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Abstract 

 

Oscillatory coupling has been implicated in the representation and in the processing of 

information in the brain. Specific hypotheses suggest that oscillatory coupling may be 

relevant for the temporal coding of information but to which extent this may translate to 

conscious timing is unknown. Here, we tested the hypothesis that the temporal precision of 

self-generated timed actions may be controlled by phase-amplitude coupling (PAC). Using a 

timing task, we show the existence of significant alpha-beta (α-β) PAC, robust at the 

individual level, and specific to temporal production. Second, an increase in the strength of α-

β PAC was associated with a smaller variance in time production, i.e. an increased precision 

in timing, but there was no correlation with the duration of the produced interval. Our results 

suggest an active role for α-β coupling in maintaining the precision of the endogenous 

temporal goal during time production: specifically, α oscillations may maintain the content of 

current cognitive states, thus securing the endogenous temporal code for duration estimation 

instantiated in β band. Oscillatory multiplexing may thus index the variance of neuronal 

computations, which translates into the precision of behavioral performance. 

 

 

 

 

 

Keywords: time perception, alpha, beta, cross-frequency coupling, phase-amplitude coupling  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted October 18, 2017. ; https://doi.org/10.1101/205245doi: bioRxiv preprint 

https://doi.org/10.1101/205245


 3 

Introduction  

 

The relevance of neural oscillations for cognitive operations has been acknowledged 

over the years (Buzsáki & Draguhn, 2004; Fries, 2015). Interactions across frequency 

regimes, referred to as oscillatory nesting or multiplexing (Canolty & Knight, 2010), likely 

supports long-range communication and integration over spatial and temporal scales (Akam 

& Kullman, 2014; Fries, 2015). A common form of observed oscillatory nesting is the 

modulation of high-frequency power (e.g. gamma, γ) by the phase of low-frequency 

oscillations (e.g. theta, θ). Such phase-amplitude coupling (PAC) has been well established in 

neuroscience (Tort et al., 2008; 2009) with mounting evidence that PAC is functionally 

relevant for the representation of temporal sequences (Heusser et al., 2016), working memory 

(Axmacher et al., 2010; Lisman & Jensen, 2013; Roux & Uhlhaas, 2013; Voytek et al., 2010) 

and speech processing (Canolty et al., 2006; Giraud & Poeppel, 2012). In particular, the 

observation that low-frequency neural oscillations regulate spike timing in the human brain 

has raised the hypothesis that PAC provides a temporal code for cognition (Jacobs et al., 

2007; Buzsáki, 2010). Whether such temporal code impacts conscious timing is unknown.  

 

Oscillatory multiplexing has been proposed to mediate the integration of information 

across temporal scales during working memory and interval timing (Gu et al, 2015). Although 

the precise manner with which oscillatory multiplexing contributes to time estimation remains 

unclear, a literal read would be that information content, encoded in higher frequency activity, 

would be integrated over the time scales of the low-frequency oscillations (van Wassenhove, 

2016). This working hypothesis would effectively predict that the coupling strength in PAC 

should linearly increase with the length of the perceived or produced time interval. Such 

mechanism would be consistent with internal clock models (Treisman, 1963) in which 

perceived duration results from the integration of information (i.e. pulses or events count) 

over time. An alternative hypothesis would be that PAC regulates the precision of information 

during its transmission and/or maintenance over relevant brain regions. Specifically, it has 

been shown that temporal expectations can align the phase of endogenous low-frequency 

oscillations at the time at which sensory events were expected to occur (Samaha et al., 2015), 

reflecting a form of temporal optimization for sensory encoding. Θ-β PAC has been suggested 

by another study (Cravo et al., 2011) to be sensitive to the occurrence, or absence, of a 

predicted external event in time. Altogether, these studies suggest a link between temporal 

expectation of sensory events and PAC. However, whether such mechanism can be elicited 

endogenously (or volitionally) has not been addressed.  

 

In this magnetoencephalography (MEG) study, we contrasted the integration and the 

precision hypotheses for PAC using an explicit time production task, and we questioned 

whether an increase in PAC would index timing performance per se (i.e. the duration of the 

produced interval), or timing precision. For this, we thus distinguished precision (i.e. variance 

of temporal production) from accuracy (i.e. variation of the temporal production relative to 

the target interval). We show that generating a time interval in the absence of sensory 

stimulation was accompanied by a robust alpha-beta (α-β) PAC observed at the individual 

level. Importantly, the strength of α-β coupling correlated with the precision and with the 

accuracy of timing performance, but not with the absolute produced duration itself. Our 
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results thus provide support for the fundamental role of oscillatory multiplexing in temporal 

coding, extending this notion to conscious timing and performance precision. 

 

 

Results 

 

Behavioral evidence for variable precision and accuracy 

 

12 participants were asked to produce 1.45 s and 1.56 s by briefly pressing a button at 

the start (R1) and at the end (R2) of their time production (TP). Participants complied with the 

task requirements by producing 1.513 s time intervals on the first three, and 1.614 s time 

intervals on the last three experimental blocks (Fig. 1B). Although the overall performance 

was quite accurate, the time production data showed large variability within-individuals 

(across blocks) but also across individuals (Fig. 1CD). This variability was quantified by the 

Coefficient of Variation (CV, Fig. 1C) and by the Error Ratio (ER, Fig. 1D): the CV was 

calculated by dividing the standard deviation by the mean duration production and the ER was 

calculated by dividing the mean time estimates by the target interval in a given block. Hence, 

we considered the CV as a measure of precision, and the ER as a measure of accuracy. Both 

metrics were calculated per experimental block and per participant. Although changes in 

feedback were manipulated in the experimental design, there was no ad-hoc hypothesis 

regarding its effects on possible PAC, notably because no significant changes in precision 

were found as a function of feedback as tested by repeated measures ANOVA (F(5, 65) < 1, P 

> 0.1). Additionally, as can be seen in Fig. 1D, a general trend for a lengthening in duration 

estimation was observed over the entire course of the recording: this drift was shown to not 

depend on changes in feedback or changes in duration (Kononowicz et al., under review). We 

then explored the role of oscillatory multiplexing in timing variability.  
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Fig. 1. Probing behavioral precision and accuracy using a time production paradigm. (A) Time course of an 

experimental trial. (B) Probability density function of all time productions (TP) when producing 1.45 s (red) and 

1.56 s (blue). (C) Temporal precision computed as Coefficient of Variation (CV) over time productions per 

block (color) and per individual (dot). (D) Accuracy in time production computed as Error Ratio (ER = 

production/target) per block (color) and per individual (dot). 

 

 

Robust α-β coupling during time production  

 

Ahead of PAC calculation, we assessed the power spectrum during the timed interval 

(from 0.4 to 1.2 s following R1 to avoid evoked responses) by averaging the PSD across all 

sensors, conditions and individuals. Two peaks were readily visible in the spectrum at α (~10 

Hz) and β (~25 Hz) frequencies, suggesting the existence of two plausible regimes for 

oscillatory multiplexing (Fig. S1A). The α PSD was mainly localized in occipital and parietal 

regions (Fig. S1B). To assess whether any form of PAC was present during interval 

production, we computed the modulation index (MI) in this same interval (Tort et al., 2009). 

Visual inspection of grand average data across all individuals and sensors revealed a strong 

MI between the α phase and the β power in centro-parietal sensors (Fig. 2B). For 

dimensionality reduction, we selected the 10 sensors for each individual displaying the 

maximal α-β MI: as can readily be seen in Fig. 2A, the 10 sensors with maximal α-β MI were 

found in central and parietal regions for a majority of participants. For each sensor, statistical 

significance of the MI was assessed at the individual level by shuffling the α phase (Tort et 
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al., 2010). A Z-score above 4 (P < 0.0001; Fig. 2A for individual outlines), revealed that α-β 

PAC was statistically significant for each individual.  

Across participants, α-β MI was maximal for the phase of the 10.3 Hz peak frequency 

(SD = 0.6) and for the amplitude of the 27.2 Hz peak frequency (SD = 3.9) (Table S1 

provides all individual peaks). Both values were consistent with the frequency peaks observed 

in the previous PSD. Specifically, we observed that an individual’s α peak frequency also 

corresponded to the α peak frequency of the individual’s PAC [R = 0.74, P = 0.004; Fig. S3]. 

Additionally, the β peak in α-β PAC was distinct from the 2
nd

 harmonic of the α peak in the α-

β PAC (t = 7.064, p < .001; CI95 = [4.5; 8.6]) meaning that the observed α and β peak 

frequencies were not simply harmonics. 

To cross-validate our findings, and insure that the observed PAC was not spurious 

(Hyafil, 2015; Jensen et al., 2016), we quantified α-β PAC using a recently developed Driven 

Auto-Regressive (DAR) statistical modeling approach (Dupré La Tour et al., 2017) which 

makes no a priori assumptions on the shape of the signal. DAR modeling revealed a 

comparable α-β PAC (Fig. S2). Interestingly, this new method provided a narrower focus on 

higher frequencies of power modulation, suggesting slightly larger specificity of high power 

modulation. Noteworthy for both methods, the peak of power frequency (Tort method = 27.2 

Hz; DAR method = 34.5 Hz, SD = 2.3) lied in the vicinity of β and lower γ frequencies, 

suggesting that for every α cycle at least one cycle of β was transiently modulated by the 

phase of α oscillation. This transient modulation may be related to the known ‘burstiness’ of 

beta oscillations, suggesting that on single trials, β oscillations may not be sustained but occur 

in a single cyclic burst of activation (Jones 2016; Sherman et al., 2016). As previously 

observed, the peak frequencies for α and β found in the α-β PAC with the DAR method 

showed no clear harmonic relationship (t = 18.641, p < .001, CI95 = [11.1; 14.0]).  

To further assess which brain regions may exhibit the highest degree of coupling, we 

source-estimated PAC in cortex. First, we reconstructed the time-resolved signals on a single-

trial basis, and used the same approach for PAC calculation as we did for the sensor data. We 

spatially defined brain regions from a known cortical parcellation using maximal α power as 

our criterion (see Material and Methods). α-β PAC was maximal in left sensorimotor regions, 

presumably due to the motoric components of the task (post-, pre-, para-central, and 

supramarginal areas) (Fig. 2C). High PAC was also found in parietal regions, in line with the 

notion that endogenous α rhythms would largely contribute to PAC. The α peak analysis 

(Fig. S1C) and the PAC source estimation (Fig. 2A) were thus topographically consistent with 

each other. To test the robustness of source estimations, we also conducted the analysis with a 

selection of spatial location based on the maximal β power: the left sensorimotor areas 

showed maximal α-β PAC, consistent with the α-based observations (Fig. 2C, bottom panel).  
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Fig. 2. α-β PAC during time production. (A) The modulation index (MI) for each individual. A set of 10 

sensors showing a maximal α-β MI was selected for each participant.  The topographic plots (inset) map the α-β 

MI and highlight the selected sensors in white. The comodulograms show the MI for all analysed frequencies, 

averaged across selected sensors. The white outlines delineate significant Z-scored values above 4 (P < 0.0001). 

(B) The grand average comodulogram across all trials, participants and sensors, showing significant α-β PAC. 

The average topographic map of α-β MI plotted in the right inset shares the same scale as in panel A. (C) Z-score 

MIs were computed in cortex. Brain regions showing maximal MI on the basis of α or β power are highlighted in 

the top and bottom panels, respectively.  

 

 

α-β coupling is specific to the interval being timed  

  

Although we showed that α-β coupling was present during the production of temporal 

intervals, one may argue that the observed coupling was strictly relevant to motor preparation 

as opposed to timing. To test this, we capitalized on our experimental design, which required 

that participants self-initiate their time productions. As participants volitionally initiated their 

first button press (R1) with no explicit time requirement or pressure, we used the data ranging 

from - 0.8 s to R1 as control for motor preparation. We specifically tested whether the MI 

during the production of the time interval was significantly increased compared to baseline 

(before R1). A cluster-based permutation t-test on comodulograms averaged across the 

selected sensors and across participants showed that α-β PAC was significantly larger during 

time production than during the volitional trial initiation (P = 0.037, Fig. 3). As the number of 

trials for PAC estimation was not optimal for 3 participants (Fig. S4A), the cluster 

permutation test was repeated for the 9 participants with a sufficient number of trials for 

robust estimation (> 40 trials) revealing again a PAC significantly larger than in baseline (P = 

0.016, Fig. S4B).  
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Importantly, because the power of the low-frequency oscillation may impact the MI 

(Dupré La Tour et al, 2017), we also insured that α power density did not differ before the 

time interval and during the production of the time interval (P > 0.1). The α-β power ratio did 

not significantly differ between these two time periods (P > 0.1). In light of these controls, the 

α-β coupling could not be explained by a simple power difference between the two time 

periods. To put our findings in context, it is noteworthy that in a study requiring similar motor 

demands (De Hemptine et al., 2013), PAC was shown to decrease during motor preparation as 

compared to the movement phase; here, during a timing task, we found the opposite pattern.  

Altogether, our comparisons against baseline showed that the observed α-β PAC were 

likely linked to the task requirements of endogenously producing a timed interval, thus could 

play a functional role in temporal performance. This is what we explored next.  

 

 
Fig. 3. α-β PAC is specific to the timed interval R1-R2. To ensure that α-β coupling was related to timing 

processes, we contrasted PAC during the produced time interval (R1 to R2) with PAC during baseline of the 

motor preparation to the same trial (-0.8s to R1). α-β PAC was significantly higher during the time production 

interval as compared to motor preparation (corrected cluster delineated in white, P < 0.037). 

 

 

α-β PAC indexes the precision in temporal performance 

 

 Cravo et al. (2011) reported θ-β PAC when participants maintained their internal state 

over a period of seconds to emit adaptive behavior. Building on this intuition, we 

hypothesized that PAC may reflect the ongoing anticipatory state during the endogenous 

elicitation of a duration goal. To test this, we studied how the observed PAC related to 

participants’ timing precision and accuracy. The α-β MI (8-12 Hz / 15-40 Hz) were averaged 

across sensors separately for each individual and for each experimental block, and entered as 

predictors in two regression models: the precision model (CVs) and the accuracy model 

(ERs). 

 In line with our predictions, we found that the strength of PAC significantly predicted 

CV [F(1, 65) = 8.6, P = 0.005; Fig. 4A]. The statistical analysis, based on Akaike Information 

Criterion (AIC, Wagenmakers, 2014), showed that the model containing α-β PAC as predictor 
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was justified as compared to the model including only the intercept [ΔAIC = 6.3, P > 10
-15

]. 

Neither the inclusion of block factor, nor the inclusion of the interaction of α-β PAC with 

block factor in the model were warranted [ΔAIC = -7.3, P > 0.1; ΔAIC = -9.3, P > 0.1; 

respectively]). This indicated that in spite of variability in behavioral performance, the 

relationship between the precision as quantified by CV (Fig. 1C) and the α-β PAC was 

sustained throughout the entire experimental session.  

To further test whether PAC indexed the precision of behavioral performance, we 

assessed whether transitions in α-β PAC between blocks (∆PAC) could predict transitions in 

CV between blocks (∆CV). For this, we subtracted the CV and the α-β MI between 

consecutive blocks (i.e., Block 2 – Block 1, Block 3 – Block 2, etc.). In line with the results of 

the first model, ∆PAC significantly predicted ∆CV [F(1, 53) = 7.7, P = 0.008; Fig. 4B], 

indicating that changes in precision (CV) between blocks could be accounted for by changes 

in PAC between blocks.  

Previous studies on cross-frequency coupling have indicated that PAC estimation 

could be confounded during the estimation of phase and power frequencies (e.g. Aru et al., 

2016). To thoroughly assess whether the predictive power of PAC with respect to CV was 

exclusive to oscillatory coupling, and not confounded by the power in α or β bands, we tested 

whether the inclusion of α power (Fig. S5A), β power (Fig. S5B), and α-β power ratio (Fig. 

S5C) was justified in the model predicting CV. We confirmed that the inclusion of α, β, and 

α-β ratio were not justified in the model predicting CV [Fig. ΔAIC = 0.1, P > 0.1; ΔAIC = 

1.2, P > 0.05; ΔAIC = -1.9, P > 0.1; respectively]. 

Finally, we investigated the association of PAC with the precision of temporal 

behavior by correlating the values of the α-β MI obtained in each highlighted cortical region 

with the CVs: significant correlations between α-β MI and CV were found in the left motor 

areas, the left supramarginal gyrus, and occipito-parietal regions (Fig. 4C). Notably, the left 

supramarginal gyrus and pars orbitalis were both present in the α-based and in the β-based 

selection of vertices. The implication of these structures in the current timing task is 

consistent with previous reports (Coull, et al., 2004; Livesey et al., 2006, Wiener et al., 2010).   

 

 
Fig. 4. α-β PAC indexes the precision of temporal performance. (A) Over all blocks and participants the CV 

of temporal production was significantly correlated with the strength of α-β PAC, with no contribution of α 

or β power, suggesting that α-β PAC exclusively accounted for participants’ temporal precision. (B) The 

relative changes in CV and α-β PAC were correlated when participants switched from one block to another, 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted October 18, 2017. ; https://doi.org/10.1101/205245doi: bioRxiv preprint 

https://doi.org/10.1101/205245


 10 

suggesting that the transitions in α-β PAC strength between blocks were followed by transitions in CV. (C) 

Cortical source estimations of reported correlations between α-β PAC and CV. 

 

 

α-β PAC and α power index temporal accuracy 

 

α-β PAC was shown to correlate with the precision of temporal production (CV) 

across blocks with a stronger coupling indicating a smaller variance in time production. After 

investigating the ad-hoc hypothesis proposing that PAC could regulate the precision of 

information processing, we assessed whether α-β PAC related to the differences between 

produced and objective target intervals, i.e. to the accuracy. The accuracy assessed by ER 

indicated the distance of participant’s temporal production from an ideal observer’s 

performance (Fig. 1D). We found that PAC was significantly indicative of ER [F(1, 64) = 9.5, 

P = 0.003; Fig. 5A]. The AIC analysis showed that the model containing PAC as predictor 

was justified, as compared to the model including only the intercept [ΔAIC = 7.2, P = 0.002]. 

The inclusion of block factor to the model was also justified [ΔAIC = 7.4, P = 0.003] but no 

interactions between PAC and block factor were found [ΔAIC = 0.2, P > 0.1]. This result 

signified that changes in feedback did not affect the strength of PAC, and this was verified by 

directly contrasting blocks of 100% feedback with blocks of 15%  feedback [F(1, 65) = 1.196, 

P = 0.2782]. It thus appeared that the relationship between the oscillatory coupling strength, 

as measured by PAC, and the accuracy of time estimation, as measured by ER, remained 

stable throughout the entire experimental session. 

 In the accuracy model, α power was also found to significantly contribute to the 

prediction of ER [t(57) = 3.7, P = 0.001] but the inclusion of PAC in the model remained 

significant [t(57) = -4.1, P < 0.001]. It is noteworthy that PAC and α power had opposite 

effects in predicting ER. Additionally, the inclusion of α power to the model was warranted 

by model comparison against the model including PAC [ΔAIC = 8.9, P < 0.001; Fig. 5B], 

whereas the inclusion of β (Fig. S5D) and α-β ratio (Fig. S5E) were not [ΔAIC = -10.9, P > 

0.1; ΔAIC = -4.8, P > 0.1; respectively]. This observation confirmed the specificity of the 

contribution of PAC and α power to time estimation. 

 In line with the outcomes of a precision model, the accuracy model showed that a 

decrease in α-β PAC strength was linked to less accurate time productions. At first, the 

functional role of α-β PAC on accuracy seemed less clear than the one of precision; however, 

the decrease in accuracy could be caused by the loss of precision, with a higher chance of 

poorer time estimation. 
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Fig. 5. α-β PAC and α power index performance accuracy. (A) A decrease in ER) of time production was 

significantly correlated with a decrease in α-β coupling strength. (B) An increase in α power significantly 

correlated with an increase in ER. The scale in panel B differs from panel A because it reflects residuals in the 

model after accounting for α-β ΔPAC. These results indicate that accuracy is accounted for by α-β PAC and by a 

modulation of α power. 

 

 

No monotonous association between PAC and time estimation 

 

Although PAC has been proposed to mediate the integration of information across 

temporal scales for interval timing (Gu et al., 2015), the precise manner in which counting 

time would be implemented with oscillatory multiplexing remains difficult to elaborate (van 

Wassenhove, 2016). To clarify our results, we formulated a direct test of whether the 

generation of a time interval resulted from the online integration of endogenous information 

mediated by oscillatory multiplexing and investigated whether α-β PAC predicted timing 

behavior in an absolute manner between trials. In line with the common practice in the field 

(Kononowicz & Van Rijn, 2011), data were split in three bins as a function of participants’ 

performance: short, correct or long. The α-β MI was averaged across sensors for each 

individual and for each produced duration. A one-way repeated-measures ANOVA conducted 

with produced duration as factor (3 levels: short, correct, long) revealed no significant 

differences [F(2, 11)=0.657, P = 0.528; Fig. S6]. To investigate the likelihood of the null 

hypothesis, we ran the same analysis with Bayesian ANOVA: a Bayes Factor of 0.29 

indicated that the data were 0.29 more likely to occur under the null hypothesis than under the 

alternative hypothesis. In other words, our results were 1/0.29 = 3.4 times more likely to 

occur under the null hypothesis, providing “substantial” (Jeffreys, 1961) or “moderate” (Lee 

& Wagenmakers, 2013) evidence that the α-β MI were independent of performance. We also 

tested whether the preferred phase of α-β coupling differed as a function of produced 

duration, but found no substantial evidence (Fig. S7). Our results thus provide no evidence for 

a specific role of cross-frequency coupling in duration estimation per se; rather, we find that 

α-β PAC indexes the precision with which the endogenous temporal goal is maintained across 

trials. One possible interpretation discussed below is that, from a neural network perspective, 

α may be regulating the β timing goal endogenously generated. 
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Fig. 6. α-β PAC regulates the precision in time production. This schematic figure illustrates that the precision 

of temporal production in our study correlates with α-β PAC. Higher precision corresponds to a narrower non-

uniform distribution of PAC (left top panel); lower precision to a broader non-uniform distribution (left bottom). 

Time-frequency plots for one individual with high precision (S09; top middle) and for one individual with low 

precision (S02; bottom middle) depicting the observed β power phase-locked to α phase: higher precision was 

associated with stronger α-β PAC, lower precision with weaker α-β PAC (middle top and bottom, respectively). 

The peak count distribution of β power maxima relative to the α phase are provided. The rightmost column 

depicts the working hypothesis that oscillatory coupling allows β oscillations to be reactivated, thereby 

endogenously modulating the timing goal encoded in the state space of synaptic configurations (see Discussion). 

  

 

Discussion   

Using time-resolved neuroimaging, we investigated whether cross-frequency-coupling 

was implicated in the endogenous generation of time intervals. Our results provide strong 

evidence that α-β PAC leverages the precision of timing, but not the coding of a time interval. 

Specifically, we found that α-β PAC was indicative of the precision and accuracy of 

endogenous timing so that the stronger the α-β coupling, the more precise the performance 

(Fig. 6). These results suggest that α-β coupling indexes the precision with which information 

is endogenously maintained and transferred in the brain during a cognitive task. 

 

α-β PAC is not related to motor preparation or learning 

Due to fast progresses in uncovering the functions of cross-frequency coupling, 

accounting for the present findings with the existing evidence for the implication of PAC in 

motor preparation or learning would be tempting. However, several lines of evidence suggest 

that this is not the case. First, none of the frequency regimes described here conformed with 

previous reports: for instance, in intracranial recordings and ECoG, motor preparation was 

found to induce coupling in α/high-γ regimes, with an enhanced coupling during the 

preparation as compared to the movement execution phase (Combrison et al., 2017; 

Yanagisawa et al., 2012). Additionally, δ/α PAC contralateral to the side of the motor 
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preparation was found to increase during movement vs. no movement (Kajihara et al. 2015). 

In situations of aberrant oscillatory regimes such as in patients with Parkinson, Hemptine et 

al. (2013) described an increased β/high γ PAC. Although we cannot be fully exhaustive, 

motor functions have typically been linked to different frequency coupling than the α-β PAC 

reported here. Another line of research reported the enhancement of PAC during learning 

(Tort et al., 2009). However, three pieces of evidence described in our study do not align well 

with the learning hypothesis, understood as progressive improvement in the measured neural 

or behavioral feature over the course of experiment (Kononowicz & Van Rijn, 2011; Tort et 

al., 2009). First, participants’ behavioral precision was stable over experimental blocks, 

indicating a stable level of performance in the course of the experiment. Second, the 

association between α-β PAC with behavioral precision was also stable over blocks, 

indicating no role for α-β PAC in potential learning-related effects. Third, under the learning 

hypothesis, it would be conceivable that different durations would entail different memory 

loads so that increased PAC would correlate with increased durations. We did not find such 

relationship between PAC and produced duration. Overall, our results cannot be directly 

interpreted in the context of learning effects linked to PAC (Tort et al., 2009) as this 

experimental design did not explicitly manipulate learning in time production.  

 

Maintenance of endogenous goal through α-β coupling 

The specific role of α oscillations in cognition and information processing remains 

largely debated (Roux & Uhlhaas, 2013) but several observations show some consistencies. 

Among them, α oscillations have seminally been associated with the inhibition of irrelevant 

information (Klimesch et al., 2007; Jensen & Mazaheri, 2010; Haegens et al., 2012) and the 

maintenance of contents in working memory (Bonnefond & Jensen, 2012). In particular, the 

power of α oscillations has been shown to increase during cognitive tasks requiring internal 

engagement, which supports the protective role of α rhythms against exogenous distraction 

(Scheeringa et al. 2008). α oscillations have also been shown to play an active role in working 

memory maintenance (Palva et al., 2011) and in anticipation (Haegens et al., 2012; Praamstra 

et al., 2012). Both anticipation (Coull et al., 2013; Fortin, Bédard, & Champagne, 2005; 

Fortin & Massé, 2000) and maintenance of task goal (Lustig & Meck, 2001) are vital 

functions in time estimation. Hence, our observation of an active engagement of α oscillations 

in this task is consistent with prior literature. 

 β activity has been observed during time production and temporal expectations, 

suggesting that β oscillations may index a neural code for time estimation. Consistent with 

previous work using a motor timing task (Kononowicz and Van Rijn, 2015), increases in β 

power was found to index increases in time estimates. These findings have been extended to 

perceptual timing (Kulashekhar et al., 2016) and recently shown to be causally related to time 

estimation (Wiener et al., 2017). β oscillations have also been implicated in the generation of 

temporal predictions through sensorimotor interactions (Arnal et al., 2014; Fujioka et al., 

2012) and involved in encoding of inter-tap duration (Bartolo et al., 2015). Hence, the active 

implication of β oscillations in this task is largely consistent with prior literature. 
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Altogether, our data are in line with a previous proposal suggesting that α and β 

regimes cooperate for content maintenance (Palva & Palva, 2007). This view support the 

recent ideas that α-driven PAC could provide a computational framework, in which α rhythms 

serve as a readout for relevant items (Roux & Uhlhaas, 2013; also see Nikulin, 2006). 

Specifically, the kind of time production paradigms used here relied on the anticipation of 

internally generated temporal codes and goals for duration production. In line with PAC 

shown during externally driven anticipatory states (Cohen et al., 2008; Cravo et al., 2011), our 

results show that enhanced PAC indexed more precise temporal production across blocks, and 

therefore appealed to the idea of coupling between neuronal regimes for the selection and the 

maintenance of neuronal representations (Palva & Palva, 2007). Given that the instantiation of 

PAC as α-β coupling found here was commensurate with the endogenous precision of a time 

goal, one hypothesis we could put forward is that β-based event computations may support 

endogenous temporal codes and goals. 

 

Specificity of α-β coupling to timing precision in the absence of external stimulation 

 

A large body of work has suggested that PAC plays a functional role in maintaining 

information in working-memory and in attention. In working memory, PAC has been reported 

to operate in the θ-γ regimes (Axmacher et al., 2010; Fell & Axmacher, 2011; Alekseichuk et 

al., 2016), whereas modulations of attention may entail the α-γ regimes (Voytek et al., 2010; 

Roux & Uhlhaas, 2013). In particular, enhanced PAC has been associated with increased 

working memory load (Axmacher et al., 2012) and successful memory recollection in a cued 

task (Park et al., 2016). In both cases, γ activity was reported as the oscillatory component 

underlying information maintenance in working memory (Herrmann et al., 2004, but see 

Daume et al., 2017). Here, we found no compelling evidence for the integration hypothesis in 

duration estimation, which was rooted in these seminal findings.   

Rather, our results were consistent with the precision hypothesis, which built on two 

studies showing a phase alignment of slow oscillations with the temporal task structure 

(Cravo et al., 2011; Samaha et al., 2015). For instance, Cravo et al. (2011) reported elevated 

PAC between two moments in time (temporal expectancy) for which it was perceptually 

beneficial for participants to maintain the same anticipation level. Both paradigms (Cravo et 

al., 2011; Samaha et al., 2015) relied on the individual’s anticipation to external sensory 

inputs, supporting the notion that anticipatory states can be maintained through α-β PAC. Our 

results extend these observations by showing that α-β PAC is relevant for temporal 

processing, not for the absolute time code in motor timing but for the precision it provides. 

More generally, it is also in line with a recent animal study suggesting that the precision of 

neural representations, including time intervals, is adjustable and may rely on multiple 

oscillators (Kheifets, et al., 2017). 

 

    

It is also relevant that, with entrainment, the phase of low-frequency oscillations and 

beta activity has been reported to be relevant for timing. For example, -β PAC has been 

observed during the anticipation of visual sequences (Saleh et al., 2011) and related to the 
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temporal resolution of perceptual systems (Arnal et al., 2014). High -β coupling has been 

associated with temporally accurate perception of an auditory stimulus embedded within a 

sequence (Arnal et al., 2014) and changes in the phase of  oscillations has also been 

associated with explicit time order (Kösem et al., 2014). In all studies, unlike the current 

experimental approach, low-frequency oscillations were entrained by the sequence of sensory 

stimulations, and this may largely account for the differences between the -β reported before, 

and the α-β coupling observed here.   

 

 

α-β PAC as a signature of stabilization of synaptic state-space 

 

α-β PAC has rarely been explored as a coupling configuration. Although the realm of 

possible coupling scenarios (e.g., Hyafil et al., 2015) preclude from drawing detailed 

conclusions on the computational architectures at the neurophysiological level (Canolty et al., 

2010; Hyafil et al., 2015), our results highlight three features in broader neurophysiological 

terms. First, our results show that α and β generating networks are, to a certain extent, 

intertwined during a volitional task engaging no sensory stimulation and relying on self-

generated timing (i.e. endogenous information). Second, that higher precision may arise from 

the maintenance of β-encoded information by the phase of α rhythm is in line with recent 

simulations using a 4-layers neuronal mass model (Sotero, 2015; 2016). This simulation 

reported the emergence of α-β PAC and, using information flow analysis, the phase of α 

oscillations was shown to stabilize β activity generated by fast spiking interneurons in layers 

2/4 (Sotero, 2015; 2016). The reported directionality suggested that the phase of α oscillations 

may provide an optimal window for the reactivation of β-driven activity, consistent with the 

hypothesis that a global α network could regulate local β activity (e.g. Lee et al., 2013). 

Hence, one possible interpretation of our results is that β activity may reflect the neural state-

space of synaptic configurations (Gavornik et al., 2009; Laje & Buonomano, 2013; 

Namboodiri et al., 2015) in cortical sources contributing to the maintenance of participants’ 

endogenous temporal goals (Fig. 6). β power, a marker of time estimation (Kononowicz and 

Van Rijn, 2015; Kulashekhar et al., 2016; Wiener et al., 2017), may also reflect the state-

space of synaptic weights (Kononowicz & Penney, 2016), consistent with neural populations 

contributing to clocking mechanisms (Karmakar & Buonomano, 2004; Buonomano & Laje, 

2010). This interpretation would be in line with recent suggestions that β synchronization 

provides a functional assembly-forming mechanism (Spitzer and Haegens, 2017; Lundqvist et 

al. 2016). Hence, what the α-β PAC as a marker of precision would signify in this context, is 

that in the absence of updating of the synaptic weights, the endogenous temporal goal may 

drift away from the optimal space as depicted in the trajectories distancing away from the 

colored area representing the optimal weights (Fig. 6). Thirdly, and importantly, the 

regulation of behavioral precision by α-β PAC need not be specific to timing. Here, the timing 

task we used enabled to move away from sensory-driven processes and uniquely focus on 

self-generated or endogenously driven activity. As such, the link between PAC and 

performance precision appears to capture the variance of computation in neuronal assemblies 

(Renart & Machens, 2014), and the precision with which assemblies act and represent task 

goals appear to translate into the temporal precision of behavioral performance.  
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Conclusions 

 

Oscillatory multiplexing, instantiated by phase-amplitude coupling, have been mainly 

studied in the context of working memory. Here, we showed the implication of a rarely 

studied coupling between α and β oscillations, in the self-generation of time intervals, and in 

the absence of sensory stimulation. The described α-β PAC supports the precision of temporal 

production. We suggest that α oscillations maintain and support the organization of β 

oscillations to keep track of endogenous temporal goals. In other words, our results provide 

strong evidence that α-β PAC leverages the precision of timing, but not absolute timing itself. 

 

 

 

Methods 

 

Participants 

 

Nineteen right-handed volunteers (11 females, mean age: 24 years old) with no self-

reported hearing/vision loss or neurological pathology took part in the experiment and 

received monetary compensation for participation. Each participant provided a written 

informed consent in accordance with the Declaration of Helsinki (2008) and the Ethics 

Committee on Human Research at Neurospin (Gif-sur-Yvette). The data of seven participants 

could not be included in the analysis due to the absence of anatomical MRI, problems with 

head positioning system, abnormal artifacts during MEG recordings, and two participants not 

finishing the experiment. These datasets were excluded a priori and were not visualized or 

inspected. Hence, the final sample comprised twelve participants (7 females, mean age: 24). 

All but two participants performed six experimental blocks; the first block was removed for 

one participant due to excessive artifacts, the last block was removed for another participant 

who did not conform to the requirements of the task. 

 

Stimuli and Procedure 

 

Before the MEG acquisitions, participants were acquainted with the task by producing 

1.45 s duration intervals, and reading written instructions explaining the full experimental 

procedures. A single trial consisted in producing a time interval followed by the self-

estimation of the produced time interval. The feedback varied across blocks (block 1 and 4 

included 100% feedback; blocks 2,3 and 5,6 included 15% feedback). Each trial started with 

the presentation of a “+” sign on the screen indicating to participants they could initiate an 

interval whenever they decided to (Fig. 1A). Participants initiated their production of the time 

interval with a brief button press (R1) once they felt relaxed and ready to start. Once they 

considered that a 1.45 s had elapsed, they terminated the interval by another brief button press 

(R2). To initiate and terminate their time production, participants were asked to press the top 

button on a Fiber Optic Response Pad (FORP, Science Plus Group, DE) using their right 

thumb. The “+” sign was removed from the screen during the estimation of the time interval 
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to avoid any sensory cue or confounding responses in brain activity related to the production 

of the timed interval.  Following the production of the time interval, participants were asked 

to self-estimate their time estimation using a continuous scale identical to the one used to 

provide feedback. The inter-trial interval between the end of the self-estimation and the first 

cursor display ranged between 1 s and 1.5 s. 

Following the completion of the time interval, participants received feedback. The row 

of five symbols indicated the objective category of the time production tailored to each 

individual’s time estimation. The feedback range was set to the value of the perceptual 

threshold estimated on a per individual basis during a task performed prior to MEG 

acquisition (mean population threshold = 0.223 s, SD = 0.111 s). A near correct time 

production yielded the middle ‘~’ symbol to turn green; a too short or too long time 

production turned the symbols ‘-‘ or ‘+’ orange, respectively; a time production that exceeded 

these categories turned the symbols ‘- -‘ or ‘++’ red. In Block 1, feedback was provided in all 

trials. In Block 2 and 3, feedback was randomly assigned to 15% of the trials. In Block 4, the 

target duration was increased to 1.45 + (individual threshold/2) and feedback was presented in 

all trials. On average, the new target duration was 1.56 s based on the average threshold. In 

Block 5 and 6, feedback was presented on 15% of trials. In Block 1 and 4, participants 

produced 100 trials; in Block 2, 3, 5, and 6, participants produced 118 trials.  

Between all experimental blocks, participants were reminded to produce the 1.45 s 

target duration as accurately as possible and to maximize the number of correct trials in each 

block. During the estimation of individual thresholds, responses were collected using FORP, 

with the yellow button assigned to the index, the green button assigned to the middle finger 

and the red button assigned the ring finger of the right hand according to the position of the 

longest tone. Feedback was not provided to the participants. 

 

Simultaneous M/EEG recordings 

 

 The experiment was conducted in a dimly lit magnetically-shielded room located at 

Neurospin (CEA/DRF/Joliot) in Gif-sur-Yvette. Participants sat in an armchair with eyes 

opened looking at a projector screen. Electromagnetic brain activity was recorded using the 

whole-head Elekta Neuromag Vector View 306 MEG system (Neuromag Elekta LTD, 

Helsinki) equipped with 102 triple-sensors elements (two orthogonal planar gradiometers, and 

one magnetometer per sensor location) and the 64 native EEG system using Ag-AgCl 

electrodes (EasyCap, Germany) with impedances below 15 kΩ. Participants’ head position 

was measured before each block using four head-position coils placed over the frontal and the 

mastoid areas. The four head-position coils and three additional fiducial points (nasion, left 

and right pre-auricular areas) were digitized using a 3D digitizer (Polhemus, US/Canada) for 

subsequent co-registration of the individual’s anatomical MRI with brain recordings. MEG 

and EEG recordings were sampled at 1 kHz and band-pass filtered between 0.03 Hz and 330 

Hz. The electro-occulograms (EOG, horizontal and vertical eye movements), -cardiograms 

(ECG), and -myograms (EMG) were simultaneously recorded. Feedback was presented using 

a PC running Psychtoolbox software (Brainard, 1997) in MATLAB (R2012, The Mathworks). 

 

Data Analysis 
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M/EEG data preprocessing 

 

MEG data were low-passed at 160 Hz, decimated at 333 Hz and epoched from -1.2s 

from the onset of the first button press (R1) up to 2 s after. Epochs were rejected if signal 

amplitudes exceeded 4 fT/cm for gradiometers and 5500 fT for magnetometers. Baseline 

correction was applied by subtracting the mean value ranging from -0.2 s to 0 s before R1. In 

this report, we focus on magnetometers and thus use the word “sensors” to refer to 

magnetometers. 

 

Power density spectrum (PSD) analysis 

 

The PSD was computed using Welch’s method, between 1 and 45 Hz, with 800 ms 

length tapers, on a window from 0.4 to 1.2 s. PSD were averaged across all magnetometers, 

conditions and participants.  

 

Phase amplitude coupling calculation and statistical assessment 

 

In order to prevent the contamination of the timed interval from evoked responses, we 

solely focused on the time segment from 0.4 s to 1.2 s following R1. PAC was assessed using 

the Modulation Index or MI (Tort et al., 2009), namely: raw data were band-pass filtered 

(slow-frequency bandwidth = 2 Hz, high-frequency bandwidth = 20 Hz); the instantaneous 

amplitude of the high-frequency and the phase of the slow-frequency were extracted from the 

Hilbert transform applied to the epoch data. To assess whether the distributions diverged from 

uniformity, the Kullback-Leibler (KL) distance was calculated then normalized to give the 

MI. The KL distance was estimated between histograms with 18 bins. The slow-frequency 

component ranged from 3.5 Hz to 14.1 Hz (step by 0.2 Hz) and the high-frequency range was 

from 14 Hz to 160 Hz (in step of 2 Hz). A comodulogram was computed for each sensor. 

To assess the statistical significance of PAC at the individual level, the MI was 

compared to a surrogate distribution (n = 100) computed by shifting the low frequency signal 

by a minimum of 1 s, as has been previously proposed (Tort et al., 2010). A Z-score was 

calculated for each sensor and a Z-score higher than 4 (P = 3e-5) was reported as significant.  

To assess whether PAC was specific to time production, we compared the MI 

computed during baseline from -0.8 s to 0 s prior to R1 to the MI computed during the 

produced interval ([0.4:1.2s]). Since participants were allowed to begin the task when ready 

after the cross display, we selected trials with at least 1.1 s between the cross onset and the 

first button press (R1) in order to avoid any contamination of visual evoked activity. On 

average 90 +/- 80 trials were retained. For 3 participants, the number of trials was not 

sufficient to compute a reliable MI (6, 15 and 21 trials; Fig. S6A). Nevertheless, the cluster-

based permutation t-test was run on all individuals and similar results hold when the same 

analysis was carried out on 9 participants (Fig. S6B). 

 

M/EEG-aMRI coregistration 

 

Anatomical Magnetic Resonance Imaging (aMRI) was used to provide high-resolution 

structural images of each individual’s brain. The anatomical MRI was recorded using a 3-T 
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Siemens Trio MRI scanner. Parameters of the sequence were: voxel size: 1.0 x 1.0 x 1.1 mm; 

acquisition time: 466s; repetition time TR = 2300 ms; and echo time TE= 2.98 ms. 

Volumetric segmentation of participants’ anatomical MRI and cortical surface reconstruction 

was performed with the FreeSurfer software (http://surfer.nmr.mgh.harvard.edu/). A multi-

echo FLASH pulse sequence with two flip angles (5 and 30 degrees) was also acquired 

(Fischl et al., 2004; Jovicich et al., 2006) to improve co-registration between EEG and aMRI. 

These procedures were used for group analysis with the MNE software
 
(Gramfort et al., 2013; 

2014). The co-registration of the M/EEG data with the individual’s structural MRI was 

carried out by realigning the digitized fiducial points with MRI slices. To insure reliable 

coregistration, an iterative refinement procedure was used to realign all digitized points with 

the individual’s scalp.  

 

MEG source reconstruction for PAC analysis 

 

Individual forward solutions for all source locations located on the cortical sheet were 

computed using a 3-layers boundary element model (BEM) constrained by the individual’s 

aMRI. Cortical surfaces extracted with FreeSurfer were sub-sampled to 10,242 equally spaced 

sources on each hemisphere (3.1 mm between sources). The noise covariance matrix for each 

individual was estimated from the baseline activity of all trials and all conditions. The 

forward solution, the noise covariance and source covariance matrices were used to calculate 

the dSPM estimates (Dale et al., 2000). The inverse computation was done using a loose 

orientation constraint (loose = 0.4, depth = 0.8) on the radial component of the signal.  

Individuals’ current source estimates were registered on the Freesurfer average brain for 

surface based analysis and visualization. Once the time-resolved signals were reconstructed in 

cortical space, PAC was computed for each cortical label (‘aparc’ parcellation). As aparc 

labels can be quite large, we selected within each label with the largest values of α or β 

power. The label time courses were than treated as single trials.  

  

Experimentally-driven conditions and correlation analyses 

 

 Analyses were performed on the basis of the objective performance in time production 

classified as short, correct, or long separately for each experimental block. Computing these 

three conditions within a block focused the analysis on local variations of brain activity as a 

function of objective performance. Epochs were concatenated across all 6 blocks for the 

analyses based on time production performance. The number of trials was equalized between 

short, correct and long conditions, leading to 168 trials (SD = 58) per condition. Additionally, 

the correlational analyses investigating precision and accuracy of timing processes has been 

also extended to per block basis to gain better resolution in the fluctuation of these component 

of behavior over time. Precision has been computed as coefficient of variation over TP on a 

per block and participant basis, whereas accuracy has been calculated as by subtracting mean 

TP from the target duration in a given block. Note that in the first three blocks target duration 

was 1.45, however it has been dynamically assigned in the blocks from four to six.  

 Sensor level analyses were performed using linear regression and model comparison 

framework to check if other factor other than PAC were needed to explain behavior. All 

statistical analyses have been performed in R v3.3.2 statistical programming language (R 
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Development Core 2008). For illustrative purposes, correlations in the source space were 

computed using Spearman correlations. Byesian ANOVA (Rouder et al., 2012) was 

performed using BayesFactor R package. 

 

Calculating precision and accuracy metrics and accounting for inflated degrees of freedom. 

 

Precision was quantified by the Coefficient of Variation (CV): the CV were calculated by 

dividing the standard deviation by the mean duration production. Accuracy was quantified by 

Error Ratio (ER): ER was calculated by dividing the mean temporal production in a given set 

of data by the target interval in that set. Both metrics were computed separately per block and 

per participant. As splitting the data per block and per individual could inflate the degrees of 

freedom, we accounted for this in our analysis by assessing the impact of block factor in the 

overall model fit by model comparison approach. In none of the analyses, the block factor 

altered the main effects and this is systematically and explicitly reported in our Results 

section when relevant. 

 

Data standardizing for regression model 

 

As regression tests require a Gaussian distribution of the data, wherever applicable, 

and on the basis of Shapiro-Wilk normality test, the data were transformed using the Lambert 

W function. The Lambert W function provides an explicit inverse transformation, which 

removes heavy tails from the observed data (Georg, 2011, 2015). First, the data were 

transformed into a heavy tailed form using log-likelihood decomposition. Subsequently the 

heavy tailed form was back transformed into a Gaussian distribution. All transformations 

were performed using LambertW R package. 
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Supplementary Captions and Figures 

 

 
Fig. S1. Power during time production. (A) The power spectrum density (PSD) was computed during the 

produced interval (0.4 - 1.2s) and averaged across channels, conditions and participants. The average PSD (thick 

line) across individuals (grey lines) show a clear α peak around 10 Hz. The topomap shows the PSD averaged 

between 8 and 12 Hz. (B) The individual topographic maps for α PSD (C) and grand-average source 

reconstruction reveal an occipito-parietal distribution of α power.  
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Fig. S2. α-β PAC during time production computed with Driven Auto-Regressive model. We replicated the 

individual results on α-β PAC (Fig. 2A) with a novel method based on driven auto-regressive (DAR) model. Full 

comodulogram of Z-scored DAR values are plotted for each individual and topographic maps of α-β DAR 

values are plotted in the right insets. The white contour corresponds to Z-score values above 4. For DAR 

analysis, we kept the same set of sensors as in Fig 2A. In participant S02, sensors showing maximal PAC with 

Tort’s method (highlighted in white) did not match the sensors showing maximal PAC with DAR models; this 

spatial discrepancy explains why no significant α-β PAC was observed for S02. 
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Fig. S3.  Individual α peak frequency correlates with α frequency in α-β PAC. To ensure that the α rhythm 

captured in the PSD was involved in PAC computation, we correlated the individual α peak frequency with the 

frequency corresponding to a maximal α-β MI [R = 0.763, P = 0.004]. 
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Fig. S4. α-β PAC comparison against volitional motor preparation (A) MI for each individual, computed on 

the trials that had available 0.8 s baseline interval. The number of available trials is provided above each 

comodulogram. The average topomap of α-β MI is plotted in the right inset. Participants with too few trials were 

both considered and disregarded for the analysis and did not affect the results (see text). (B)  α-β PAC compared 

against baseline for 9 participants with a sufficient number of trials. As for the whole set of 12 subjects, α-β 

coupling was also significantly higher during the produced time interval as compared to the volitional motor 

preparation. 
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 Fig. S5. α and β power do not contribute to temporal performance precision. (A,B,C) Over all blocks and 

participants, the CVs of time interval did not correlate with the strength of α and β power or their ratio. In the 

absence of significant contributions of α (D) or β (E) power to ER in time production (TP), TP did not correlate 

with the strength of β power and α-β ratio.  
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Fig. S6. α-β coupling strength does not index absolute time production. Trials were split in three conditions 

according to the length of the temporal production (short in blue, correct in green, long in red). Error bars are 2 

s.e.m. 
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Fig. S7: The phase relationship between α and β does not predict self-estimated time production A. The 

time series were locked on the peak of the α oscillations (bottom, dark line, dashed line is std) and beta power 

(15-40Hz) were computed for each self-estimation duration. For illustration, the time-frequency phase-locked to 

the α peak is shown for the MEG sensor showing maximal α-β MI for one representative participant (S06). The 

increase in β occurred at the ascending slope of the α through for 4 participants, as shown here for one of them 

but at the descending slope for 8 others. B. The α phase at which β power was maximal was extracted for each 

participant (circular histogram) and each duration category (blue: short, green: correct, red: long). C. The phase 

difference between long and short condition was plotted for each participant. The length of the bar represents the 

number of participants with the same phase value. A Rayleigh test indicated that the phase difference between 

long and short categorized was not uniform (p < 10-3, mean = 2.7°) but the mean difference between long and 

short self-estimated duration did not significantly differ (t = 0.574, p = 0.578). 
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Table S1. Individual α peak frequency extracted from the PSD and individual α-β PAC corresponding to their 

maximal MI. CFC = cross-frequency coupling (here, equivalent to PAC). 
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