, Berg and Scherg [6] proposed

use of principal component analysis (PCA) for eye artifact removal. However,

components separated by the PCA show the directions with maximum variance.
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This means weak neural sources could be scattered among strong artifacts

separated by the PCA, and vice versa, that is, weak noises could exist among the

principal components representing strong neural sources, such as, alpha and theta

band sources and degrade signal to noise ratio (SNR) of such components. Hence,

the removal of PCA components inevitably results in removal of the neural sources

as illustrated by Lagerlund et al. [30]. Unlike PCA, independent component

analysis (ICA) maximises the non-gaussianity of the components by measures such

as entropy or kurtosis. While there are several algorithms proposed for ICA,

generally speaking, ICA is based on a few assumptions, most importantly: (1)

sources are linearly mixed, (2) sources are independent from each other, and (3) the

number of the sources is equivalent to the number of the signal mixtures. There

have been variants of ICA which focus on relaxing one of the assumptions in order

to optimise the ICA for a certain application. Here, our approach is concerned with

the number of the sources relative to the number of the signal mixtures, that is, the

number of the sources could be smaller or greater than the number of the signal

mixtures. This uncertainty regarding the true number of the sources in relation to

the number of the signal mixtures has been addressed in case of EEG [34].

Since ICA was first applied for EEG [34], it has become the most extensively

used technique, both in EEG and magnetoencephalography (MEG), for removal of

artifacts and reconstruction of neural time-courses both in sensor space

[39, 28, 33, 22, 46, 29, 27, 28, 13], and recently reconstruction of the neural source

in the source space [7, 32, 2, 25, 24, 26, 18]. Although ICA separates sources using

statistical properties of the data, we will show that the performance of the ICA can

be affected by the relative power distribution of the EEG sources, that is, activities

in delta and alpha bands are several times stronger than the sources in the gamma

band. It is also highly likely that the number of the actual sources recorded by

EEG or MEG is greater than the number of the signal mixtures. Moreover, the

number of ICA components is upper bounded by the number of the signal

mixtures, meaning only the strongest sources will dominate the ICA outputs and

the weaker sources will be scattered among them. This means application of the

ICA over the wide-band EEG and rejection of the artifact/noise components could

result in loss of neuroelectrical sources. For example the high frequency neural

sources in gamma-band are weak and could be scattered among the stronger

sources separated by wide-band ICA. Furthermore, there are strong sources of noise
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in the gamma-band such as facial and neck muscles which makes it a challenging

situation for the study of gamma-band neural sources [15, 49, 52, 19, 36, 37].

Subband ICA [45, 35, 11] is an alternative to the standard (wide-band) ICA in

which the signal mixtures are band-pass filtered using a filter bank, then the ICA is

applied on each band separately and the independence of each band is measured

using a proposed criteria such as “performance index” or kurtosis. The filter bank

separates the sources spectrally and reduces the burden of the decomposition from

the ICA. Here we introduce multi-band ICA as an alternative to the standard

wide-band ICA which is similar to the subband ICA in terms of applying the

bandpass filtering before signal decomposition, but is different in terms of applying

the ICA, that is rather than applying the ICA to each band, we apply PCA to each

band and only pass a defined number of principal components of each band to

produce a global matrix of principal components (PCs) which represents the PCs of

all the bands. In this way, the PCA finds the maximum variance of each band

separately, hence the sources of one band, for example, gamma, are not compared

with the sources from another band such as delta, which is the case in wide-band

ICA. Then we apply ICA to reconstruct the independent components (ICs). The

advantage of this approach over the subband ICA is that we are not introducing any

new criteria such as “performance index” to decide which bands are independent

and let the ICA decides on remixing the principal components of different bands.

We note this remixing between the subbands via ICA depends on which flavor of

ICA is used and will be discussed in later sections. In comparison to the wide-band

ICA, the multi-band ICA can reconstruct weak sources which have little chance to

be reconstructed via wide-band ICA and instead would be scattered among the

stronger ICs. We also demonstrate that sources reconstructed by mutiband ICA

have a higher SNR compared with the wide-band ICA. Similar to [12] who showed

that it is possible to extract more than one source from a single channel EEG, we

will show that the number of the extracted sources is not upper-bounded by the

number of the EEG channels. The novelty of this approach is in terms of order of

the application of popular signal decomposition techniques such as ICA, PCA and

filter banks, rather than introducing new selection and measurement criteria. This

offers ease of application and we have provided the source code [23] for multi-band

ICA with sample EEG and simulated sources, implemented in MATLAB, using the

FieldTrip toolbox and data structure [40].
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In the next two sections, we describe the theoretical background, simulations

and setups for the acquisition of real EEG data. Throughout this paper, plain

italics refers scalars, lower-case boldface italics refers vectors, and upper-case

boldface italics indicate matrices.

2. Methods

2.1. Band pass filtering

The recorded MEG or EEG signal for K time samples on M sensors, X ∈ ℜ
M×K ,

can be written as

X = Σ
LS

j=1Sj +Σ
LN

j=1Nj (1)

where the LS and LN refer to the number of the brain and artifact/noise sources,

respectively. The true number of the sources is not known [34] and it depends on

several factors, including the duration of the recordings, individual differences

between participants, and the task that the subject is performing. Hence, the total

number of sources could be more or less than the number of the sensors. The use of

wide-band ICA limits the number of the detected ICs by the number of channels

(M). This is one of the disadvantages of the wide-band ICA over the multi-band

ICA. Using a filter bank we can split the wide-band EEG or MEG into several

subbands,

X = Σ
LF

i=1Xi, Xi = Σ
LSi

j=1Sj +Σ
LNi

j=1Nj (2)

where the LF refers to the number of the subband (typically delta, theta, alpha,

beta, lower gamma, higher gamma, i.e., LF = 6). The LSi and LNi refer to the

number of the brain and noise sources in the ith band.

2.2. PCA

Since, we do not know what LSi and LNi are, and at the same time there is a

strong possibility that each subband contains a smaller number of combined

sources than the number of the sensors, i.e., M ≥ LSi + LNi, particularly when
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there are large number of sensors, for example 64 or more, it is necessary to reduce

the size of the time-courses in each subband to avoid the undercomplete ICA

problem. Using singular value decomposition (SVD) to break the signals into PCs,

we can reduce the size of the data matrix in each subband to a subsapce containing

the first few PCs of that subband:

Xi = ΛiΦiΩ
T
i , (3)

where Λi is an M ×M matrix containing the normalised topographic maps of

principal components, and Ω
T
i is a K ×K matrix containing the normalised

time-courses of the principal components, and Φi is an M ×K diagonal matrix

with the diagonal elements being the singular values in descending order. Here, we

need to keep the first few PCs of Λi and Ω
T
i . Choosing a small number of

components could lead to loss of useful information and a great number may result

in an undercomplete ICA problem. There are a number of methods in the literature

for choosing an optimal number of components. The most widely use method is the

Guttman-Kaiser rule [21], according to which the PCs associated with eigenvalues

derived from the data covariance matrix, are kept only if the corresponding

eigenvalues are larger in magnitude than the mean of the eigenvalues [8]. However,

as the Guttman-Kaiser rule is based on the mean value of the eigenvalues, existence

of a large artifact increases the mean of the eigenvalues and can result in

substantial change in size of the selected subspace. In noisy EEG applications, the

minimum description length (MDL) [42] has been shown shown to be the optimal

approach in subspace extraction [47, 9, 10]. Generally, the automatic subspace

selection is an extensive topic and depends on several factors beyond the scope this

paper. Here we acknowledge using a number between 10 to 15 for subspace

extraction in each subband will result in an overall superior performance of the

multi-band ICA over the wide-band ICA in terms of reconstruction of weak

sources, hence recovering the weak sources. The effects of changing the size of the

subspace is discussed in the Results section. Assuming that NPi (e.g.,

NP1 = 10, NP2 = 12, ...) is the number of PCs from each band to be extracted, the

subspace of each band after dimensional reduction can be written as

X̃i = Λ̃iΦ̃iΩ̃
T
i , i = 1, 2, ..., LF ,

X̃i ∈ ℜ
M×K

, Λ̃i ∈ ℜ
M×NPi , Φ̃i ∈ ℜ

NPi×NPi , Ω̃
T
i ∈ ℜ

(NPi×K)
.

(4)
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Since we are performing temporal rather than spatial decomposition, we need to

create the global matrix of temporal PCs. In order to retain the magnitude order of

the temporal PCs, normalised PCs are multiplied with their corresponding singular

values

Ω̂i = Φ̃iΩ̃
T
i , i = 1, 2, ..., LF ,

Ω̂ = [Ω̂1, Ω̂2, ..., Ω̂LF
], Ω̂ ∈ ℜ

(Σ
L
F

i=1
NPi)×K

.
(5)

The corresponding global matrix of spatial PCs is

Λ̃ = [Λ̃1, Λ̃2, ..., Λ̃LF
] ∈ ℜ

M×(Σ
L
F

i=1
NPi). (6)

2.3. ICA

ICA decomposes the global matrix of the temporal PCs into ICs

S̄ = HΩ̂, (7)

where H ∈ ℜ
(Σ

L
F

i=1
NPi)×(Σ

L
F

i=1
NPi) is the unmixing matrix and, S̄ is the matrix of ICs.

The topographic maps of Σ
LF

i=1NPi identified components in S̄ can be obtained by

multiplication of the global spatial PCs by the mixing matrix

G = Λ̃H
−1
,G ∈ ℜ

M×(Σ
L
F

i=1
NPi). (8)

As is shown in equation 8, the number of extracted components is Σ
LF

i=1NPi and

could be greater or smaller than the number of the channels, for example, if our

filter bank has 6 subbands (LF = 6) and we chose to extract first 15 PCs of each

subband (NP = 15), the total number for the ICs will be 90. The block diagram of

the steps in order to perform multi-band ICA is shown in Figure 1.

3. Performance evaluation

3.1. Simulations

The aim of the simulations is to demonstrate the superiority of the multi-band ICA

over the conventional wide-band ICA in terms of the separation power and the
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Table 1: Details of the simulated sources.

Source MNI positions Moment Freq. SNR

1 [0 3 0] cm [0 1 0] 45 Hz 0.04

2 [-4 2 2] cm [0 0 1] 12 Hz 0.04

3 [0 -6 3] cm [1 1 1] 5 Hz 0.10

SNR of the ICs. We simulated 3 sources and superimposed them on the EEG of a

resting state subject. For the simulation of the sources, the boundary element

model was used for the computation of the leadfield (template model provided by

FieldTrip toolbox). The specifications of the sources together with their

topographic maps are represented in Table 1. The resting state EEG was recorded

with the sampling rate of 1000 Hz, and after band-passed filtering (0.5-100 Hz) it

was downsampled to 500 Hz.

3.2. Reconstruction of visually induced gamma components

EEG data from 22 participants was available. In this study the participants were

performing a standard task to induce gamma-band activity in the visual cortex

.The stimuli for this task was a black and white annular grating with a spatial

frequency of 3 cycles per degree, subtending 16 degrees of visual angle. The grating

was presented at 90% contrast, in the centre of the screen, on a grey background.

A red dot provided a central fixation point. Participants were seated 90cm from the

screen. In this task were two conditions. the stimuli moved inwardly at a rate of

1.33 degrees of visual angle per second. The stimulus was on for between 1-1.1s

(pseudorandomly jittered). Participants were instructed to press the spacebar as

soon as the stimulus disappeared from the screen. Following a participants

response there was then a 1s inter-trial interval. Stimuli were displayed on an

ASUS VG248QE computer monitor with a screen resolution of 1920 x 1800 and

144Hz refresh rate generated using the Psychophysics Toolbox. Continuous EEG

was recorded using 64 channel Acticap Ag/AgCl active shielded electrodes and

Brain Products MRPlus amplifiers. Data were recorded in Brain Vision Recorder

(Brain Products GmbH, Germany) with a 1000Hz sampling rate, and 0.1V

resolution. After band-pass filtering (0.5-100 Hz) they were downsampled to 500

Hz. FCz was used as an online reference, AFz as ground. Electrode impedance
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below 10k was achieved prior to recording. Data were first epoched into trials -0.5

ms pre stimulus and 1.5 ms post-stimulus onset. The data were then baselined.

Semi-automated artefact rejection was completed using the Fieldtrip toolbox.

Here the aim is to find gamma ICs time-locked to the stimulus. Since the

neural activities in the gamma-band are weak, the separation of the gamma-band

ICs is a challenging task for the wide-band ICA. For this section, we applied the

wide-band and the multi-band ICA on the EEG data from these participants and

report the identified components time-locked to the visual stimulus.

4. Results

We used two variants of ICA, SOBI (second-order blind separation) [4] and

InfoMax (information-maximisation) [3], to demonstrate the results in the

simulations. The reason for the two choices is that, the two techniques performed

differently when used for multi-band ICA, i.e., while InfoMax tends to blend PCs

from different frequencies to produce the ICs, the ICs separated by SOBI are

normally from a single frequency band. Other variants of the ICA had similar

behavior to either of these two, for example FastICA [20] acts similar to SOBI when

used for multi-band ICA. It is up to the user which flavor of the ICA to use, but we

acknowledge that if the aim is to separate different sources in different frequencies,

particularly the weak sources, SOBI achieves a better separation. Remixing the

PCs from different frequency band is not necessarily an undesirable outcome, for

example when cross-frequency coupling of the same source exists.

4.1. Simulation results

Figure 2 shows the identified components using wide-band and the multi-band ICA.

The wide-band SOBI, Figure 2(a), separated the 5, 12, and 30 Hz sources from

each other with SNRs of 11.50, 19.55, and 1.21, respectively. The IC belonging to

the 30 Hz source is mixed with the lower frequency source(s). The wide-band

InfoMax (Figure 2(b)) failed to separated the simulated sources from each other

and the SNRs of all the identified sources was below 0.50. The multi-band SOBI,

Figure 2(c), separated all three components from each other with SNRs of 11.30,
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21.77, and 9.91 for the 5, 12, and 30 Hz sources, respectively. The multi-band

InfoMax separated the 30 Hz source with a SNR of 9.28, but failed to separate the

5 and 12 Hz sources from each other. In fact, InfoMax mixed the PCs belonging to

the 5 and 12 Hz sources which had been already separated using the the filter bank

+ PCA, and produced two ICs which were the result of this mixture. The

topography of the two ICs also is similar to the 5 Hz source, as it is the dominant

source in terms of magnitude. This behavior of InfoMax could also exist regarding

the neuronal sources, that is, InfoMax could potentially mix the concurrent

independent neural sources from different frequencies to create ICs. However,

contrary to expectation, InfoMax did not remix the PCs belonging to the eye

artifact (components 8 and 18 in Figure 2(d)) which were separated by the filter

bank, to create a single component similar to IC7 in Figure 2(b). In Figure 2(b)

the component IC7 is dominated by the eye artifact, although its power spectrum

is not plotted, it contains small amount of power from the 30 Hz simulated source.

Furthermore, IC13 contains mixture of all the simulated sources and the 50 Hz line

noise, but it is dominated by lower frequency activities. In fact, the simulated 30

Hz source was scattered in several ICs when the wide-band InfoMax was used and

IC13 is one of such components. Hence, removing some of these ICs such as IC7 or

IC13, may result in the loss of weak neural sources. This is an example of how the

wide-band component rejection could result in the loss of useful information and

how multi-band signal decomposition could be a superior alternative.

Overally, multi-band SOBI performed the best in terms of separation of the

simulated sources from both each other and back ground activity. Hence, we used

the wide-band SOBI and multi-band SOBI for the reconstruction of real

gamma-band activity in the next section.

4.2. Reconstruction of the gamma

For the multi-band SOBI, the filter bank was set 30-95 Hz for gamma and narrow

47-53 Hz band was defined to capture the line noise at 50 Hz. The first 45 PCs of

the gamma band and the first 5 PCs of the line band were included in the global

matrix of PCs (NP gamma = 45, NP LineNoise = 5). The other bands were not

included in the filter bank as there the aim was to reconstruct the gamma

components. As can be seen in Fig 3, narrow filter for the isolating the line noise
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(a) Wide-band SOBI (b) Wide-band InfoMax

(c) Multi-band SOBI (d) Multi-band InfoMax

(e) The topographies of the simulated sources.
(f) The time series of the simulated sources.

Figure 2: Reconstruction of the three simulated sources via wide-band SOBI (a), wide-band

InfoMax (b), multi-band SOBI (c), and multi-band InfoMax (d). The groundtruth scalp maps of

the 3 sources is shown in subfigure (c) and their corresponding time-courses are in subfigure (f).

from other components is within the band width designated for the gamma

components. In this way, while we do not need to separate the gamma frequency

band into below and above the 50 Hz, we can separate the line noise as a single

component. If we do not allocate the narrow band, the line noise will either scatter

among other components or line noise would be separated by the ICA but also

includes weaker oscillations from other sources.

Twenty out of the 22 subjects had gamma-band components time-locked to

the visual stimulus with most participants having more than two components. In
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Figure 3: Filter bank of multi-band ICA to extract the gamma-band components.

order to calculate the group results, the average power spectrum of the time-locked

components was calculated and shown in Figure 4(a). The mean power plot of the

gamma-band ICs are shown in 4(b). In order to make a mean topographic map of

the all subjects and components, first the map of each IC was normalised and then

its absolute value was calculated and finally summed to other maps 4(c).

The components separated by both the multi-band and wide-band ICA show

the sustained gamma-band activation post stimulus at 0 s in Figure 4(a). However,

the mean power plot of the components indicates that for wide-band ICA, the delta

and alpha-band sources are the biggest contributors, whereas in multi-band ICA,

the gamma-band is the primary (and only) contributor to the components.

Correspondingly, the average topographic map of the components obtained by the

wide-band ICA represents the dominant sources (mixture of alpha and delta-band

sources) while the multi-band ICA shows the gamma-band sources. Although the

maps shown in Figure 4(c) are positive only, the individual components have

positive and negative polarities and Figure 4(a) shows a typical map obtained via

multi-band SOBI. The posterior channels had highest contribution to the

visual-induced gamma components with the right side channels having higher

power. Overall, multi-band ICA allowed better reconstruction of gamma-band

activity than wide-band ICA (Figure 4(a)).

5. Discussion

Here we introduced a novel framework, multi-band ICA, which uses a filter bank,

PCA, and ICA in order to perform signal separation on the EEG (and MEG).

With this approach, firstly, the wide band EEG is band-pass filtered into several
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(a) Group result for time-frequency analysis of the ICs time-locked to the visual stimulus using the multi-band ICA
(left) and wide-band ICA (right).

(b) Mean power plot of the ICs time-locked to the visual stimulus using the multi-band ICA (left) and wide-band
ICA (right).

(c) Average scalp map of the ICs time-locked to the stimulus using the
multi-band ICA (left) and wide-band ICA (right).

(d) Sample scalp map of a gamma IC
time-locked to stimulus

Figure 4: Reconstruction of the gamma-band sources time-locked to the visual stimulus using the

multi-band SOBI and wide-band SOBI. The baseline for the time-frequency maps in subfigure (a)

is the first 200 ms. The mean power spectrum of the components are shown in subfigure (b) and the

corresponding average scalp map of the independent components are shown in subfigure (c). The

map in subfigure (d) is a typical scalp map of the a time-locked gamma-band component obtained

using multi-band SOBI.
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subbands. Secondly, the PCA is applied on each subband to break it into spatial

and temporal subspaces. Thirdly, the first few PCs of each subband which

represents the strongest sources in each subband were chosen to create a global

matrices of spatial and temporal PCs. Finally, ICA is applied to the global

temporal PCs to estimate the temporal ICs and the mixing matrix of the ICA is

then multiplied by the global spatial PCs to reconstruct the spatial ICs.

Compared with the conventional wide-band ICA, the multi-band ICA is

superior in terms of separation performance and the SNR of the reconstructed

sources. This is due to the fact that EEG captures the activities of a large number

of sources while the number of the ICs reconstructed by the wide-band ICA is

limited to the number of channels. This results in the activity of the weaker sources

being scattered among the ICs representing the stronger (in terms of magnitude

and durations) sources. We have shown this both in the simulations and in the real

gamma-band activity of subjects performing visual tasks. With the multi-band

ICA, the number of ICs can be as many as number of bands × number of

channels.

We did not investigate the automatic techniques such as MDL for choosing the

number of the PCs from each band, and rather decided on the number of the PCs

pragmatically. The automatic subspace extraction is a broad topic by its own

which is beyond the scope of this paper. Based on the reconstruction of the real

visual evoked sources, gamma-band components were not detected in most of the

participants when we decided to extract only the first 10 PCs of the gamma-band.

However, gamma-band ICs were detected in 20 out of 22 participants when we

increased the number of the gamma band PCs to be included (NP gamma = 45) in

the global matrix of PCs.

Our results for the study of the gamma-band sources is similar to that of [43]

in which only the gamma band EEG and ICA were used for the detection of the

gamma ICs. This question could be raised, rather than multi-band ICA why not

band-pass the EEG and perform ICA on each band separately either for artifact

rejection or for neuronal source detection. The advantage of multi-band ICA is that

the user only performs visual inspection of the components once whereas the

running ICA on each band separately requires corresponding visual inspections and

data superimposition.
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Finally, the proposed approach (multi-band ICA) can be considered as a

subgroup of multi-band signal decomposition techniques, in which the aim is to

reduce the decomposition burden from an adaptive technique such as ICA. The

band-pass filtering of the data provides the spectral decomposition of signal

mixtures and limits the task of statistical decomposition to each band. Using the

concept of multi-band signal decomposition, it is possible to propose diverse

subgroups both in terms of choosing a filter bank (such as wavelet filter, linear

filter, non-linear filters, etc.) and a signal decomposition technique (ICA, PCA,

non-negative matrix factorization, empirical mode decomposition, etc.). In this

paper we used the a linear filter band + PCA + ICA to perform multi-band

decompositions. Using the mentioned alternatives, optimal separations could be

achieved for different types of applications.
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