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Abstract

General-purpose processors can now contain many dozens of processor cores and support
hundreds of simultaneous threads of execution. To make best use of these threads, genomics
software must contend with new and subtle computer architecture issues. We discuss some
of these and propose methods for improving thread scaling in tools that analyze each read in-
dependently, such as read aligners. We implement these methods in new versions of Bowtie,
Bowtie 2 and HISAT. We greatly improve thread scaling in many scenarios, including on the re-
cent Intel Xeon Phi architecture. We also highlight how bottlenecks are exacerbated by variable-
record-length file formats like FASTQ and suggest changes that enable superior scaling.

1 Introduction

General-purpose processors are now capable of running hundreds of threads of execution simul-
taneously in parallel. Intel’s Xeon Phi “Knight’s Landing” architecture supports 256-288 simul-
taneous threads across 64-72 physical processor cores [1, 2]. With severe physical limits on clock
speed [3], future architectures will likely support more simultaneous threads rather than faster in-
dividual cores [4]. Indeed, clock speed on the many-core Xeon Phi processor (1.3-1.5 Ghz) is about
half that of more typical server processors. While specialized (e.g. graphics) processors have been
highly multithreaded for some time, this only recently became true for the general-purpose pro-
cessors that can boot standard operating systems and that typically power servers and desktops.
With these advances come new computer-architecture considerations for programmers. Sim-
ply adding multi-threading to a software tool does not guarantee it will use threads well. In fact, it
is not uncommon for a tool’s overall throughput to decrease when thread count grows large enough
[5]. So whereas past genomics software efforts have focused on speed on a fixed (and usually low)

number of threads, future efforts should consider scaling to much higher thread counts.
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Here we tackle the problem of scaling read aligners to hundreds of threads on general-purpose
processors. We concentrate on the Bowtie [6], Bowtie 2 [7] and HISAT [8] read alignment tools be-
cause they are widely used and representative of a wider group of embarrassingly parallel tools,
where computation is readily separable into independent tasks, one per sequencing read. Many
other sequencing analysis tools are also embarrassingly parallel, including tools for error correc-
tion [9, 10], quality assessment and trimming [11], and taxonomic assignment [12, 13].

We propose strategies that scale to hundreds of threads better than alternative approaches like
multiprocessing or the pipelined approach taken by BWA-MEM [14]. We explore how the FASTQ
file format [15], its unpredictable record boundaries in particular, can impede thread scaling. We
suggest a way to change FASTQ files and similar formats that enable further improvements in

thread scaling while maintaining essentially the same compressed file size.

Synchronization and locking For embarrassingly parallel genomics tools, threads typically pro-
ceed by repeatedly (a) obtaining the next read from the input file, (b) aligning the read, and (c)
writing its alignment to the output file. Interactions with input and output files must be synchro-
nized; portions of code related to reading and writing files must be protected to allow only one
thread at a time to work on a given file. Figure 1 illustrates threads operating in parallel while
reading input in a synchronized fashion. Failure to synchronize can lead to software crashes and
corrupt data. Synchronization is achieved with locks. There are various lock types, which incur
different types and amounts of overhead. We confirm here that for many-core architectures with
non-uniform memory access (NUMA), choice of lock type has a major impact on thread scaling
[16]. We explore several lock types, demonstrate their relative merits, and suggest types to be
avoided (spin locks) and others that seem to scale well to hundreds of threads (queueing and
standard locks).

Multithreading versus multiprocessing While we focus on making the best use of threads in a
single process, an alternate is to run multiple simultaneous processes, possibly with many threads
each. For example, a user with several FASTQ files might align all using Bowtie 2 with the -p
100 argument, using 1 process with 100 threads. Alternately, the user could divide the input into
10 batches and run 10 simultaneous Bowtie 2 processes each with -p 10. Either way, up to 100
threads run in parallel.

These multithreading (MT) and multiprocessing (MP) approaches have trade-offs. MP can
suffer from load imbalance: some batches take longer to align than others. This negatively impacts
scaling since the job’s duration is determined by the longest-running batch.

Imbalance can be mitigated by dynamic load balancing. Such a scheme might divide the input
into many batches, more than there are processes. A load balancer launches the processes and
continually feed each process new input batches upon completion of the previous batch, until all
batches are processed. For a large enough number of batches, per-batch running times tend to

average out, making per-process running times more uniform. This incurs overhead, since the
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Figure 1: Four threads running simultaneously in an embarrassingly parallel setting. Time pro-
gresses from top to bottom. Gray boxes show time spent waiting to enter the critical section. Black
boxes show time spent in the critical section, which can be occupied by at most one thread at a
time. At time t1 (dashed line), thread 1 is executing the critical section and all the other threads
are running. At time t2, thread 1 is still in the critical section and threads 2 and 3 are waiting to
enter. At time t3, thread 2 occupies the critical section and thread 4 is waiting.
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dynamic load balancer must split inputs, launch and feed processes, and combine outputs.

Another drawback of MP is that many data structures will be copied across processes, yielding
a higher total memory footprint compared to MT. When the data structure is identical from process
to process (e.g. the genome index), this wastes valuable memory and cache. Aligners with large
indexes, e.g. GEM [17] and SNAP [18], can easily exhaust available memory [5]. Tools can work
around this by using memory mapping to maintain a single copy of these data structures shared
by all processes. This is implemented in Bowtie, Bowtie 2 and HISAT using the - -mm option.

The MP strategy also has a major advantage: by allowing each processes to focus on its own
private input and output files, the overall level of thread contention is reduced. That is, a single
process has fewer threads to synchronize. There are also NUMA-related reasons why running
multiple processes can aid thread scaling, e.g. by allowing each process to have a copy of the
genome index that is local to its home NUMA node [5].

The MT approach has many advantages. It achieves dynamic load balancing without extra
software beyond the aligner itself. It achieves a low memory footprint (no duplicated data struc-
tures) without the need for memory mapping. It is applicable regardless of the number of input
tiles, naturally handling the common case of a single, large input file. For these reasons, we focus

on improving MT thread scaling in this study, using MP as a baseline.

Input and output Improving speed and thread scaling can eventually reach a point where the
bottleneck shifts from the speed of computation to the speed of input and/or output. Since we
would like to observe whether this occurs, all our experiments use real input and output. As
discussed later, while input and output speed are not bottlenecks for most of our experiments,

there are scenarios where output becomes the bottleneck on very large numbers of threads.

Related work Two prior studies [19, 20], examined Bowtie 2 thread scaling with synchroniza-
tion and Non-Uniform Memory Access (NUMA) as primary concerns. By adapting Bowtie 2 to
the FastFlow [21] parallel framework and by making effective use of (a) thread pinning and (b) in-
terleaving of memory pages across NUMA sockets, the modifications improved Bowtie 2’s thread
scaling. Our suggestions for improving thread scaling are complementary to these proposals.
Herzeel et al [22] re-parallelized sections of the BWA code using the Cilk [23] programming
language. They noted a 2-fold improvement in multi-threaded speedup, highlighting the impor-
tance of NUMA and load balance issues. Lenis and Senar examined performance of four read
aligners, including Bowtie 2 and BWA-MEM on NUMA architectures [5] without modifications,
and noted that a multiprocessing approach that replicated the index data structure across NUMA
nodes performed the best. Our goal is to achieve similar improvements with a purely multi-

threaded approach on modern hardware.
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2 Methods

2.1 Lock types

We begin by examining how lock types affect thread scaling. Different lock types are appropriate
for different situations. A spinlock uses a loop to repeatedly check if a lock is held. As soon as a
check indicates the lock is free, ownership is transferred to the inquiring thread. The check and
the transfer can happen simultaneously using an atomic operation [24]. In most implementations,
a thread that fails to obtain a spinlock in a prescribed time interval will go to sleep, allowing the
operating system (OS) to revive it when the lock is free. This avoids starvation, whereby the lock-
holding thread is slow to finish its work (and release the lock) because waiting threads are using
its resources. This, spinlocks are optimistic: they work best when the lock can be obtained quickly.

Another common lock type is a standard lock; if a thread attempts and fails to obtain a standard
lock, it goes to sleep immediately, allowing the OS to revive it when the lock is free. While paus-
ing and reviving a thread incurs overhead, a standard lock cannot starve other threads. Thus, a
standard lock is pessimistic, working best when the lock is unlikely to be available soon.

We might suppose that when active thread count is less than or equal to the number of physical
cores — a typical situation when a user has dedicated access to a computer and desires speed —
starvation is not an issue and spinlocks are ideal. However, this supposition fails on modern
many-core systems for reasons relevant to our choice of lock type. One concern is that modern
architectures have many cores and caches connected in a NUMA architecture. That is, there is
a single addressable memory space for all threads, but it is physically divided into partitions
that might be attached to separate cores in a multi-socket system, as for the 2-socket Broadwell
system used in our evaluations, or both the partitions and the cores might be connected via an
interconnection network, as on the Xeon Phi. Thread scaling is impacted in at least two ways: (a)
threads using different cores but accessing the same memory location will incur different access
latencies depending on the distance to the memory, and (b) when several threads read and write
the same location simultaneously, the system’s cache coherence protocol must step in to ensure all
threads have a coherent view of memory. In short, thread scaling suffers when added threads
must access distant memories or when they compete for the same memory locations as existing
threads. This affects locking in key ways that we revisit when discussing the queueing lock.

Another issue arises when threads can co-exist on the same physical processor. On Xeon Phi,
up to four threads can run simultaneously on one processor, competing for its resources like its
arithmetic units and cache. A thread operating by itself on a processor moves at one speed, but
slows when joined by a second thread, slows still further when joined by third, etc. Thus, increas-
ing thread count incurs a mild but increasing starvation penalty even when free thread “slots”
remain. This puts optimistic locks at a disadvantage, since their spinning behavior can needlessly
starve productive threads on the same processor.

In past versions, Bowtie, Bowtie 2 and HISAT used a spinlock from the TinyThread++ library
(http://tinythreadpp.bitsnbites.eu). Since this scaled poorly (see Results), we extended
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the three tools to use the open source Intel Thread Building Blocks (TBB) library [25]. TBB pro-
vides various lock types, including a queuing lock [26] particularly appropriate for NUMA sys-
tems like the Knight’s Landing and Broadwell systems used here. TBB also provides scalable
replacements for standard heap memory allocation functions (e.g. malloc/free, new/delete).
This aids thread scaling, since memory allocations require synchronization.

The TBB queuing lock implements an MCS lock [26], which uses an in-memory queue to or-
ganize waiting threads. Like a spinlock, a waiting thread repeatedly probes a variable in memory
to learn when it has obtained the lock. Unlike a spinlock, each waiting thread probes a separate
queue entry, each entry occupying a separate cache line. This greatly reduces overhead. To elabo-
rate, consider that an atomic operation (e.g. atomic compare-and-swap) might modify a variable
in memory, depending on the condition. Consequently, it is treated as a memory write by the
cache coherence infrastructure. A write modifies a cache line, causing cache coherence messages
to travel between caches for threads that recently accessed the line. When this happens in a loop,
new messages are generated each iteration. When many threads spin simultaneously, messages
multiply, eventually reaching a point where the messages flood the system bus and starve other
threads, including lock holder. This is called cache-line or hotspot contention [26] and it is a ma-
jor concern on many-core and NUMA systems [16]. The queuing lock reduces contention in two
ways. First, since each thread spins on a variable in a thread-specific cache line, the loop condition
can be a simple memory read rather than an atomic operation. This reduces cache coherence mes-
saging. Second, while a memory write is still needed to hand the lock from one thread to another,
only two threads are involved in the hand-off, reducing the coherence messages exchanged.

We adapted the three tools to use four lock types: the (original) TinyThread++ lock, standard
TBB lock, TBB spinlock, and TBB queuing lock. On the Linux systems we used for evaluation,
the standard TBB lock works by calling pthread_mutex_unlock, which in turn uses the Linux
futex (fast mutex) strategy. This strategy first attempts to obtain the lock using a fast atomic
operation then, if unsuccessful (i.e. if the lock is held by another thread), places it on a queue of
paused threads until the lock is released.

The lock type is selected at compile time via preprocessing macros. These extensions are avail-
able as of the Bowtie v1.1.2, Bowtie 2 v2.2.9 and HISAT v0.1.6-beta software versions. Supplemen-

tary Note 1 gives build instructions for the exact software versions tested here.

2.2 Parsing strategies

We also examined how threads coordinate when reading FASTQ [15] input or writing SAM output
[27]. These interactions are synchronized, i.e. protected by locks. The name critical section is given
to a portion of the software that only one thread may execute at a time. The critical section for
handling input is called the input critical section and is protected by the input lock; likewise for the
output critical section and the output lock.

We hypothesized that to improve thread scaling we should restructure the input and output
critical sections. Our first goal was to reduce the time spent in the critical section by deferring as
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much computation until after the critical section as possible. Our second goal was to reduce the
total number of times the critical section was entered. This reduces overhead incurred by locking
and unlocking upon entering and exiting.

The original strategy (O-parsing) both reads and parses a sequencing read in the critical section
(CS). We developed three variants on this approach (Table 1). In deferred (D) parsing, the CS reads
a single input record into a buffer. After the CS, the buffer is parsed into the sequencing read data
object. Batch deferred (B) parsing is like D-parsing but handles batches of N reads at a time. The
B-parsing critical section loops N times, reading each record into a separate buffer. After the CS,
another loop parses each buffer into a sequencing read object. This reduces by a factor of N the
total number of times the CS is entered. A similar change is made to the output CS: alignment
records are written to the output stream in batches of N reads.

Blocked deferred (L) parsing reads a chunk of exactly B input bytes into a buffer, assuming
that (a) no read spans a B-byte boundary in the input file, such that no B-byte chunk contains
a partial input record, and (b) the number of reads per B-byte chunk is NV for all chunks (except
perhaps the last), known ahead of time. These assumptions do not hold for real FASTQ files, but
we can easily modify a FASTQ file to comply by appending extra space characters to every Nth
read until the following read begins at an B-byte boundary (Figure 2). The spaces are ignored
by the aligner. This has the effect both of enforcing the L-parsing assumptions and of making
it easier to parse paired-end files in a synchronized manner, since a B-sized block taken from
the same offset in both files is guaranteed to contain N matching ends. As with B-parsing, the
L-parsing output critical section writes alignments in batches of B reads at a time.

2.3 Output striping

While most improvements proposed here reduce input synchronization overhead, we also noted
instances where output synchronization was the bottleneck. Synchronized output is quite simple;
no parsing is involved. But it can still become a bottleneck since writing is generally much slower
than reading. On the Stampede 2 cluster, for example, read throughput is about 3 GB/sec when
reading from solid-state or Lustre storage, whereas writing is about 450 MB/sec for solid-state and
300 MB/sec for Lustre. To this end, we implemented the ability to write striped output, i.e. multiple
output SAM files, each containing alignment for a subset of the reads. The partial output files can
simply be concatenated prior to further processing. This spreads contention for the output lock

over several locks, reducing contention and improving scalability.

2.4 Other aligner modifications

We also modified the aligners to minimize the incidence of heap memory allocations wherever
possible. This is because heap memory allocations also require synchronization, thus negatively
impacting thread scaling. We also modified each of Bowtie, Bowtie 2 and HISAT to cause each

thread to report how much wall-clock time it spends aligning reads with microsecond accuracy.
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(Original) O-parsing (Deferred) D-parsing

buf = new empty buffer
obtain lock

nL =0

while nl < 4:
obtain lock ¢ = read char()
read = read and parse() if ¢ is newline:
release lock nt = nl +1

append c to buf
release lock

read = parse fastq(buf)

(Batch deferred) B-parsing (Block deferred) L-parsing

bufs = array of N empty buffers
reads = array of N empty reads
obtain lock

for i = 1 to N: reads = array of N empty reads
nL =0 obtain lock
while nl < 4: buf = read B bytes
¢ = read char() release lock
if ¢ is newline:
nlL =nl +1 for i =1 to N:
append c to bufs[i] reads[i] = parse fastq(buf)
release lock advance buf to next read

for 1 =1 to N:
reads[i] = parse fastq(bufs[i])

Table 1: Pseudocode for four synchronized parsing strategies. Red code is inside the critical
section (CS). Original (O) parsing both reads and parses in the CS. Deferred parsing (D) uses the
CS to read the next record into a buffer, counting four newlines to find the record boundary, but
defers parsing until after the CS. Batch deferred parsing (B) is like (D) but reads NV reads at a time.
Block deferred parsing (L) reads a fixed-sized chunk of data (B bytes), assuming that no record
spans a B-byte boundary. While the assumption for (L) is violated in practice for formats like
FASTQ, it suggests a strategy for making formats more amenable to multithreaded parsing.


https://doi.org/10.1101/205328
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/205328; this version posted June 11, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

(a) Standard (b) Block (B =64, N = 2)

End 1 FASTQ End 2 FASTQ End 1 FASTQ End 2 FASTQ
0|@readl 0|@readl 0| @readl 0|@readl

7 | GGTATATATG 7 [CACCCGTTA 7| GGTATATATG 7 |CACCCGTTA
18|+ 17 |+ 18|+ 17 (+

20| BBCCCCDDDD 19 |BBACCDDDH 20| BBCCCCDDDD 19 | BBACCDDDH
31|@read2 29 (@read2 31| @read2mlm 29 |@read2EEEEEN
38| CCATAGCCAT 36 |CGGTTGACC 40| CCATAGCCAT 42 | CGGTTGACC
49|+ 46 |+ 51|+ 52|+
51|A!A999CDDD 48 (! 1ABBCCCD 53| A!A999CDDD 54| ! 1ABBCCCD
62|@read3 58 |@read3 64|@read3 64 |@read3

69| CCATAGCCAT 65| CCATAGCCA 71| CCATAGCCAT 71| CCATAGCCA
80|+ 75|+ 82|+ 81|+

82| A1 A999CDDD 77 |A1A999CDD 84| ATA999CDDD 831A1A999CDD

Figure 2: Converting a standard pair of FASTQ files (a) to blocked FASTQ files (b), where the
number of bytes (B) and number of input read per block (/V) are 64 and 2 respectively. Numbers
left of vertical lines indicate byte offsets for FASTQ lines, assuming newline characters (not shown)
are one byte. For (b), padding spaces are represented by solid blue rectangles. The first 64 bytes
of each file are colored blue and subsequent bytes are colored red. Note that the two ends differ
in length; end 1 is 10 bases long and end 2 is 9 bases long. This necessitates differing amounts of
padding in the two FASTQ files. But after padding, we are guaranteed that corresponding 64-byte
blocks from the files contain N corresponding reads.

2.5 Multiprocessing

While our focus is on single-process multithreaded (MT) approaches, multiprocessing (MP) is
another avenue for improving thread scaling. For this reason, our comparisons include an MP-
based “baseline” strategy. The MP baseline is measured for every thread count 7" that is multiple
of 16 by running 7'/16 processes, each with 16 threads. For MP experiments involving Bowtie,

Bowtie 2 or HISAT, we use memory mapping (- -mm option) to limit overall memory footprint.

3 Results

Configurations & jobs We evaluate various read aligners and synchronization schemes by run-
ning each “configuration” (combination of aligner and synchronization scheme) using the same
input data. For each configuration, we perform a series of alignment jobs varying the number
of input reads and the number of simultaneous threads of execution in direct proportion, thus
keeping the number of reads per thread constant. In this way, we are assessing weak scaling: how
running time varies with the number of threads for fixed per-thread workload.

We align to an index of the GRCh38 human genome reference assembly [28]. We measure
wall-clock running time of each job, omitting time required for one-time setup tasks such as index

loading, since these influence thread scaling only slightly when aligning large datasets. The num-
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ber of reads per thread (Supplementary Table 1) was chosen for each configuration and system so
that most jobs take 1 minute or longer. Any job taking longer than 20 minutes was aborted and
omitted from the results. The Linux top utility was run in the background to periodically measure
system load, processor utilization and memory footprint.

We evaluate Bowtie [6], Bowtie 2 [7] and HISAT [8] because they are widely used. We in-
clude a comparison to BWA-MEM [14] for the same reason. While we did not modify the newer
HISAT2 (http://ccb.jhu.edu/software/hisat2), the same modifications should benefit that
software as well. We ran HISAT with the - -no-spliced-alignment --no-temp-splicesite
options to disable gathering of splice-site evidence because our input reads were from DNA se-
quencing experiments. Software used to run the experiments and produce the figures and tables
is located at https://github.com/BenLangmead/bowtie-scaling.

Reads We obtained sequencing reads from accessions ERR194147 (Platinum Genomes Project
[29]), SRR069520 (1000 Genomes Project [30]) and SRR3947551 (a low coverage whole genome
sequencing project [31]). All reads are 100 x 100 nt (paired-end) from the Illumina HiSeq 2000
instrument. We downloaded the reads in FASTQ format, selected a random subset of 100M from
each of the 3 accessions, then randomized the order of the resulting set of 300M reads to avoid
clustering of reads with similar properties. These constitute the human_100_300M input read set.
Bowtie is designed to align shorter reads, so we also created set human_50_300M consisting of the
human_100_300M reads truncated to 50 nt at the 3" end. Unpaired alignment experiments use just
the first-end FASTQ files. Download links these reads are in Supplementary Note 2.

Evaluation systems Each job was run on three servers, which we call Broadwell, Skylake and KNL
for short. Broadwell is a dual-socket system with two Intel Xeon E7-4830 v4 2.00GHz CPUs and
1 TB of DDR4 memory. Both CPUs have 28 physical processor cores, enabling up to 112 threads
of execution since each core supports 2 simultaneous “hyperthreaded” threads. The system runs
CentOS 6.8 Linux, kernel v2.6.32, and is located at the Maryland Advanced Research Computing
Center (MARCC). Skylake is an Intel Xeon Platinum 8160 system with 192GB of memory and 48
physical processor cores, enabling up to 96 threads of execution, 2 per core. This system runs
CentOS Linux release 7.4.1708, kernel v3.10.0, and is located in the Stampede 2 cluster at the Texas
Advanced Compute Center (TACC) accessible via the XSEDE network. KNL is an Intel Xeon
Phi 7250 (Knight’s Landing) system with 96GB DDR4 memory (as well as a 16GB high-speed
MCDRAM). The system has 68 physical processor cores, enabling up to 272 threads of execution,
4 per core. This system is also located in the Stampede 2 cluster and the operating system and
kernel are identical to the Skylake system.

Although these three platforms differ in architectural details — e.g. in the number of simulta-
neous threads allowed — we test the same parallelization schemes on all three. Since the three
systems support the same basic instruction set, we are running exactly the same executables on all
three.
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In all experiments, FASTQ input is read from a local disk and SAM output is written to the
same local disk. In the case of the Broadwell system, the disk is a magnetic 7200 RPM SATA hard
drive. In the case of Skylake and KNL, the disk is a local solid-state drive.

3.1 Varying lock type

As discussed in Methods, we extended Bowtie, Bowtie 2 and HISAT to use one of four lock types:
a TinyThread++ spinlock, TBB standard lock, TBB spinlock, or TBB queueing lock. For each run,
we launched a single aligner process configured for multithreading (MT), using the -p option to
specify the number of simultaneous threads, 7. The MP baseline used the TBB queueing lock.
When plotting, we arranged thread count on the horizontal axis and maximum per-thread wall-
clock time (i.e. time required to align all reads) on the vertical axis. Because we vary the number
of input reads in direct proportion to thread count, ideal scaling would show as a flat horizontal
line, whereas worse-than-ideal scaling shows as an upward-trending line. Since we omit runs that
took over 20 minutes, some lines “fall off” the top of the plot.

Figure 3 shows how thread count affects running time for unpaired alignment. Supplementary
Figure 1 shows the same for paired-end alignment. We observe that the MP baseline outperformed
all multithreading modes (MT). Choice of lock type clearly impacts scaling, seen mostly clearly in
the Bowtie and HISAT configurations. While no lock type performed best in all cases, the TBB
queueing lock tended to eventually outperform other MT configurations at high thread count.
This is clearest for HISAT and Bowtie. There were also cases where the TBB standard lock out-
performed the queueing lock at the very highest thread counts, as seen in the Skylake+HISAT,
KNL+Bowtie 2 and Broadwell+Bowtie results.

Table 2 shows peak throughputs (also represented by squares in Figure 3) for each lock type
and the MP baseline. For 11 out of 18 combinations of aligner, test system and paired-end status,
the queueing lock has the second-highest peak throughput after the MP baseline.

In some cases, queueing lock performance deteriorated quickly at the highest thread counts,
e.g. for Broadwell+Bowtie, Broadwell+Bowtie 2 and KNL+Bowtie 2. This contrasts with the TBB
standard lock, which deteriorated more slowly (and almost linearly) at high thread counts. This
is likely due to starvation; at high thread counts, threads share cores (up to 2 threads per cores on
Broadwell, 4 on KNL), so the optimistic queueing lock will tend to spin fruitlessly on contended
locks, starving the lock holder. This problem is not shared by the pessimistic standard lock.

Even the best-scaling configuration — the MP baseline — had less than perfect scaling. In-
creasing thread count increases contention for shared resources, slowing all threads on average.
For example, higher thread count leads to greater contention for shared memory, e.g. L1 and L2
caches, translation look-aside buffer, and arithmetic and vector processing units. This is more
obvious on the KNL system where up to 4 threads can share a processor.

Divergence between the lock-type scaling behaviors was lower for Bowtie 2 than for the other
tools. This is likely because Bowtie 2 requires more time to align a single read. This spreads
locking attempts out over time and thereby reduces contention. Thus, Bowtie 2’s lower divergence
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Figure 3: Comparison of 4 lock types and multiprocessing baseline. Reads are unpaired. Results
are shown for three aligners (rows) and three systems (columns). Jobs that ran for over 20 minutes
are omitted. Squares indicate the point on each line yielding maximal total alignment throughput.
These points are summarized in Table 2.
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Skylake (96 threads) Broadwell (112 threads) KNL (272 threads)

Paired Unpaired Paired Unpaired Paired Unpaired
Th Krd/s Th Krd/s Th Krd/s Th Krd/s Th Krd/s Th Krd/s
Bowtie  TinyThread++spin 92 12654 24 44694 88 98.69 24 28293 72 4196 32 12748

TBB spin 96 13098 16 37896 88 97.01 16 229.62 72 4292 24 118.74
TBB standard 80 121.79 32 40559 72 86.08 24 23980 48 2654 16 81.67
TBB queueing 92 13238 40 586.60 96 103.61 48 41578 72 3922 48 123.33
MP baseline 96 128.66 96 1,433.82 112 108.89 112 1,215.75 272 7044 272 895.90
Bowtie2 TinyThread++spin 80 65.55 72 176.27 80 5155 80 12502 96 1649 96 4371
TBB spin 88 68.02 80 17778 64 5545 72 137.07 96 1817 88 47.09
TBB standard 56 6247 64 16236 56 49.05 64 12419 64 1273 64 36.36
TBB queueing 80 66.60 88 180.83 64 5448 88 14414 96 17.72 88  46.64
MP baseline 9% 67.62 96 18525 112 57.11 112 159.47 272 2798 272  69.52
HISAT TinyThread++spin 16 13413 16 29261 16 89.80 16 21014 16 2911 24 71.72
TBB spin l6 13687 16 30735 16 9410 16 20914 16 2955 16 7218
TBB standard 16 9928 16 25040 16 61.89 16 162.16 8 1996 12 43.60
TBB queueing l6 137.84 24 34936 16 9845 32 23834 32 2765 24 7256
MP baseline 96 71058 96 1,478.72 112 568.00 112 1,154.60 272 360.41 240 686.50

Table 2: Peak throughputs for four lock types and multiprocessing baseline. For each row, max-
imal peak throughput in thousands of reads per second (Krd/s) and number of threads that
achieved the peak (Th) are reported. For each combination of aligner, paired-end status and test
system, the best and second-best throughputs are highlighted red and orange respectively.

is consistent with the theory that differences come primarily from contention overhead.

In summary: while the MP baseline outperformed all MT configurations, the TBB queueing
lock often scaled best, with the TBB standard lock doing well or better in some situations. Supple-
mentary Table 2 shows how these peak throughputs translate to wall-clock time required to align
100 nt reads covering the human genome to 40-fold average depth; e.g. in the case of paired-end
KNL+Bowtie 2, moving from the TBB spin lock to the queueing lock reduces running time from
about 26 hours to about 19 hours. We use the queueing lock in subsequent Bowtie, Bowtie 2 and
HISAT experiments.

3.2 Varying parsing method

The gap between MP baseline and MT methods spurred us to examine input and output synchro-
nization. We hypothesized the gap was due to a combination of (a) length of time spent in these
critical sections, and (b) overhead of locking and unlocking. We tried to close the gap using the
strategies discussed in Methods: deferred (D-) parsing and batch (B-) parsing. B-parsing used a
batch size of 32 in all experiments. Figure 4 shows running time versus thread count for unpaired
alignment using each strategy. Supplementary Figure 2 shows the same for paired-end align-
ment. A clear ordering exists among the strategies: B-parsing outperformed D-parsing, which
outperformed O-parsing. This was basically true in every scenario tested. B-parsing scaled well
enough to be competitive with the MP baseline in multiple scenarios, e.g. for Bowtie 2 and for all
paired-end Bowtie and Bowtie 2 scenarios.

Table 3 shows peak throughputs (represented by squares in Figure 4) for each strategy the
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Figure 4: Comparison of 3 parsing strategies and multiprocessing baseline. Reads are unpaired.
Jobs that ran for over 20 minutes are omitted. Squares indicate the point on each line yielding
maximal total alignment throughput and these points are summarized in Table 3.
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Skylake (96 threads) Broadwell (112 threads) KNL (272 threads)

Paired Unpaired Paired Unpaired Paired Unpaired
Th Krd/s Th Krd/s Th Krd/s Th Krd/s Th Krd/s Th Krd/s

Bowtie = O-parsing 92 13238 40 586.60 96 103.61 48 41578 72 3922 48 123.33
D-parsing 96 14148 32  563.14 104 10251 32 26494 136 5859 32 170.60
B-parsing 96 14647 56 1,257.81 112 11541 40 556.38 200 70.99 40 263.08
MP baseline 96 128.66 96 1,433.82 112 108.89 112 121575 272 7044 272 895.90

Bowtie 2 O-parsing 80 66.60 88 180.83 64 5448 88 14414 96 1772 88  46.64
D-parsing 92 7163 92 191.14 104 5893 100 159.18 268 2751 224 67.68
B-parsing 9% 72.00 96 199.55 104 5841 104 161.77 272 26.61 268 71.13
MP baseline 96  67.62 96 18525 112 5711 112 159.47 272 2798 272  69.52

HISAT O-parsing 16 137.84 24 34936 16 9845 32 23834 32 2765 24 7256
D-parsing 40 285.80 32 497.85 108 144.26 108 230.70 32 69.12 40 146.71
B-parsing 56 52293 48 1,016.27 56 31524 40 54092 48 11658 40 215.73
MP baseline 96 71058 96 1,478.72 112 568.00 112 1,154.60 272 360.41 240 686.50

Table 3: Peak throughputs for three parsing strategies and multiprocessing baseline. For each
combination of aligner, paired-end status and test system, the best and second-best throughputs
are highlighted red and orange respectively. The TBB queueing lock is used in all cases.

MP baseline. B-parsing had either the highest or second-highest peak throughput in all scenarios
except paired-end KNL+Bowtie 2, where it slightly underperformed D-parsing. Moving from
O-parsing to B-parsing for unpaired KNL+Bowtie 2 reduces extrapolated human-40x-coverage
running time from about 7h:10m to about 4h:40m, bringing it below BWA-MEM'’s 6h:40m running
time (Supplementary Table 2).

The MP baseline had the highest peak throughput in 10 of 18 scenarios, including all the HISAT
scenarios. There was still a wide gap between the MP baseline and the best-performing MT con-
figuration in many scenarios, particularly for Bowtie and HISAT. As when investigating lock type,
we found divergence between parsing strategies was lower for Bowtie 2 than for the other tools.
This is likely because Bowtie 2 spent more time aligning each read compared to the others, reduc-

ing contention.

3.3 Final evaluations

Finally we compared B-parsing to block deferred (L-) parsing. L-parsing’s critical section is the
simplest, so we hypothesized it would outperform B-parsing. But since L-parsing requires padded
input, using it in practice requires an initial pass to add the padding, which might itself become
the bottleneck. We revisit L-parsing’s practicality in the Discussion section.

To test block parsing (L) we created padded input sets (Figure 2). We created one new set
called human_100_block_300M with the same reads as human_100_300M but padding the FASTQ
to achieve 12 KB blocks (B = 12288) and 44 reads per block (N = 44). Similarly, we created a
set called human_50_block_300M with the reads from human_50_300M padded to achieve 12 KB
blocks (B = 12288) and 70 reads per block (N = 70). N and B are specified to the aligner via
command-line options (- -block-bytes and - -reads-per-block).
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We tested two versions of L-parsing, one that writes output to a single SAM file and one that
stripes output across 16 SAM files, with each thread writing to an output file corresponding to the
thread ID modulo 16. The striped output mode was added after noticing poor performance due
to output lock contention at high thread counts on KNL (Supplementary Figure 3).

For Bowtie 2, we also compared to BWA-MEM v0.7.16a [14] with default arguments. BWA-
MEM uses a pipelined multithreading strategy. Two master threads run simultaneously, each
cycling through three steps: (a) parsing a batch of input reads, (b) aligning the batch, and (c)
writing the output alignments for the batch. Using a pthreads [32] lock and condition variable, the
master threads are prevented from running the aligning step at the same time; when one thread
is aligning, the other is writing output or reading input. When in the alignment step, the master
thread spawns 1" worker threads, 1" given by the -t option. Worker threads balance load using
work stealing, synchronizing with atomic operations. Batch size is determined by multiplying a
number of input bases (10 million) by 7. We note that (a) these are large batches compared to
Bowtie 2, which uses a batch size of 32 reads for B-parsing and at most 70 for L-parsing, and (b)
that, while the batch size is independent of thread count for Bowtie 2, it grows linearly with thread
count in BWA-MEM. BWA-MEM experiments used the same number of input reads as the Bowtie
2 experiments (Supplementary Table 1). We also corrected an issue in the BWA-MEM code that
caused failures for thread counts over 214, a limit we exceed on KNL (Supplementary Note 3).

Figure 5 shows the comparison for unpaired alignment and Supplementary Figure 4 shows
the same for paired-end alignment. Table 4 gives maximal peak throughput for each configura-
tion. While L- and B-parsing scaled similarly at low thread counts, L-parsing maintained excellent
scaling through higher thread counts in most configurations. L-parsing with striped output was
either best or competitive for all scenarios. B-parsing scaled substantially worse than L-parsing
for HISAT and for unpaired Bowtie.

Remarkably, L-parsing with striped output scaled better than the MP baseline in all but a few
cases, and best overall in 11 out of 18 cases. Thus, L-parsing with striped output is the only
approach we evaluated that improved on the MP baseline.

The 1-output and 16-output (striped) versions of L-parsing scale similarly with the notable
exception of KNL+HISAT, where the 1-output versions scales substantially worse. This comports
with the fact that HISAT is the fastest of the aligners tested and therefore generates output the
most rapidly. This causes increased contention for the output lock in the 1-output version. In the
16-output version, the load is spread over 16 locks, reducing overall contention.

While BWA-MEM scaled well, both the B-parsing and L-parsing Bowtie 2 configurations scaled
better. This was particularly true on the KNL system, where B-parsing achieved 33% (paired-end)
and 45% (unpaired) higher throughput and L-parsing achieved 32% (paired-end) and 44% (un-
paired) higher throughput. When translated to extrapolated 40x-human running time, Bowtie
2’s unpaired B-parsing mode finishes about 2 hours faster than BWA-MEM, and its paired-end
B-parsing mode finishes about 4 hours faster (Supplementary Table 2). BWA-MEM'’s larger in-
put chunk size, together with the chunk size’s linear scaling, also caused BWA-MEM’s memory
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Figure 5: Unpaired-alignment comparison of B-parsing, L-parsing, L-paring with output striped
across 16 files and the MP baseline. BWA-MEM is also evaluated and compared to the Bowtie 2
configurations. Jobs that ran for over 20 minutes are omitted. Squares indicate the run for each
configuration yielding greatest overall alignment throughput, also summarized in Table 4.
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Skylake (96 threads) Broadwell (112 threads) KNL (272 threads)
Paired Unpaired Paired Unpaired Paired Unpaired
Th Krd/s Th Krd/s Th Krd/s Th Krd/s Th Krd/s Th Krd/s
Bowtie B-parsing 96 14828 48 1,080.64 112 11541 40 556.38 192 67.14 104 269.28

L-parsing, 1 output 92 14517 96 1,634.77 112 114.69 104 1,216.74 144 65.60 232 702.22
L-parsing, 16 outputs 96 14195 96 1,79486 112 11564 100 1,31721 184 65.13 268 1,104.62
MP baseline 96 130.01 96 1,43397 112 108.89 112 1,21575 272 7046 272 884.69

Bowtie 2 B-parsing 96 7325 96 193.83 104 58.41 104 161.77 264 26.53 268 72.20
L-parsing, 1 output 96 7322 96 19396 96 56.74 104 156.48 272 2627 272 72.12
L-parsing, 16 outputs 96  71.70 96 198.50 108 58.84 104 160.21 272 2625 272 72.01

MP baseline 9% 6785 96 179.77 112 57.11 112 159.47 272 2794 272 70.76
BWA-MEM 92 6098 88 163.77 104 49.92 104 134.07 232 1993 232 50.01
HISAT B-parsing 56 54345 56 1,089.28 56 31524 40 54092 64 14832 64 288.79

L-parsing, 1 output 92 737.63 96 1449.77 96 571.25 108 1,033.25 136 255.61 128  468.96
L-parsing, 16 outputs = 96 802.14 96 1,677.32 104 566.02 100 1,21291 268 398.04 268  828.71
MP baseline 96 706.14 96 148440 112 568.00 112 1,154.60 192 29834 240  675.67

Table 4: Peak throughputs for B-parsing, L-parsing, L-paring with output striped across 16 files,
and the MP baseline. BWA-MEM is also evaluated for the Bowtie 2 configurations. For each
combination of aligner, paired-end status and test machine, the best and second-best throughputs
are highlighted in red and orange respectively.

footprint to grow much faster than Bowtie 2’s (Supplementary Figure 5).

4 Discussion

General-purpose processors now support hundreds of simultaneous threads of execution and fu-
ture architectures will likely continue the trend of squeezing more relatively slow threads onto a
single chip. Genomics software must adapt to high thread counts, slow individual threads, and
system architectures that more closely resemble small computer clusters — complete with inter-
connection network and distributed storage — than simpler processors of the past.

We addressed how lock types, design of critical sections, NUMA, starvation and other issues
can impact thread scaling on two Intel systems, including one based on the many-core Knight'’s
Landing architecture. We greatly improved thread scaling for three commonly used alignment
tools: Bowtie, Bowtie 2 and HISAT. We measured the effect of each candidate improvement, and
also showed that the improvements to Bowtie 2 allow it to scale more favorably than BWA-MEM
with respect to both time and peak memory footprint. The TBB queueing lock and the B-parsing
method are the default as of Bowtie v1.2.0 and Bowtie 2 v2.3.0.

Bowtie and HISAT align reads more quickly than Bowtie 2 (Table 4), making their locks more
contended and thread scaling more difficult. This is reinforced by how much L-parsing improved
thread scaling for Bowtie and HISAT. This suggests that similar or greater gains may be possible
by adapting our methods to yet faster tools such as pseudoaligners [33], quasi-mappers [34] and
tools that analyze at the k-mer level [13].

There is also further room for improvement. Besides L-parsing, which requires special padding,
B-parsing was the best-scaling MT strategy and it is now the default strategy in Bowtie and Bowtie
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2. But the MP baseline outperformed B-parsing in some scenarios, and L-parsing outperformed
it nearly always. We still seek MT methods that scale like L-parsing but that work with standard,
unpadded inputs.

For further gains, it will be important to investigate more lock types. The queueing (MCS)
lock [26] scaled best at high thread counts, likely because of reduced cache-coherence commu-
nication. But other lock types could improve on this in two ways. First: like the spinlock, the
queueing lock is optimistic. But when thread count and contention are high, pessimism is more
appropriate. It will be important to investigate lock types that adapt their degree of optimism in
inverse proportion to the lock contention, e.g. the hierarchical backoff lock [35]. Secondly, while
the queueing lock successfully reduces cache-coherence communication, other locks go further in
this regard. The cohort lock [36] further reduces communication by maximizing the chance that
consecutive holders of the lock are physically proximate (i.e. on the same NUMA node), avoiding
longer-distance communication.

Genomics file formats, notably FASTQ and FASTA, have properties that impede thread scal-
ing. Since records lack predictable length, record boundaries must be identified in a synchronized
manner, i.e. inside a critical section. Our best scaling results were achieved by forcing predictable
FASTQ record boundaries (using padding) and simplifying the input critical section to a single
tixed-size read. This padding is easy to add, regardless of the reads’ paired-end status or length
(including mixed lengths within a file and between paired ends) as long as the block size B ac-
commodates the longest read. While this suggests a strategy of pre-padding FASTQ files prior
to L-parsing alignment, that might simply move the synchronization bottleneck into the padding
step. It may be worth the cost, though, if input files are to be re-used across multiple L-parsing
alignment jobs, amortizing the padding cost.

L-parsing padding consists of simple runs of space characters, which are highly compressible.
For our inputs, padding increased uncompressed FASTQ file size by 9-14%, but gzipped FASTQ
file size increased just 1.0-1.5% (Supplementary Table 3). More generally, it is common to store
sequencing reads in a compressed form, then decompress — e.g. with gzip or the libz library
— prior to read alignment. But if decompression must be performed either upstream of the read
aligner or in the aligner’s input critical section, decompression is liable to become a new thread-
scaling bottleneck. A possible workaround is similar to the idea behind D-parsing: instead of
both reading and decompressing in the critical section, decompression could be deferred until af-
ter the critical section. This might be facilitated by block-compressed formats like BGZIP [37]. A
question for future work is whether compressed inputs can be used to reduce the space overhead
of padding while still providing thread scaling similar to what we achieved here with L-parsing
and uncompressed inputs. A related question is whether compressed output would mitigate bot-
tlenecks of the kind we (mostly) avoided with our multiple-output-file scheme (Supplementary
Figure 3).

Finally, we note that the threading model we consider here, whereby all threads rotate through

input, alignment and output phases (Figure 1), is just one possible model. We described the al-

19


https://doi.org/10.1101/205328
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/205328; this version posted June 11, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

ternative model used in BWA-MEM in Section 3.3. Another popular model is to relegate input
parsing and output writing to separate specialized threads. The input thread only parses input,
placing parsed records onto a queue to be later retrieved by alignment threads. Because only one
thread reads input, no locking is needed. Similarly, the output thread only writes output (without
locking), receiving alignment records from a queue populated by alignment threads. Synchroniza-
tion is still required, but it is limited to points where items are added to or removed from queues.
The tools examined here can be adapted to use this alternate model, and we already did so for
Bowtie 1’s unpaired alignment mode. Results are mixed but promising: a branch of Bowtie’s B-
parsing code that relegates input and output to separate threads achieves better thread scaling on
KNL, but worse on Skylake compared to standard B-parsing (Supplementary Figure 6). It will
be important to compare and contrast such threading models, and to test how they interact with

compressed inputs and outputs, in future work.
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