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Abstract

Mendelian randomization (MR) is widely used to identify causal relationships among herita-
ble traits, but can be confounded by genetic correlations reflecting shared etiology. We propose
a model in which a latent causal variable (LCV) mediates the genetic correlation between two
traits. Under this model, trait 1 is fully genetically causal for trait 2 if it is perfectly geneti-
cally correlated with the latent variable, and partially genetically causal for trait 2 if the latent
variable has a larger effect on trait 1 than on trait 2. By comparing the size of these effects we
define the genetic causality proportion (gcp), which is equal to 1 when trait 1 is fully genetically
causal for trait 2. We fit this model using mixed fourth moments E(α2

1α1α2) and E(α2
2α1α2)

of marginal effect sizes for each trait, exploiting the fact that if trait 1 is causal for trait 2 then
SNPs with large effects on trait 1 will have correlated effects on trait 2, but not vice versa. We
performed simulations under a wide range of genetic architectures and determined that LCV,
unlike state-of-the-art MR methods, produced well-calibrated false positive rates and reliable
gcp estimates in the presence of genome-wide genetic correlations and asymmetric genetic ar-
chitectures. We applied LCV to GWAS summary statistics for 52 traits (average N=326k),
identifying statistically significant genetically causal effects (1% FDR) for 63 pairs of traits.
Results consistent with the published literature included causal effects on myocardial infarction
(MI) for LDL, triglycerides and BMI. Novel findings included an effect of LDL on bone mineral
density, consistent with clinical trials of statins in osteoporosis. Our results demonstrate that it
is possible to distinguish between correlation and causation using genetic data.

Introduction

Mendelian Randomization (MR) is widely used to identify potential causal relationships among
heritable traits, which can be valuable for designing disease interventions.1–10 Genetic variants
that are significantly associated with one trait, the “exposure,” are used as genetic instruments
to test for a causal effect on a second trait, the “outcome.” If the exposure has a causal effect on
the outcome, then variants affecting the exposure should affect the outcome proportionally. For
example, the MR approach has been used to show that LDL3,11 and triglycerides4 (but not HDL3)
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have a causal effect on coronary artery disease (CAD). However, a challenge is that genetic variants
can affect both traits pleiotropically, and these pleiotropic effects can induce a genetic correlation,
especially when the exposure is polygenic.2,9, 10,12–14 This challenge can potentially be addressed
using curated sets of genetic variants that aim to exclude pleiotropic effects, but curated sets of
genetic variants are unavailable for most traits. One potential solution has been to apply MR
bidirectionally, using genome-wide significant SNPs for each trait in turn.9,15,16 This approach
relies on the assumption that if there is no causal relationship, then genome-wide significant SNPs
for each trait are equally likely to have correlated effects; however, this assumption can be violated
due to differences in trait polygenicity or GWAS sample size.

We introduce a latent causal variable (LCV) model, under which the genetic correlation between
two traits is mediated by a latent variable having a causal effect on each trait. We compare the
magnitude of these effects, defining trait 1 as partially genetic causal for trait 2 when the effect of the
latent variable on trait 1 is larger than its effect on trait 2; by comparing the size of these effects we
define the genetic causality proportion (gcp), which is 0 when there is no partial causality and 1 when
trait 1 is equal to the causal variable. In simulations we confirm that LCV, unlike other methods,
avoids confounding due to genetic correlations, even under asymmetric genetic architectures with
differential polygenicity or differential power. Applying LCV to GWAS summary statistics for
52 diseases and complex traits (average N=326k), we identify both causal relationships that are
consistent with the published literature and novel causal relationships.

Results

Overview of methods

The latent causal variable (LCV) model assumes that the genetic correlation between trait 1 and
trait 2 is mediated by a latent variable L having causal effects on trait 1 and trait 2 (Figure 1).
We define trait 1 as fully genetically causal for trait 2 when the genetic component of trait 1 is
equal to L, so that every genetic perturbation to trait 1 produces a proportional change in trait 2.
We define trait 1 as partially genetically causal for trait 2 when the effect of the latent variable
on trait 1 is stronger than its effect on trait 2. By comparing the magnitude of these effects, we
define the genetic causality proportion, gcp, of trait 1 on trait 2, which is 0 when there is no partial
causality and 1 when trait 1 is fully genetically causal for trait 2. A high value of gcp indicates that
trait 1 is either causal for trait 2 or strongly genetically correlated with the underlying causal trait;
it suggests that interventions targeting trait 1 are likely to have an effect on trait 2. (However,
we caution that mechanistic hypotheses are also required before designing disease interventions, as
the success of an intervention may depend on its mechanism of action and on its timing relative
to disease progression.) An intermediate positive value of gcp indicates that functional insights
into the genetic architecture of trait 1 may also provide insights into the etiology of trait 2. Our
goals are to test for statistically significant partial causality and to estimate gcp. We exploit the
fact that if trait 1 is genetically causal for trait 2, then SNPs with a large effect on trait 1 will
have proportional effects on trait 2, but not vice versa. In particular, we compare the mixed fourth
moments E(α2

1α1α2) and E(α2
2α1α2) of marginal effect sizes for each trait, adjusting for the genetic

correlation between traits. We derive a statistical test for partial causality and a posterior mean
estimator of gcp using the estimated mixed fourth moments.

Under the latent causal variable (LCV) model (Figure 1) we define the genetic causality pro-
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portion (gcp) as the number x such that:

q2
2

q2
1

= (ρ2
g)x, (1)

where q1 and q2 denote effects of L on trait 1 and trait 2 and the genetic correlation ρg is equal to
q1q2. gcp is positive when trait 1 is partially genetically causal for trait 2. When gcp = 1, trait 1 is
fully genetically causal for trait 2: q1 = 1, and q2 = ρg is the causal effect size of trait 1 on trait 2 (we
note that it is possible to have gcp = 1 with a weak causal effect size). Conversely, when gcp = −1,
trait 2 is fully genetically causal for trait 1. We derive a relationship between the mixed fourth
moments of the marginal effect size distribution and the parameters q1 and q2 in the LCV model,
allowing us to test for partial causality and to estimate gcp: let the random variable αk denote the
marginal effect of a SNP on Yk, including effects mediated by L and effects not mediated by L.
Under the LCV model,

E(α3
1α2) = κπq3

1q2 + 3ρg, (2)

where π is the effect of a SNP on L and κπ = E(π4) − 3 is the excess kurtosis of π (see Online
Methods). Our method exploits this excess kurtosis; when κπ is zero (such as when π is normally
distributed), we are unable to test for partial causality or to estimate gcp (indeed, the model
is not identifiable when π is normally distributed; see Supplementary Note). We estimate ρg
using a modified version of cross-trait LD score regression,14 and we use a modified version of
LD score regression17 to normalize the summary statistics. In order to estimate the gcp, we
construct statistics S(x) based on the difference between the estimated mixed fourth moments
for each possible value of gcp = x; these estimates are corrected for possible sample overlap (see
Online Methods). We estimate the variance of these statistics using a block jackknife and obtain
an approximate likelihood function for gcp. We compute a posterior mean estimate of gcp (and a
posterior standard deviation) using a uniform prior on [−1,1]. We test the null hypothesis of no
partial causality using the statistic S(0). Details of the method are provided in the Online Methods
section; we have released open source software implementing the method (see URLs).

Simulations with no LD: comparison with existing methods

To compare the calibration and power of LCV with existing causal inference methods, we performed
simulations involving simulated summary statistics with no LD. We compared four methods: LCV,
random-effect two-sample MR5 (denoted MR), MR-Egger7 and Bidirectional MR9 (see Online
Methods). We applied each method to simulated GWAS summary statistics (N = 100k individuals
in each of two non-overlapping cohorts; M = 50k independent SNPs18) for two heritable traits
(h2 = 0.3), generated under the LCV model. LCV uses LD score regression17 to normalize the
summary statistics and cross-trait LD score regression14 to estimate the genetic correlation; for
simulations with no LD, we use constrained-intercept LD score regression14 for both of these steps.
In each simulation, approximately 320 SNPs on average were genome-wide significant for each
trait, explaining roughly half of h2; MR, MR-Egger and Bidirectional MR rely exclusively on these
genome-wide significant SNPs. A detailed description of these simulations is provided in the Online
Methods section.

First, we performed null simulations (gcp = 0) with uncorrelated pleiotropic effects and zero
genetic correlation. 1% of SNPs were causal for both traits (with independent effect sizes), 4%
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were causal for trait 1 but not trait 2, and 4% were causal for trait 2 but not trait 1. Results are
displayed in Figure 2a (scatterplots of estimated SNP effects are displayed in Figure S1a). LCV
produced conservative p-values (0.0% false positive rate at α = 0.05); our normalization of the test
statistic can lead to conservative p-values when the genetic correlation is low (see Online Methods;
analyses of real phenotypes are restricted to genetically correlated traits). All three MR methods
produced well-calibrated p-values. Even though the “exclusion restriction” assumption of MR–
that there is no pleiotropy– is violated here, these results confirm that uncorrelated pleiotropic
effects do not confound random-effect MR at large sample sizes;19 we caution that pleiotropy is
known to produce false positives if standard errors are computed using a less conservative fixed-
effect approach.20 In these simulations, all methods except LCV used the set of approximately 320
SNPs (on average) that were genome-wide significant (p < 5 × 10−8), either for trait 1 only (MR
and MR-Egger) or for both traits (Bidirectional MR); varying the significance threshold produced
similar results (Table S1).

Second, we performed null simulations with a nonzero genetic correlation: 1% of SNPs had
causal effects on L, and L had effects q1 = q2 =

√
0.2 on each trait (so that ρg = 0.2); 4% of SNPs

were causal for trait 2 but not trait 1, and 4% of SNPs were causal for trait 1 but not trait 2.
Because the per-SNP heritability was the same on average for shared causal SNPs as for non-
shared causal SNPs, these SNPs were equally likely to be genome-wide significant, and ∼ 20% of
significant SNPs affected both traits with correlated effect sizes. Results are displayed in Figure 2b
(scatterplots in Figure S1b). Because of these correlated-effect SNPs, MR and MR-Egger both
exhibited severely inflated false positive rates; in contrast, Bidirectional MR and LCV produced
well-calibrated or modestly conservative p-values. Thus, correlated pleiotropic effects violate the
MR exclusion restriction assumption in a manner that leads to false positives, as polygenic genetic
correlations can produce correlations among genome-wide significant SNPs (Figure S1b). These
simulations also violate the MR-Egger assumption that the magnitude of pleiotropic effects on
trait 2 are independent of the magnitude of effects on trait 1 (the “InSIDE” assumption),7 as SNPs
with larger effects on L have larger effects on both trait 1 and trait 2 on average, consistent with
known limitations.20

Third, we performed null simulations with a nonzero genetic correlation and differential poly-
genicity in the non-shared genetic architecture between the two traits: 1% of SNPs were causal for
L with effects q1 = q2 =

√
0.2 on each trait, 2% were causal for trait 1 but not trait 2, and 8% were

causal for trait 2 but not trait 1. Thus, the likelihood that a SNP would be genome-wide significant
was higher for causal SNPs affecting trait 1 only than for causal SNPs affecting trait 2 only. We
hypothesized that this ascertainment bias would cause Bidirectional MR to incorrectly infer that
trait 1 was causal for trait 2. Indeed, Bidirectional MR (as well as other MR methods) exhibited
inflated false positive rates, while LCV produced modestly conservative p-values (Figure 2c). We
confirmed that the correlation between SNP effect sizes differs for SNPs that are significant for
trait 1 and SNPs that are significant for trait 2 (Figure S1c).

Fourth, we performed null simulations with a nonzero genetic correlation and differential power
for the two traits, reducing the sample size from 100k to 20k for trait 2. 0.5% of SNPs were causal
for L with effects q1 = q2 =

√
0.5 on each trait, 8% were causal for trait 1 but not trait 2, and 8%

were causal for trait 2 but not trait 1. Because per-SNP heritability was higher for shared causal
SNPs than for non-shared causal SNPs, shared causal SNPs but not non-shared causal SNPs were
likely to reach genome-wide significance in the smaller trait 1 sample (N = 20k), while both shared
and non-shared causal SNPs were likely to reach genome-wide significance in the trait 2 sample
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(N = 100k); thus, we hypothesized that Bidirectional MR would incorrectly infer that trait 1 was
causal for trait 2. Indeed, Bidirectional MR (as well as other MR methods) exhibited inflated false
positive rates, while LCV produced well-calibrated p-values (Figure 2d; scatterplots in Figure S1d).

Finally, we simulated causal (gcp = 1) and partially causal (gcp = 0.5) genetic architectures,
to assess the power of each method to identify causal relationships between traits. In the causal
case, 5% of SNPs were causal for trait 1, with proportional effects on trait 2 resulting in a genetic
correlation of 0.1, and an additional 5% of SNPs were causal for trait 2 but not trait 1. In the
partially causal case, 5% of SNPs were causal for each trait individually, and 5% of SNPs were causal
for L, explaining different amounts of heritability for each trait so that the genetic correlation was
0.1 and the gcp was 0.5. MR, Bidirectional MR and LCV (but not MR-Egger) attained very
high power in the fully causal case (Figure 2e; scatterplots in Figure S1e). In the partially causal
case, MR and LCV attained high power, followed by Bidirectional MR and MR-Egger respectively
(Figure 2f; scatterplots in Figure S1f).

In summary, we determined using simulations with no LD that LCV produced well-calibrated
null p-values in the presence of a nonzero genetic correlation, unlike MR and MR-Egger. LCV also
avoided confounding when polygenicity or power differed between the two traits, unlike Bidirectional
MR and other methods. In non-null simulations, LCV attained high power to detect a causal or
partially genetically causal effect.

Simulations with no LD: LCV model violations

To investigate potential limitations of our approach, we performed simulations involving genetic
architectures that violate the key assumption of the LCV model, that a single variable fully mediates
the genetic correlation between two traits. Analogous to simulations reported in Figure 2, each
trait had heritability 0.3 and sample size 100k (non-overlapping), with 50k SNPs and no LD. First,
we performed null simulations under a model with two latent causal variables, L1 and L2, where L1

had effect size 0.4 on trait 1 and 0.1 on trait 2 but L2 had effect size 0.1 on trait 1 and 0.4 on trait 2.
Thus, SNPs affecting L1 had larger effects on trait 1 while SNPs affecting L2 had larger effects
on trait 2. These simulations can be viewed as null, because the two intermediaries collectively
explained the same proportion of heritability for both traits. 2% of SNPs were causal for each latent
causal variable, and an additional 4% of SNPs were causal for each trait individually. Results are
displayed in Figure 3a. LCV produced conservative p-values, indicating that heterogeneity in the
relative effect sizes of shared causal SNPs does not necessarily confound LCV.

Second, we repeated these simulations with differential polygenicity between the two latent
causal variables: 1% of SNPs were causal for L1, but 4% of SNPs were causal for L2. This form of
differential polygenicity is distinct from Figure 2c, which involves differential polygenicity between
the non-shared genetic components of each trait. We expected that LCV would produce inflated
false positive rates, as the sparse intermediary would influence the mixed fourth moments more
than the polygenic intermediary. Indeed, LCV consistently produced false positives, similar to
MR, MR-Egger and Bidirectional MR (Figure 3b). Thus, a limitation of our method (and existing
methods) is that it can be confounded by genetic architectures involving heterogenous relative effect
sizes when the relative effects (i.e. α2

1/α2
2, which was higher for L1 than for L2) are coupled to the

effect magnitudes (i.e. α2
1α

2
2, which was also higher for L1). This type of effect can be viewed

as an asymmetric violation of the key assumption needed to derive equation (2), namely that the
squared values of direct effects (γ2

k) are uncorrelated with the squared values of mediated effects
(π2; see Online Methods). In contrast, Figure 3a involves a symmetric violation of the assumption

5

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 18, 2017. ; https://doi.org/10.1101/205435doi: bioRxiv preprint 

https://doi.org/10.1101/205435
http://creativecommons.org/licenses/by-nc/4.0/


(i.e., corr(γ2
1 , π

2) = corr(γ2
2 , π

2) ≠ 0), leading to a violation of (2) but not false positives. Despite
the fact that heterogeneity of relative effect sizes coupled with differential polygenicity can lead to
false positives for LCV, genetic causality remains the most parsimonious explanation for low LCV
p-values.

Third, to confirm our hypothesis that heterogeneity only confounds LCV when it is coupled
with differential polygenicity, we performed null simulations in which SNP effects were drawn from
a mixture of normal distributions. 4% of SNPs were causal for trait 1 only or trait 2 only, and 1% of
SNPs were causal for both traits following a multivariate normal distribution with correlation 0.5,
so that the relative effect sizes of shared causal SNPs were heterogenous (these SNPs explained 20%
of heritability for each trait). An interpretation for this model is that shared causal SNPs act on the
two traits via many different intermediaries. Results are displayed in Figure 3c. LCV produced p-
values that were well-calibrated, similar to Bidirectional MR. MR and MR-Egger produced inflated
p-values, similar to Figure 2b.

Fourth, we added differential polygenicity between the two traits, not coupled with the het-
erogeneity; 2% of SNPs were causal for trait 1 only and 8% of SNPs were causal for trait 2 only
(Figure 3d). Because the differential polygenicity was not coupled with the heterogeneity, LCV
produced well-calibrated p-values, while MR, MR-Egger and Bidirectional MR produced inflated
p-values, similar to Figure 2c.

In summary, we determined in simulations involving LCV model violations that LCV and
existing methods were confounded by complex genetic architectures involving heterogenous relative
SNP effect sizes when this heterogeneity was coupled with differential polygenicity. On the other
hand, heterogeneity did not confound LCV when relative SNP effects were independent of effect
magnitudes, and existing methods were confounded by less complex genetic architectures in addition
to complex genetic architectures.

Simulations with LD: assessing calibration and power

To further assess the calibration and power of our test for partial causality and the unbiasedness
and precision of our gcp estimator, we performed simulations involving real LD patterns; we note
that LD can potentially impact the performance of our method, which uses a modified version
of LD score regression14,17 to normalize effect size estimates and to estimate genetic correlations.
Because existing methods exhibited major limitations in simulations with no LD (Figure 2 and
Figure 3), we restricted these simulations to the LCV method. We used real genotypes from the
interim UK Biobank release25 (N = 145k European-ancestry samples, M = 596k genotyped SNPs)
to compute a banded LD matrix, simulated causal effect sizes for each of two traits at these SNPs,
and simulated summary statistics (inclusive of LD) for each trait using the asymptotic sampling
distributions.21 We included correlations between the noise components of the summary statistics
for each trait so as to mimic fully overlapping GWAS cohorts with total phenotypic correlation
equal to the genetic correlation. Our initial null simulations included identical effect sizes of L on
each trait (q1 = q2 = 0.5), 0.1% of SNPs (explaining 20% of trait h2) causal for L, 0.4% of SNPs
causal for trait 1 but not trait 2 (and respectively for trait 2 but not trait 1), h2 = 0.3 for each trait
and N = 100k for each cohort; we varied each of these parameters in turn. We set the proportion
of causal SNPs to be lower in these simulations than in simulations without LD so as to roughly
match the total number of causal SNPs and the proportion of associated SNPs (inclusive of LD) at
a given p-value threshold. Further details of the simulations are provided in the Online Methods
section.
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First, we performed null simulations (gcp = 0) at various values of the genetic correlation
ρg (Table 1a-c and Table S3a-e). False positive rates were approximately well-calibrated, with
conservative p-values at ρg = 0 (consistent with Figure 2a) and slightly inflated p-values at higher
values of ρg. This slight inflation was not observed in simulations with no LD because we used
constrained-intercept LD score regression to estimate heritability in those simulations (variable-
intercept LD score regression cannot be used when there is no LD), leading to highly precise
heritability estimates; however, constrained-intercept LD score regression can produce upwardly
biased heritability estimates in practice. We repeated our simulations with LD using constrained-
intercept LD score regression to estimate h2

g; noise in the heritability estimates was reduced (mean

Z score for nonzero h2
g increased from ∼ 8 to ∼ 15 under default parameters), and test statistic

inflation was eliminated (Table S4a-c). Thus, the slight inflation in Table 1a,c is a result of noise in
the heritability estimates. To ensure that this issue would not affect our analyses of real traits, we
restricted those analyses to traits with highly significant heritability (Zh > 7; see below). We focus
our remaining simulations on genetic architectures that include a nonzero genetic correlation, but
analogous simulations with zero genetic correlation are also provided in Table S3.

Second, we performed null simulations with uncorrelated pleiotropic effects, in addition to
genetic correlation of 0.2. 0.2% of SNPs had direct effects on both traits with independent effect
sizes, 0.2% of SNPs had direct effects on each trait (but not both), and 0.1% of SNPs had effects
on L. False positive rates were approximately well-calibrated (Table 1d and Table S3f); similar
to Table 1a-c, there was slight inflation as a result of noisy heritability estimates, and inflation
was eliminated when we repeated these simulations using constrained-intercept LD score regression
(Table S4d).

Third, we performed null simulations with differential polygenicity in the non-shared genetic
architecture between the two traits (Table 1e and Table S3g); we note that in simulations with no
LD, differences in polygenicity (in the presence of genetic correlation) confounded Bidirectional MR,
but not LCV (Figure 2c). 0.2% and 0.8% of SNPs were causal for trait 1 and trait 2, respectively.
False positive rates were similar to Table 1a, with slight inflation; this inflation was eliminated by
using constrained-intercept LD score regression (Table S4e). Slightly more inflation was observed
when the difference in polygenicity was very large (0.1% and 1.6% of SNPs causal for each trait;
Table S3h); we believe that this 16× difference in polygenicity represents an extreme scenario for
real traits.

Fourth, we performed null simulations with differential power between the GWAS cohorts; we
note that in simulations with no LD, differences in sample size (in the presence of genetic correlation)
confounded bidirectional MR, but not LCV (Figure 2d). We specified a 5× difference in sample size
(N1 = 20k and N2 = 100k). Results are displayed in Table 1f and Table S3i. Similar to Table 1a,
we observed slight inflation in false positive rates, which was eliminated by using constrained-
intercept LD score regression (Table S4f). The amount of inflation was greatly increased when we
further reduced N1 to 4k (Table S3j); at this sample size, LD score regression produced unreliable
heritability estimates using either variable-intercept LD score regression (average heritability Z
score Zh = 1.4) or constrained-intercept LD score regression (average Zh = 2.2; Table S4g). We
generally recommend running LCV on datasets with heritability Z score Zh > 7, which may preclude
running LCV on small GWAS. We also performed secondary simulations under various parameter
settings, including simulations involving zero genetic correlation, different environmental correlation
values and different heritability values, with results that were concordant with other simulations
(Table S3k-s).
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Fifth, we explored the effect of population stratification in null simulations using individual-
level UK Biobank genotypes from chromosome 1 (M = 43k). We added strong environmental
stratification along the first principal component (explaining 1% and 2% of phenotypic variance
for traits 1 and 2 respectively); this principal component approximately corresponds to latitude
of origin.22 False positive rates were severely inflated, and point estimates of gcp were severely
biased (Table 1g and Table S6a-b). When residualizing summary statistics on PC1 loadings,23

false positive rates were approximately well-calibrated (Table S6c-d). These results emphasize the
importance of correcting for population stratification in order to draw valid conclusions about
causal relationships between traits.

Sixth, we simulated fully causal (gcp = 1) and partially causal (gcp = 0.5) genetic architectures,
to assess the power of LCV. LCV attained high power in the fully causal case and moderately
high power in the partially causal case (Table 1h-i and Table S3t-u). Estimates of gcp were biased
toward zero in the fully causal case (an expected consequence of our uniform prior on [−1,1]), but
approximately unbiased in the partially causal case. When we varied key simulation parameters
in fully causal simulations, LCV attained moderate to high power across a wide range of realistic
parameter values, including the sample size in both cohorts, the size of the causal effect, and the
polygenicity of the causal trait (Table S3v-aa). As expected, there was no power when the genetic
architecture of the causal trait was infinitesimal (Table S3bb; see Online Methods). For a putative
causal trait whose genetic architecture is unknown, is difficult to predict whether LCV will be
well-powered to detect a causal effect of that trait at a given sample size, since the power of LCV
depends on the polygenicity of the causal trait, as well as the size of the causal effect and other
unknown parameters.

Seventh, to further assess the unbiasedness of gcp posterior mean (and variance) estimates, we
performed simulations in which the true value of gcp was drawn uniformly from [−1,1] and ρg was
drawn uniformly from [−0.5,0.5] distribution. In order to be maximally realistic, these simula-
tions also included differential polygenicity (similar to Table 1e) and differential power (similar to
Table 1f); other parameters were identical to Table 1a. To mimic the process that we applied to
real traits, we restricted to simulations with evidence for nonzero genetic correlation (p < 0.05) and
evidence for partial causality (p < 0.001). We expected posterior-mean estimates to be unbiased
in the sense that E(gcp∣ ˆgcp) = ˆgcp (which differs from the usual definition of unbiasedness, that
E( ˆgcp∣gcp) = gcp).24 Thus, we binned these simulations by ˆgcp and plotted the mean value of gcp
within each bin (Figure S2a). We determined that mean gcp within each bin was concordant with
ˆgcp. Accordingly, when we regressed the true values of gcp on the estimates, the slope was close to

1 (Table S5). In addition, the root mean squared error (RMSE) was 0.15, approximately consistent
with the root mean posterior variance estimate (RMPV) of 0.13 (Table S5).

In summary, in null simulations under the LCV model with real LD, we confirmed that LCV
produces approximately well-calibrated null p-values under a wide range of genetic architectures
with nonzero genetic correlation; these simulations included uncorrelated pleiotropic effects, dif-
ferential polygenicity, high phenotypic correlations, and differential GWAS power. Some p-value
inflation was observed when heritability estimates were noisy, but this is addressed in analyses of
real traits by restricting to traits with highly significant heritability (Zh > 7). In non-null simula-
tions with real LD, LCV attained high power to detect causal effects under a wide range of realistic
genetic architectures, and it produced approximately unbiased posterior mean gcp estimates with
well-calibrated posterior standard errors.
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Application to real phenotypes

We applied our method to GWAS summary statistics for 52 diseases and complex traits, including
summary statistics for 36 UK Biobank traits25,26 computed using BOLT-LMM27 (N = 428k) and
16 other traits (average N=54k) (see Table S7 and Online Methods). These traits were selected
based on the significance of their heritability estimates (Zh > 7), and traits with very high genetic
correlations (ρg > 0.9) were pruned, retaining the trait with higher heritability significance. As in
previous work, we excluded the MHC region from all analyses, due to its unusual LD patterns.17 Of
the 430 pairs of traits with a nominally significant genetic correlation (p < 0.05), 63 had significant
evidence of full or partial genetic causality (FDR < 1%). Results for selected traits are displayed in
Figure 4. Results for the 63 significant trait pairs are reported in Table S8, and complete results
are reported in Table S9.

Myocardial infarction (MI) had a nominally significant genetic correlation with 31 other traits,
of which six had significant evidence (FDR < 1%) for a genetically causal or partially causal effect
on MI (Table 2); there was no evidence for a causal effect of MI on any other trait. Consistent with
previous studies, these traits included LDL,3,11 triglycerides4 and BMI,28 but not HDL.3 The effect
of BMI was also consistent with prior MR studies,28–31 although those studies did not attempt to
account for pleiotropic effects (also see ref. 32, which detected no effect). There was also evidence
for an effect of high cholesterol, which was unsurprising (due to the high genetic correlation with
LDL) but noteworthy because of its strong genetic correlation with MI, compared with LDL and
triglycerides. There was also evidence for a causal effect of fasting glucose, consistent with an
MR study that reported a causal effect of type 2 diabetes on CAD accounting for pleiotropic
effects on other known CAD risk factors;33 that study did not detect a causal effect on CAD for
fasting glucose specifically, possibly due to limited power. The result for HDL and MI did not
pass our significance threshold (FDR < 1%), but was nominally significant (p = 0.02, Table S9);
we residualized HDL summary statistics on summary statistics for LDL, BMI and triglycerides,
determining that residualized HDL remained genetically correlated with MI (ρ̂g = −0.16(0.06)) but
showed no evidence of partial causality (p = 0.8); on the other hand, most of the six traits with
significant causal effects on MI remained significant when conditioning on these classical risk factors
(Table S10). We confirmed that self-reported MI in UK Biobank was highly genetically correlated
with CAD in CARDIoGRAM consortium data35 (ρ̂g = 1.34(0.25); not significantly different from
1).

We also detected evidence for a causal effect of hypothyroidism on MI (Table 2), which is
mechanistically plausible.36,37 Although hypothyroidism is not as well-established a cardiovascular
risk factor as high LDL or low HDL, its genetic correlation with MI is comparable (Table 2). While
this result was robust in the conditional analysis (Table S10), and there was no strong evidence
for an effect of hypothyroidism on lipid traits (Table S9), we cannot rule out the possibility that
this effect is mediated by lipid traits. A recent MR study of thyroid hormone levels, at ∼ 20× lower
sample size than the present study, did not identify a causal effect on coronary artery disease.38 On
the other hand, clinical trials have demonstrated that treatment of subclinical hypothyroidism using
levothyroxine leads to improvement in several cardiovascular risk factors.39–43 We also detected
evidence for a causal effect of hypothyroidism on T2D (Table S8), consistent with a longitudinal
association between subclinical hypothyroidism and diabetes incidence.44

We identified four traits with evidence for a causal effect on hypertension (Table 2), which is ge-
netically correlated with MI (ρ̂g = 0.49(0.10)). These included causal effects of BMI, consistent with
the published literature,9,34 as well as triglycerides and HDL. The causal effect of HDL indicates
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that there exist major metabolic pathways affecting hypertension with little or no corresponding
effect on MI. The effect of reticulocyte count, which had a low gcp estimate ( ˆgcp = 0.41(0.13)),
is likely related to the substantial genetic correlation between reticulocyte count and triglycerides
(ρ̂g = 0.33(0.05)) and BMI (ρ̂g = 0.39(0.03)).

We also detected evidence for a negative causal effect of LDL on bone mineral density (BMD;
Table 2). A meta-analysis of seven randomized clinical trials reported that statin administration
increased bone mineral density, although these clinical results have generally been interpreted as
evidence of a shared pathway affecting LDL and BMD.45 Moreover, familial defective apolipoprotein
B leads to high LDL cholesterol and low bone mineral density.46 To further validate this result, we
performed two-sample MR using 8 SNPs that were previously used to show that LDL affects CAD
(in ref. 3; see Online Methods), finding modest evidence for a negative causal effect (p = 0.04).
Because there is a clear mechanistic hypothesis linking each of these variants to LDL directly, this
analysis provides validation orthogonal to LCV, which does not prioritize variants that are likely
to represent valid instruments. We also detected a partially causal effect of height on BMD, with
a lower gcp estimate (Table 2).

We detected evidence for an effect of triglycerides on five cell blood traits: mean cell volume,
platelet distribution width, reticulocyte count, eosinophil count and monocyte count (Table 2).
These results highlight the pervasive effects of metabolic pathways, which can induce genetic cor-
relations with cardiovascular phenotypes. For example, shared metabolic pathways may explain
the high genetic correlation of reticulocyte count with MI (ρ̂g = 0.31(0.06)) and hypertension
(ρ̂g = 0.27(0.04)).

Finally, it has been reported that polygenic autism risk is positively genetically correlated with
educational attainment14 (and cognitive ability,47 a highly genetically correlated trait50), possibly
consistent with the hypothesis that common autism risk variants are maintained in the population
by balancing selection.48,49 If balancing selection involving a trait related to educational attainment
explained a majority of autism risk, we would expect that most common variants affecting autism
risk would affect educational attainment, leading to a partially genetically causal effect of autism
on educational attainment. However, we detected no evidence of a causal effect of autism on
college education ( ˆgcp = 0.13(0.13), ρ̂g = 0.23(0.07); Table S9); thus, balancing selection acting on
educational attainment or a related trait is unlikely to explain the high prevalence of autism.

We discuss additional significant results (Table S8) in the Supplementary Note.

Discussion

We have introduced a latent causal variable (LCV) model to identify causal relationships among
genetically correlated pairs of complex traits. We applied LCV to 52 traits, finding that many trait
pairs do exhibit partially or fully genetically causal relationships. Our results included several novel
findings, including an effect of LDL on bone mineral density (BMD) which suggests that lowering
LDL may have additional benefits besides reducing the risk of cardiovascular disease.

Our method represents an advance for two main reasons. First, LCV reliably distinguishes
between genetic correlation and full or partial genetic causation. Unlike existing MR methods, LCV
provided well-calibrated false positive rates in null simulations with a nonzero genetic correlation,
even in simulations with differential polygenicity or differential power between the two traits. Thus,
positive findings using LCV are more likely to reflect true causal effects. Second, we define and
estimate the genetic causality proportion (gcp) to quantify the degree of causality. This parameter,
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which provides information orthogonal to the genetic correlation or the causal effect size, enables
a more quantitative description of the causal architecture. Even when both MR and LCV provide
significant p-values, the p-value alone is consistent with either fully causal or partially causal genetic
architectures, limiting its interpretability; our gcp estimates appropriately describe the range of
likely hypotheses.

This study has several limitations. First, the LCV model includes only a single intermediary
and can be confounded in the presence of multiple intermediaries, in particular when the inter-
mediaries have differential polygenicity. Indeed, some trait pairs appear to show evidence for
multiple intermediaries (Table S8). Nonetheless, causality or partially causality provide a more
parsimonious explanation for estimated causal effects, especially when the gcp estimate is high.
Second, because LCV models only two traits at a time, it cannot be used to identify conditional
effects given observed confounders.52 This approach was used, for example, to show that triglyc-
erides affect coronary artery disease risk conditional on LDL.4 However, it is less essential for LCV
to model observed genetic confounders, since LCV explicitly models a latent genetic confounder.
Third, LCV is not currently applicable to traits with small sample size and/or heritability, due to
low power as well as incorrect calibration. However, GWAS summary statistics at large sample
sizes have become publicly available for increasing numbers of diseases and traits, including UK
Biobank traits.27 Fourth, while many trait pairs have high gcp estimates, it is not clear whether
most of these trait pairs reflect fully or partially genetically causal relationships. A gcp of 1 and
a gcp of ∼ 0.7 would be interpreted differently: a gcp of 1 suggests that any timely intervention
on trait 1 is likely to modify trait 2, whereas a gcp of ∼ 0.7 suggests that only some interventions
on trait 1 will modify trait 2, depending on their mechanism of action. This type of uncertainty
is inherent in causal inference from non-experimental data. Fifth, power might be increased by
modeling LD explicitly, exploiting the fact that SNPs with higher LD, especially in active regula-
tory regions, have larger marginal effect sizes on average.17 Nonetheless we observed high power to
detect causal effects for many trait pairs. Sixth, power might also be increased by including rare
and low-frequency variants; even though these SNPs explain less complex trait heritability than
common SNPs,18,53 they may contribute significantly to power if the genetic architecture among
these SNPs is more sparse than among common SNPs. Seventh, we cannot infer whether observed
causal effects are linear. For example, it is plausible that BMI would have a small effect on MI
risk for low-BMI individuals and a large effect for high-BMI individuals, but this type of nonlin-
earity cannot be gleaned from summary statistics (unless MI summary statistics were stratified
by BMI). Eighth, MR-style analyses have been applied to gene expression,54–56 and the potential
for confounding due to pleiotropy in these studies could possibly motivate the use of LCV in this
setting, but LCV is not applicable to molecular traits, which may be insufficiently polygenic for
the LCV random-effects model to be well-powered. Finally, we have not exhaustively benchmarked
LCV against every published MR method, but have restricted our simulations to the most widely
used MR methods. We note that there exist methods that aim to improve robustness by exclud-
ing or effectively down-weighting variants whose causal effect estimates appear to be outliers;6,8, 10

however, we believe that any method that relies on genome-wide significant SNPs for a single one
trait is likely to be confounded by genetic correlations (Figure 2). Despite these limitations, we
anticipate that our method will provide a valuable tool for identifying causal relationships between
genetically correlated traits.
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lication at github.com/lukejoconnor/LCV.

Online Methods

Latent causal variable model

The latent causal variable (LCV) model for a pair of heritable traits Y1 and Y2 assumes that a
single latent variable L causally affects both Y1 and Y2, mediating the genetic correlation between
them (Figure 1). The model contains random variables γ1, γ2 for the marginal non-mediated effect
of a SNP on each trait, a random variable π for the marginal effect of a SNP on L, and fixed scalars
q1, q2 for the effects of L on each trait (see Methods for a full description of the LCV model). We
fix V ar(π) = 1 and V ar(γk) = 1 − q2

k, so that the variance of the effect sizes is V ar(qkπ + γk) = 1.
The genetic causality proportion (gcp) is defined as:

gcp ∶= log ∣q2∣ − log ∣q1∣
log ∣q2∣ + log ∣q1∣

, (3)

which satisfies

q2
2

q2
1

= (ρ2
g)gcp. (4)

where the genetic correlation ρg is equal to q1q2. gcp is positive when trait 1 is partially genetically
causal for trait 2. When gcp = 1, trait 1 is fully genetically causal for trait 2: q1 = 1 and the
causal effect size is q2 = ρg. Our most critical modeling assumption is that the genetic correlation is
mediated by a single variable; if multiple intermediaries contribute to the genetic correlation, with
different effect sizes on each trait, then the model is misspecified.

Fix q1 and q2. For each SNP, marginal effect sizes (π, γ1, γ2) are drawn from some distribution
D (because we consider marginal effect sizes, it is not expected that SNPs will be independent).
The effect size of a SNP on trait k is αp = qkπ + γk, and we observe GWAS estimates of α for M
SNPs. The asymptotic sampling distribution of estimated effect sizes for a SNP on each trait is
bivariate normal, centered at the true effect sizes, with a covariance matrix that we can estimate
using LD score regression.14,17

Assume that (π, γ1, γ2) are independent random variables, with E(π2) = 1 and E(γ2
k) = 1 − q2

k
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(so that E(α2
k) = 1). We derive equation (2) as follows:

E(α3
1α2) =E((γ1 + q1π)3(γ2 + q2π))

=q3
1q2E(π4) + 3q1q2E(π2γ2

1)
=q3

1q2E(π4) + 3q1q2E(π2)E(γ2
1)

=q3
1q2E(π4) + 3q1q2(1)(1 − q2

1)
=q3

1q2(E(π4) − 3) + 3ρg. (5)

In the second line, we used the independence assumption to discard cross-terms of the form γpπ
3,

γ1γ
3
2 , and γ3

1π. In the third and fourth lines, we used that E(γ2
1π

2) = E(γ2
1)E(π2) = E(γ2

1) = 1−q2
1.

Independence of (π, γ1, γ2) was a stronger assumption than we needed. More specifically, we
need:

1. E(γ1γ2) = 0, so that U fully explains the genetic correlation between the two traits;

2. E(γ1γ
3
2) = E(γ2γ

3
1) = 0, so that the non-correlation between γ1, γ2 extends to SNPs with large

non-mediated effects on each trait;

3. E(π2γ1γ2) = 0, so that non-mediated effects do not have a tendency to either cancel out or
augment mediated effects;

4. E(π3γp) = E(πγ3
p) = 0;

5. And most importantly, E(π2γ2
p) = E(π2)E(γ2

p), so that SNPs with a large mediated effect do
not tend to also have an additional non-mediated effect.

We do not need to assume that corr(γ2
1 , γ

2
2) = 0; we allow for unsigned pleiotropy between non-

mediated effects, and many of our simulations include this type of pleiotropy. Assumption (1) is an
essential feature of the model definition, as otherwise there is no interpretation for U . Assumptions
(2-4) are highly plausible, as they involve odd-numbered exponents; we are not aware of a clear
biological interpretation for these types of violations. Assumption (5) is the most likely to be
violated in practice. First, it could be violated if some regions of the genome harbor many SNPs
affecting different traits, while others do not. This phenomenon would most likely lead to symmetric
violations of assumption (5); estimates of gcp would be biased toward zero, and power to detect
a partially causal effect would be reduced. Second, if there are multiple intermediaries affecting
both traits, it could lead to either symmetric or asymmetric violations of assumption (5). SNPs
apparently affecting L will appear to have an additional non-mediated effect, as the compromise
values of q that are fit by the model will differ from the true values of q for both intermediaries;
see Figure 3.

Estimation

Let a1 = α1 + ε1, a2 = α2 + ε2 be estimated effect sizes for the two traits. These effect estimates are
normalized so that var(αp) = 1; we perform this normalization using a slightly modified version of
LD score regression,17 with LD scores computed from UK10K data.51 In particular, we run LD
score regression using a slightly different weighting scheme, matching the weighting scheme in our
mixed fourth moment estimators; the weight of SNP i was:

wi ∶= max(1,1/`HapMap
i ), (6)
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where `HapMap
i was the estimated LD score between SNP i and other HapMap3 SNPs (this is

approximately the set of SNPs that were used in the regression). This weighting scheme is motivated
by the fact that SNPs with high LD to other regression SNPs will be over-counted in the regression
(see ref. 17). Similar to ref. 14, we improve power by excluding large-effect variants when computing
the LD score intercept; for this study, we chose to exclude variants with χ2 statistic 30× the mean
(but these variants are used when computing χ̄2). Then, we divide the summary statistics by

s =
√
χ̄2 − σ̂2

ε , where χ̄2 is the weighted mean χ2 statistic and σ̂2
ε is the LD score intercept. We also

divide the LD score intercept by s2 for use in subsequent calculations. We assess the significance
of the heritability by performing a block jackknife on s, defining the significance Zh as s divided
by its estimated standard error. We estimate the mixed fourth moments using:

E(a1a
3
2∣α1, α2) =α1α

3
2 +E(ε1ε32) + 3E(α1α2ε

2
2) +E(α2

2ε1ε2)
=α1α

3
2 + 3E(ε1ε2)E(ε22) + 3α1α2E(ε22) + α2

2E(ε1ε2)
=α1α

3
2 + 3σ̂ε1ε2 σ̂

2
ε2 + 3α1α2σ̂

2
ε2 + α

2
2σ̂ε1ε2 . (7)

We estimate σ̂ε1ε2 using a modified version of cross-trait LD score regression.14 Similar to our
implementation of LD score regression, we perform cross-trait LD score regression using the weights
defined in equation (6), and the intercept is computed while excluding variants with a large effect
(χ2 > 30χ̄2) on either trait. (For simulations with no LD, we use E(ε2k) = 1/sNk and E(ε1ε2) = 0
instead of estimating these values.) Then, we estimate E(α1α

3
2) − 3ρg as:

k̂1 ∶= −3ρ̂g +
∑Mi=1wi[ai1a3

i2 − 3ai1ai2σ̂
2
ε2 − 3(a2

i2 − σ̂2
ε2)σ̂ε1ε2]

∑Mi=1wi
. (8)

To obtain posterior mean and variance estimates for gcp, we define a collection of statistics
S(x) for x ∈X = {−1,−.01,−.02, ...,1}:

S(x) ∶= A(x) −B(x)
max(1/∣ρ̂g ∣,

√
A(x)2 +B(x)2)

A(X) = ∣ρg ∣−xk̂1, B(x) = ∣ρg ∣xk̂2, (9)

The motivation for utilizing the normalization by
√
A(x)2 +B(x)2 is that the magnitude of A(x)

and B(x) tend to be highly correlated, leading to increased standard errors if we only use the
numerator of S. However, the denominator tends to zero when the genetic correlation is zero,
leading to instability in the test statistic and false positives. The use of the threshold leads to
conservative, rather than inflated, when the genetic correlation is zero or nearly zero. In practice,
we only analyze trait pairs with a significant genetic correlation, and this threshold usually has no
effect on the results.

We estimate the variance of S(x) using a block jackknife with k = 100 blocks, resulting in
minimal non-independence between blocks. We compute an approximate likelihood, L(S∣gcp = x),
by assuming (1) that L(S∣gcp = x) = L(S(x)∣gcp = x) and (2) that if gcp = x then S(x)/σ̂S(x)
follows a T distribution with 98 degrees of freedom. Imposing a uniform prior on gcp, the posterior
mean estimate of gcp is:

ˆgcp ∶= 1

∣X ∣ ∑x∈X
xL(x) (10)
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The estimated standard error is:

ŝe ∶=
¿
ÁÁÀ 1

∣X ∣ ∑x∈X
(x − ˆgcp)2L(x). (11)

In order to compute p-values, we apply a T-test to the statistic S(0).

Existing Mendelian randomization methods

Two-sample MR. We ascertained significant SNPs (p < 5 × 10−8, χ2 test) for the exposure and
performed an unweighted regression, with intercept fixed at zero, of the estimated effect sizes on
the outcome with the estimated effect sizes on the exposure (in practice, a MAF-weighted and
LD-adjusted regression is often used; in our simulations, all SNPs had equal MAF, and there was
no LD). To assess the significance of the regression coefficient, we estimated the standard error as

se =
√

1
K ∑

K
k=1 β̄

2
k2

∑K
k=1 β̂

2
k1

, where β̄k2 is the kth residual, N2 is the sample size in the outcome cohort, and

K is the number of significant SNPs. This estimate of the standard error allows the residuals to
be overdispersed compared with the error that is expected from the GWAS sample size. To obtain
p values, we applied a two-tailed t-test to the regression coefficient divided by its standard error,
with K − 1 degrees of freedom.

MR-Egger. We ascertained significant SNPs for the exposure and coded them so that the alterna-
tive allele had a positive estimated effect on the exposure. We performed an unweighted regression
with a fitted intercept of the estimated effect sizes on the outcome on the estimated effect sizes
on the exposure. We assessed the significance of the regression using the same procedure as for
two-sample MR, except that the t-test used K − 2 rather than K − 1 degrees of freedom.

Bidirectional MR. We implemented bidirectional mendelian randomization in a manner similar
to Pickrell et al.9 Significant SNPs were ascertained for each trait. If the same SNP was significant
for both traits, then it was assigned only to the trait where it ranked higher (if a SNP ranked
equally high for both traits, it was excluded from both SNP sets). The Spearman correlations
r1, r2 between the z scores for each trait was computed on each set of SNPs, and we applied a χ2

1

test to

χ2 = 1
1

K1−3 +
1

K2−3

(atanh(r1) − atanh(r2))2, (12)

where Kj is the number of significant SNPs for trait j. In Pickerell et al.,9 the statistics atanh(rj)
are also used, but a relative likelihood comparing several different models is reported instead of a
p-value. We chose to report p-values for Bidirectional MR in order to allow a direct comparison
with other methods.

Application of MR to LDL and BMD. We applied two-sample MR (see above) to 8 curated
SNPs that were previously used to show that LDL has a causal effect on CAD in ref. 3. 10 SNPs
were used in ref. 3, of which summary statistics were available for 8 SNPs: rs646776, rs6511720,
rs11206510, rs562338, rs6544713, rs7953249, rs10402271 and rs3846663.
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Simulations with no LD

In order to simulate summary statistics with no LD, first, we chose causal effect sizes for each SNP
on each trait according to the LCV model. The causal effect size vector for trait k was

βk =
h2
k

M
(qkπ + γk), (13)

where in all simulations except for Table S2, qk was a scalar, and π and γk were 1 ×M vectors. In
Table S2, qk was a 1×2 vector and π was a 2×M vector. Entries of π were drawn from i.i.d. point-
normal distribution with mean zero, variance 1, and expected proportion of causal SNPs equal to
pπ. Entries of γk were drawn from i.i.d. point-normal distributions with expected proportion of
causal SNPs equal to pγk ; we modeled colocalization between non-mediated effects by fixing some
expected proportion of SNPs pγ1,2 < min(pγ1 , pγ2) as having nonzero values of both γ1 and γ2.
Then, we centered and re-scaled the nonzero entries of π and γk, so that they had mean 0 and
variance 1 and 1− q2

k, respectively. For simulations in Figure 3a-b, qk was a 1× 2 vector and π was
a 2 ×M matrix. For these simulations, entries of π were drawn from independent point-normal
distributions with proportion of causal SNPs equal to pπ1 for the first row of π and pπ2 for the
second row. Entries of γk were drawn from a point-normal distribution with expected proportion
of causal SNPs equal to pγk and variance 1− ∣∣qk∣∣2. For simulations in Figure 3c-d, effect sizes were
drawn from a mixture of Normal distributions: there was a point mass at (0,0); a component with
σ2

1 = 0, σ2
2 ≠ 0; a component with σ2

1 ≠ 0, σ2
2 = 0; and a component with σ2

1 ≠ 0, σ2
2 ≠ 0, σ12 =

√
σ2

1σ
2
2.

Values of M,Nk,Nshared, ρtotal, pγk , pγ1,2 , h
2
k, pπ, qk for each simulation can be found in Table S11.

Second, we simulated summary statistics as

β̂k ∼ N(βk,
1

Nk
I), (14)

where βk is the vector of true causal effect sizes for trait k and Nk is the sample size for trait k.
When we ran LCV on these summary statistics, we used constrained-intercept LD score regression
rather than variable-intercept LD score regression both to normalize the effect estimates17 and to
estimate the genetic correlation,14 with LD scores equal to one for every SNP.

Simulations with LD

In simulations with LD, we first simulated causal effect sizes for each trait in the same manner as
simulations with no LD. Then, we obtained summary statistics in one of two ways, either using
real genotypes or using real LD only.

For simulations with real genotypes modeling population stratification (Table 1g and Table S6),
we chose effect sizes for each SNP and each trait from the LCV model with various parameters
and multiplied these effect size vectors by real genotype vectors from UK Biobank,25 adding noise
to obtain simulated phenotypes. For computational efficiency, we restricted these genotypes to
chromosome 1 (M = 43k). We added stratification directly to the phenotype values along PC1
(computed on 43k SNPs and N1 +N2 individuals), with effect sizes

√
0.01 and

√
0.02 for trait 1

and trait 2, respectively. We then re-normalized phenotypes to have variance 1; afterwards, ∼ 1%
and ∼ 2% of variance were explained by PC1 for each trait respectively. We estimated SNP effect
sizes for each trait by correlating each SNP with the phenotypic values in Nk individuals. In
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corrected simulations (Table S6b,d,f), we residualized the PC1 SNP loadings (computed on all
N1 +N2 individuals) from the SNP effect estimates, a procedure which is effectively equivalent to
correction of the individual-level data.23

For other simulations, we simulated summary statistics without first simulating phenotypic
values, using the fact that the sampling distribution of Z-scores is approximately:21

Z ∼ N(
√
NRβ,R), (15)

where R is the LD matrix and β is the vector of true effect sizes. We estimated R from the
N = 145k UK Biobank cohort using plink with an LD window size of 2Mb (M = 596k), which we
converted into a block diagonal matrix with 1001 blocks. The number 1001 was chosen instead
of the number 1000 so that the boundaries of these blocks would not align with the boundaries
of our 100 jackknife blocks; the use of blocks allowed us to avoid diagonalizing a matrix of size
596k, while not significantly changing overall LD patterns (there are ∼ 50,000 independent SNPs
in the genome, and 1001 << 50,000). Because the use of a 2Mb window causes the estimated
LD matrix to be non-positive semidefinite (even after converting it into a block diagonal matrix),
each block was converted into a positive semidefinite matrix by diagonalizing it and removing
its negative eigenvalues: that is, we replaced each block A = V ΣV T with the matrix B, where
B = V max(0,Σ)V T . Then, because the removal of negative eigenvalues causes B′ to have entries
slightly different from one, we re-normalized each block: C =D−1/2BD−1/2, where D is the diagonal
matrix corresponding to the diagonal of B. Even though the diagonal elements of B are close to
1 (mostly between 0.99 and 1.01), this step is important to obtain reliable heritability estimates
using LD score regression because otherwise the diagonal elements of the LD matrix will be strongly
correlated with the LD scores (r2 ≈ 0.5) and the heritability estimates will be upwardly biased,
especially at low sample sizes.

We concatenated the blocks C1, ...,C1001 to obtain a positive semi-definite block-diagonal matrix
R′. We also computed and concatenated the matrix square root of each block. In order to obtain
samples from a Normal distribution with mean R′β and variance 1

NR
′, we multiplied a vector

having independent standard normal entries by the matrix square root of R′ and added this noise
vector to the vector of true marginal effect sizes, R′β. We computed LD scores directly from
R. For simulations with sample overlap, the summary statistics were correlated between the two
GWAS: the correlation between the noise term in the estimated effect of SNP i on trait 1 and the
estimated effect of SNP j on trait 2 was R′

ijρtotalNshared/
√
N1N2, which is the amount of correlation

that would be expected if the total (genetic plus environmental) correlation between the traits is
ρtotal.
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Tables

ρg pLCV < .05 pLCV < .001 Mean ˆgcp
a Default parameter values 0.2 0.058 0.003 0.00
b Zero genetic correlation 0 0 0 0.00
c Very high genetic correlation 0.8 0.058 0.002 -0.00
d Uncorrelated pleiotropic effects 0.2 0.054 0.001 0.00
e Differential polygenicity 0.2 0.062 0.002 0.01
f Differential power 0.2 0.063 0.004 -0.01
g Population stratification 0.25 0.34 0.126 -0.21
h Causal 0.2 0.97 0.94 -0.76
i Partially causal 0.2 0.71 0.35 -0.56

Table 1: Simulations with LD. We report the positive rate (α = 0.05 and α = 0.001) for
a causal (or partially causal) effect for LCV, as well as the mean ˆgcp ( ˆgcp standard error
is less than 0.01 in each row). (a) Default parameter values (see text). (b) Zero genetic
correlation (ρg = 0). (c) Very high genetic correlation (ρg = 0.75). (d) Uncorrelated
pleiotropic effects. (e) Differential polygenicity (0.2% and 0.8% of SNPs were causal
for trait 1 and trait 2, respectively). (f) Differential power (N1 = 20k and N2 = 500k).
(g) Population stratification. (h) Full genetic causality (gcp = 1). (i) Partial genetic
causality (gcp = 0.5). Results for each panel are based on 5,000 simulations.
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trait 1 trait 2 pLCV ρ̂g (se) ˆgcp (pse) MR ref
BMI Myocardial infarction 5 × 10−9 0.34 (0.09) 0.94 (0.11) 30,34

Triglycerides Myocardial infarction 2 × 10−31 0.30 (0.06) 0.90 (0.08) 4
LDL Myocardial infarction 4 × 10−31 0.17 (0.08) 0.73 (0.13) 3,11

Hypothyroidism Myocardial infarction 1 × 10−11 0.26 (0.05) 0.72 (0.16)
High cholesterol Myocardial infarction 2 × 10−4 0.52 (0.12) 0.71 (0.19)
Fasting glucose Myocardial infarction 4 × 10−4 0.19 (0.07) 0.62 (0.23) 33
Triglycerides Hypertension 1 × 10−38 0.25 (0.04) 0.95 (0.04)

HDL Hypertension 1 × 10−21 -0.29 (0.06) 0.87 (0.09)
BMI Hypertension 3 × 10−16 0.38 (0.03) 0.83 (0.11) 9,34

Reticulocyte count Hypertension 4 × 10−4 0.27 (0.04) 0.41 (0.13)
LDL Bone mineral density - heel 7 × 10−34 -0.12 (0.05) 0.80 (0.12)

Height Bone mineral density - heel 5 × 10−14 -0.09 (0.04) 0.50 (0.14)
Triglycerides Mean cell volume 2 × 10−18 -0.20 (0.04) 0.86 (0.11)
Triglycerides Platelet distribution width 1 × 10−16 0.19 (0.04) 0.81 (0.13)
Triglycerides Reticulocyte count 5 × 10−10 0.33 (0.05) 0.79 (0.14)
Triglycerides Eosinophil count 6 × 10−17 0.14 (0.05) 0.75 (0.16)
Triglycerides Monocyte count 1 × 10−4 0.14 (0.04) 0.67 (0.21)

Table 2: Causal or partially genetically causal risk factors for selected trait pairs. We
report all traits with a significant genetic correlation (p < .05) and significant evidence
of partial causality (1% FDR) on MI, hypertension and bone mineral density, as well
as all significant associations (ρg p < 0.05 and LCV FDR < 1%) between triglycerides
and blood cell traits. pLCV is the p-value for the null hypothesis of no partial genetic
causality; ρ̂g is the estimated genetic correlation, with standard error; ˆgcp is the pos-
terior mean estimated genetic causality proportion, with posterior standard error. We
also provide references for all published evidence of causal relationships between these
traits that we are currently aware of.
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Figure 1: Latent causal variable model. We display the relationship between genotypes
X, latent causal variable L and trait values Y1 and Y2.
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Figure 2: Simulations with no LD. We compared LCV to three MR methods (two-
sample MR, MR-Egger and Bidirectional MR). We report the positive rate (α = 0.05)
for a causal (or partially causal) effect. MR methods utilized ∼ 320 genome-wide
significant SNPs. (a) Null simulation (gcp = 0) with uncorrelated pleiotropic effects and
zero genetic correlation. (b) Null simulation with nonzero genetic correlation. (c) Null
simulation with nonzero genetic correlation and differential polygenicity between the
two traits. (d) Null simulation with nonzero genetic correlation and different sample
size for the two traits, in addition to different per-SNP heritability for shared and non-
shared genetic effects. (e) Non-null simulation with full genetic causality (gcp = 1). (f)
Non-null simulation with partial genetic causality (gcp = 0.5). Results for each panel
are based on 2,000 simulations. Numerical results are reported in Table S1.
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Figure 3: Null simulations with no LD and LCV model violations. We report the pos-
itive rate (α = 0.05) for a causal (or partially causal) effect for LCV, two-sample MR,
MR-Egger and Bidirectional MR. (a) Null simulation with two intermediaries with dif-
ferent effects on each trait; the intermediaries together explain 25% of heritability for
each trait. (b) Null simulation with two intermediaries with differential polygenicity.
(c) Null simulation with SNP effects drawn from a mixture of multi-variate normal
distributions; one mixture component has correlated effects on each trait. (d) Null
simulation with SNP effects drawn from a mixture of multi-variate normal distribu-
tions, and differential polygenicity between the two traits. Results for each panel are
based on 2,000 simulations. Numerical results are reported in Table S2.
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Figure 4: Genetically causal and partially genetically causal relationships between
selected complex traits. Color scale indicates posterior mean ˆgcp for the effect of the
row trait on the column trait. Shaded squares indicate significant evidence for a causal
or partially causal effect of the row trait on the column trait, at 1% FDR for genetically
correlated trait pairs. “+” or “-” signs indicate trait pairs with a nominally significant
(positive or negative) genetic correlation (p < .05), and the size of the ”+” or ”-” size is
proportional to the genetic correlation. Entries without a significant genetic correlation
are not shaded. Complete results are reported in Table S9. HTHY: hypothyroidism.
FG: fasting glucose. PDW: platelet distribution width. BPD: bipolar disorder. SCZ:
schizophrenia. BrCa: breast cancer: PrCa: prostate cancer.
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1 Supplementary Note

1.1 Discussion of additional trait pairs

We briefly discuss several other trait pairs, most of which represent novel results in the MR literature
(Table S8).

• There was evidence for an effect of BMI on FVC, consistent with a longitudinal association
between increased BMI and decreased FVC.57 Similarly, there was evidence for partially causal
effects of fasting glucose on FVC and of HDL on FEV1/FVC; these trait pairs had lower
gcp estimates and genetic correlations, possibly consistent with mediation of the respective
genetic correlations by BMI. There was also evidence for partially causal effects of eczema on
FEV1/FVC and of BMI on asthma, with low gcp estimates.

• There was evidence for a negative effect of balding on number of children in males. Two
possible explanations are shared pathways involving androgens58 and sexual selection against
early balding.

• There were effects of several traits on various platelet phenotypes: large negative effects on
platelet count for platelet distribution width and platelet volume, and effects of triglycerides
and HDL on platelet distribution width. These results provide potentially testable biological
hypotheses.

• There was evidence for an effect of fasting glucose on anorexia and autism. These effects are
mechanistically unclear, as there is little published evidence for a metabolic component in
psychiatric or neurodevelopmental disorders.

• It has been suggested that height has a causal effect on educational attainment.59 While our
results support a partially genetically causal effect, the low gcp estimate ( ˆgcp = 0.33(0.10))
suggests that this relationship is not fully causal, highlighting the benefit of our non dichoto-
mous approach to causal inference. There was a similar result for age at menarche and height,
which was previously reported using Bidirectional MR.9
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1.2 Identifiability

We are interested in saying when q2 is identifiable, meaning that there is only one value (q2
1, q

2
2)

that produces the joint distribution A of (α1, α2), for any choice of the distribution B of (π, γ1, γ2).
It is possible that q2

1 and q2
2 are not identifiable: for example, if A is multivariate Normal, then

the relationship between α1 and α2 is fully parameterized by their correlation, and there is no
asymmetry that can be exploited in order to separate q2

1 from q2
2. In equation (2), κ = 0 and no

information is gleaned from the mixed fourth moments.
However, it turns out that the Gaussian case is the only non-identifiable case, assuming that

(π, γ1, γ2) are independent. The following proposition asserts that under an independence assump-
tion, the model is identifiable if and only if π does not follow a normal distribution. It does
not matter what the marginal distributions of γ1 and γ2 are. This result echoes similar results
in Independent Components Analysis,61 which separates independent, additive signals exploiting
non-Gaussianity. We note that there exist identifiable cases under which our method will not be
able to estimate q2: our moments-based estimator makes assumptions about the joint distribution
of (π, γ1, γ2) that are slightly weaker than independence, and as a result, our estimator requires a
slightly stronger identifiability assumption than non-Gaussianity, namely that κπ ≠ 0.

Proposition 1. Assume that γ1, γ2, π are independently distributed, with joint distribution B. Let
A(B, q) be the joint distribution on α for some choice of q. Then q is uniquely determined, up to
sign flipping, by A if and only if the marginal distribution of π is not Normal.

Proof. The characteristic functions for B and A are:

φB(s1, s2, s3) =E(exp(i(s1γ1 + s2γ2 + s3π))),
φA(s1, s2) =E(exp(i(s1β1 + s2β2))). (16)

Because αk = qkπ + γk,
φA(s1, s2) = φB(s1, s2, q1s1 + q2s2).

By the independence assumption, φB factors:

φD(s1, s2, q1s1 + q2s2) = a1(s1)a2(s2)b(q1s1 + q2s2).

Now, suppose that there is some other q′1, q
′
2 and some φB′ (which also factors) such that:

φD(s1, s2, q1s1 + q2s2) = φB′(s1, s2, q
′
1s1 + q′2s2).

Without loss of generality, q′1 = rq1 and q′2 = q2/r, since q1q2 is the genetic correlation. Factoring
φB′ , there exists b′ such that

∀s1, s2, b(q1s1 + q2s2) ∝ b′(q1s1r + q2s2/r),

where ∝ hides factors of the form a(s1) and a(s2). Now, either r = ±1, or for some imaginary scalar
z,

b(q1s1 + q2s2) ∝ exp(z(q1s1 + q2s2)2) ∝ exp(zq1s1q2s2) ∝ exp(z(q1s1r + q2s2/r)2).
(z must be imaginary in order to have a valid characteristic function). This is precisely the form
of the Normal characteristic function:

φN(µ,σ2)(s) = exp(iµs) exp(i(σs)2/2)

so π must be Normally distributed.

28

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 18, 2017. ; https://doi.org/10.1101/205435doi: bioRxiv preprint 

https://doi.org/10.1101/205435
http://creativecommons.org/licenses/by-nc/4.0/


29

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 18, 2017. ; https://doi.org/10.1101/205435doi: bioRxiv preprint 

https://doi.org/10.1101/205435
http://creativecommons.org/licenses/by-nc/4.0/


2 Supplementary Tables

L
C
V

M
R

M
R
-E

g
g
e
r

B
i-
M

R
a

b

5
×
1
0
−
6

5
×
1
0
−
8

5
×
1
0
−
1
0

5
×
1
0
−
6

5
×
1
0
−
8

5
×
1
0
−
1
0

5
×
1
0
−
6

5
×
1
0
−
8

5
×
1
0
−
1
0

a
N
u
ll
:
z
e
ro

g
e
n
e
ti
c
c
o
rr
e
la
ti
o
n

0
0
.0
5

0
.0
5
6

0
.0
5
4

0
.0
4
6

0
.0
5
2

0
.0
4
2

0
.0
5

0
.0
4
8

0
.0
5
5

b
N
u
ll
:
n
o
n
z
e
ro

g
e
n
e
ti
c
c
o
rr
e
la
ti
o
n

0
.0
2
4

1
1

1
0
.6
5
2

0
.3
8
3

0
.2
3
7

0
.0
5
6

0
.0
4
8

0
.0
4
2

c
N
u
ll
:
a
sy

m
m
e
tr
ic

p
o
ly
g
e
n
ic
it
y

0
.0
2
9

1
1

1
0
.3
0
6

0
.2
8
6

0
.2
2
7

0
.3
1
5

0
.6
5
4

0
.7
9
5

d
N
u
ll
:
a
sy

m
m
e
tr
ic

p
o
w
e
r

0
.0
4
7

1
1

1
1

1
1

0
.7
1
4

0
.2
9
5

0
.8
2
4

e
C
a
u
sa

l
1

1
1

1
0
.5
9
6

0
.3
4

0
.2
2
1

1
1

0
.9
9
9

f
P
a
rt
ia
ll
y

c
a
u
sa

l
0
.7
6
8

0
.9
9
8

0
.8
3
2

0
.3
9
1

0
.1
1
6

0
.0
5
9

0
.0
5
2

0
.5
8
9

0
.2
1
9

0
.1
1
7

T
ab

le
S

1:
C

om
p

ar
is

on
w

it
h

ex
is

ti
n

g
m

et
h

o
d

s
in

si
m

u
la

ti
on

s
w

it
h

n
o

L
D

.
T

h
re

e
ty

p
es

of
M

R
m

et
h

o
d

s
(t

w
o
-s

a
m

p
le

M
R

,
M

R
-E

gg
er

an
d

B
id

ir
ec

ti
on

al
M

R
)

ar
e

u
se

d
.

F
or

ea
ch

M
R

m
et

h
o
d

,
3

si
gn

ifi
ca

n
ce

th
re

sh
o
ld

s
w

er
e

u
se

d
(5
×

1
0−

6
,

5
×

10
−8
,

5
×

10
−1

0
).

(a
)

N
u

ll
si

m
u

la
ti

on
(g

cp
=

0)
w

it
h

u
n

co
rr

el
at

ed
p

le
io

tr
op

ic
eff

ec
ts

an
d

ze
ro

g
en

et
ic

co
rr

el
a
ti

o
n
.

(b
)

N
u

ll
si

m
u

la
ti

on
w

it
h

a
n

on
ze

ro
ge

n
et

ic
co

rr
el

at
io

n
(ρ
g
=

0.
2)

.
(c

)
N

u
ll

si
m

u
la

ti
on

w
it

h
a

n
o
n

ze
ro

g
en

et
ic

co
rr

el
a
ti

o
n

(ρ
g
=

0
.2

)
an

d
d

iff
er

en
ti

al
p

ol
y
ge

n
ic

it
y

b
et

w
ee

n
th

e
tw

o
tr

ai
ts

.
(d

)
N

u
ll

si
m

u
la

ti
on

w
it

h
a

n
o
n

ze
ro

g
en

et
ic

co
rr

el
a
ti

o
n

(ρ
g
=

0
.2

)
an

d
d

iff
er

en
t

sa
m

p
le

si
ze

b
et

w
ee

n
th

e
tw

o
tr

ai
ts

,
in

ad
d

it
io

n
to

d
iff

er
en

t
p

er
-S

N
P

h
er

it
a
b

il
it

y
fo

r
sh

a
re

d
a
n

d
n

on
-s

h
ar

ed
ge

n
et

ic
eff

ec
ts

(S
N

P
s

w
h

ic
h

aff
ec

te
d

b
ot

h
tr

ai
ts

h
ad

la
rg

er
eff

ec
t

m
ag

n
it

u
d

es
th

a
n

S
N

P
s

w
h

ic
h

a
ff

ec
te

d
o
n

ly
on

e
tr

ai
t)

.
(e

)
N

on
-n

u
ll

si
m

u
la

ti
on

w
it

h
ca

u
sa

li
ty

(g
cp

=
1,
ρ
g
=

0.
1)

.
(f

)
N

on
-n

u
ll

si
m

u
la

ti
o
n

w
it

h
p

a
rt

ia
l

ca
u

sa
li

ty
(g

cp
=

0.
5,
ρ
g
=

0
.1

).
B

as
ed

on
20

00
si

m
u

la
ti

on
s.

30

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 18, 2017. ; https://doi.org/10.1101/205435doi: bioRxiv preprint 

https://doi.org/10.1101/205435
http://creativecommons.org/licenses/by-nc/4.0/


Description pLCV < .05 pMR < .05 pMR-Egger < .05 pbi-MR < .05
a Null: 2 intermediaries 0.01 1 0.95 0.04
b Null: 2 intermediaries with differential polygenicity 1 1 1 1.00
c Null: MVN mixture 0.03 1 0.76 0.05
d Null: MVN mixture and differential polygenicity 0.03 1 1.00 0.64

Table S2: Null simulations with no LD from outside the LCV model. Positive rate
(α = 0.05) for a causal (or partially causal) effect is reported for LCV, two-sample MR,
MR-Egger and Bidirectional MR. (a) Null simulation with two intermediaries having
different effects on each trait; the intermediaries together explain 25% of heritability for
each trait. (b) Null simulation with two intermediaries having different polygenicity.
(c) Null simulation with SNP effects drawn from a mixture of Normal distributions;
one mixture component has correlated effects on each trait. (d) Null simulation with
SNP effects drawn from a mixture of Normal distributions, and differential polygenicity
between the two traits. Based on 2000 simulations.
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ρg p < .05 p < .001 Mean χ2 Mean ˆgcp ˆgcp std dev RMS σ̂ Zh

a Zero genetic correlation 0 0 0 0.32 -0.00 0.11 0.55 8
b Low genetic correlation 0.1 0.009 0 0.58 0.00 0.14 0.29 8.5
c Default parameter values 0.2 0.058 0.003 1.09 -0.00 0.07 0.08 8.6
d High genetic correlation 0.4 0.067 0.004 1.2 -0.00 0.1 0.11 8
e Very high genetic correlation 0.8 0.058 0.002 1.13 -0.00 0.21 0.24 5.8
f Uncorrelated pleiotropic effects 0.2 0.054 0.001 1.06 -0.00 0.08 0.09 8.7
g Differential polygenicity 0.2 0.062 0.002 1.1 -0.01 0.08 0.08 10
h Very different polygenicity 0.2 0.067 0.004 1.19 -0.01 0.1 0.1 11.2
i Low N1 0.2 0.063 0.004 1.14 0.01 0.12 0.13 5
j Very low N1 0.2 0.228 0.132 11.2 0.11 0.35 0.33 1.4
k Different heritability 0.2 0.061 0.005 1.7 0.00 0.09 0.1 6.5
l High phenotypic correlation 0.2 0.057 0.002 1.12 0.00 0.07 0.08 8.7
m Zero phenotypic correlation 0.2 0.057 0.005 1.1 0.00 0.07 0.08 8.6
n Uncorrelated pleiotropic effects 0 0.001 0 0.3 0.00 0.14 0.52 8
o Differential polygenicity 0 0 0 0.31 -0.02 0.12 0.55 9.8
p Very different polygenicity 0 0.001 0 0.31 -0.05 0.14 0.52 11.4
q Low N1 0 0.001 0.001 0.31 0.00 0.14 0.52 5
r Very low N1 0 0.272 0.216 46.4 0.27 0.32 0.39 1.4
s Different heritability 0 0 0 0.28 -0.00 0.11 0.55 6.3
t Causal 0.2 0.965 0.94 258 0.76 0.12 0.16 8.6
u Partially causal 0.2 0.706 0.347 12.9 0.56 0.15 0.24 10
v Low low N1 0.2 0.852 0.768 66 0.65 0.17 0.2 5.1
w Very low N1 0.2 0.452 0.378 102 0.39 0.35 0.35 1.4
x Low N2 0.2 0.843 0.714 40.8 0.60 0.18 0.21 8.7
y Weak causal effect 0.1 0.422 0.104 6.36 0.49 0.18 0.32 8.7
z Y1 less polygenic 0.2 0.997 0.996 7331 0.90 0.08 0.07 3.6
aa Y1 more polygenic 0.2 0.155 0.004 2.39 0.28 0.2 0.47 13.3
bb Y1 infinitessimal 0.2 0.012 0 0.7 0.07 0.2 0.5 14.2

Table S3: Additional simulations with LD. Proportion of simulations (out of 5000) with
p-value for partial causality less than 0.05 and less than 0.001; mean χ2 statistic; mean
ˆgcp (in each case, standard error is less than 0.01); empirical standard deviation of
ˆgcp; root mean squared estimated standard error; mean heritability Z-score for trait 1.

Simulations a-s are null (gcp = 0), and simulations t-bb are non-null. (a-e) Different
values of the genetic correlation (ρg). When the genetic correlation is zero or near-
zero, we observe conservative p-values and overestimates of the ˆgcp standard error.
(f) Uncorrelated pleiotropic effects: 0.3% of SNPs affect both traits with independent
effect sizes. (g-h) Differential or very different polygenicity: 0.2% and 0.8% of SNPs, or
0.1% and 1.6% of SNPs respectively, have direct effects on each trait. (i-j) Low or very
low sample size for trait 1: either N1 = 20k or N1 = 4k respectively, and N2 = 100k.
(k) Different heritability: h2

1 = 0.1 and h2
2 = 0.5. (l) High phenotypic correlation

of 0.4, compared with ρg = 0.2. (m) Zero phenotypic correlation. (n) Uncorrelated
pleiotropic effects: 0.3% of SNPs affect both traits with independent effect sizes. (o-p)
Differential or very different polygenicity: 0.2% and 0.8% of SNPs, or 0.1% and 1.6%
of SNPs respectively, have direct effects on each trait. (q-r) Low or very low sample
size for trait 1: either N1 = 20k or N1 = 4k respectively, and N2 = 100k. (s) Different
heritability: h2

1 = 0.1 and h2
2 = 0.5. (t) Causal. (u) Partially causal (gcp = 0.5). (v-w)

Causal, with low or very low sample size for the causal trait (N1 = 20k or N1 = 4k,
and N2 = 100k). (x) Causal, with low sample size in the downstream trait (N2 = 20k,
N1 = 100k). (y) Weak causal effect (0.1 rather than 0.25). (z-bb) Varying polygenicity
for the causal trait: instead of 0.5% of SNPs causal, either 0.05%, 5%, or 100% of
SNPs causal for z-bb respectively.
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ρg p < .05 p < .001 Mean χ2 Mean ˆgcp ˆgcp std dev RMS σ̂ Zh

a Default parameter values 0.2 0.034 0 0.9 0.00 0.05 0.06 16.7
b Zero genetic correlation 0 0.001 0 0.31 -0.00 0.11 0.55 15.3
c Very high genetic correlation 0.8 0.033 0.002 0.94 -0.00 0.11 0.43 10.9
d Uncorrelated pleiotropic effects 0.2 0.032 0.000 0.87 -0.00 0.06 0.09 16.6
e Differential polygenicity 0.2 0.034 0.002 0.86 -0.00 0.05 0.07 19.3
f Low N1 0.2 0.042 0.002 0.9 0.00 0.1 0.12 8.7
g Very low N1 0.2 0.254 0.16 19.96 0.08 0.35 0.32 2.2
h Causal 0.2 0.968 0.943 257.17 0.76 0.11 0.16 16.5
i Partially causal 0.2 0.765 0.369 12.54 0.57 0.15 0.23 19.2

Table S4: Simulations with LD using constrained-intercept LD score regression to es-
timate the heritability. This heritability estimation method is less noisy than variable-
intercept LD score regression but can produce biased estimates on real data due to pop-
ulation stratification and cryptic relatedness. Proportion of simulations (out of 2000)
with p-value for partial causality less than .05 and less than .001; mean χ2 statistic for
partial causality; mean ˆgcp; standard deviation of gcp estimates; root-mean squared
estimated standard error. Simulations a-f are null (gcp = 0), and simulations g-h are
non-null. (a) Realistic simulation parameters (see Methods). (b) Genetic correlation
ρg = 0. (c) Genetic correlation ρg = 0.75. (d) Uncorrelated pleiotropic effects in addi-
tion to a genetic correlation: 50% of SNPs with direct (non-mediated) effects on each
trait are shared between the two traits. (e) Differential polygenicity: 0.2% and 0.05%
of SNPs have direct effects on each trait. (f) Different sample size: N1 = 20k and
N2 = 500k. (g) Full genetic causality: gcp = 1, with causal effect equal to the genetic
correlation (0.25). (h) Partial genetic causality: gcp = 0.5.

Regression coefficient (std err) RMSE RMPV
Ascertained simulations (43%) 0.97 (.004) 0.15 0.13
All simulations 1.00 (.005) 0.24 0.20

Table S5: Unbiasedness of estimated gcp and standard error in simulations with ran-
dom true parameter values, using real LD. We drew random values of gcp (and ρg)
from a Unif(−1,1) distribution and compared true and estimated values of gcp, ei-
ther for all 10k simulations or for a subset (43%) of simulations in which the genetic
correlation was nominally significant p < 0.05 and the evidence for partial causality
was strong (p < 0.001). We report the regression coefficient of true on estimated gcp
values with standard error, as well as the root mean squared error and the root mean
posterior variance estimate.
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Ground truth PC corrected pLCV < .05 pLCV < .001 median ˆgcp
a Uncorrelated 0 0.58 0.38 -0.49
b Non-causal correlated 0 0.34 0.13 -0.22
c Uncorrelated 1 0.006 0 0.00
d Non-causal correlated 1 0.056 0.006 0.02
e Causal 0 0.22 0.078 0.05
f Causal corrected 1 0.99 0.90 0.78

Table S6: Confounding due to population stratification and correction for stratification
using PCA. Simulations were performed using UK Biobank genotypes for chromosome
1, with environmental stratification added along PC1 explaining 1% of variance for
trait 1 and 2% for trait 2. LCV was applied to summary statistics before and after
correction for PC1, either when Y1 was causal for Y2, when Y1 and Y2 were genetically
correlated with no partial causality, or when Y1 and Y2 had no genetic correlation.
Based on 500 simulations.

Phenotype Reference N (thousands) Zh

Anorexia Boraska et al., 2014 Mol Psych 32 17.8
Autism Spectrum PGC Cross-Disorder Group, 2013 Lancet 10 12.1
Bipolar Disorder BIP Working Group of the PGC, 2011 Nat Genet 17 11.8
Breast Cancer Amos et al., 2016 Cancer Epidemiol. Biomarkers Prev. ∼ 447* 16
Celiac Disease Dubois et al., 2010 Nat Genet 15 10.4
Crohns Disease Jostins et al., 2012 Nature 21 12.1

Depressive symptoms Okbay et al., 2016 Nat Genet 161 13.1
Fasting Glucose Manning et. al., 2012 Nat Genet 58 11

HDL Teslovich et al., 2010 Nature 98 8.2
HbA1c Soranzo et al., 2010 Diabetes 46 8.8
LDL Teslovich et al., 2010 Nature 93 8.1

Lupus Bentham et al., 2015 Nat Genet 14 10.2
Prostate Cancer Amos et al., 2016 Cancer Epidemiol. Biomarkers Prev. ∼ 447* 7.5
Schizophrenia SCZ Working Group of the PGC, 2014 Nature 70 17.4
Triglycerides Teslovich et al., 2010 Nature 94 9.5

Ulcerative Colitis Jostins et al., 2012 Nature 27 8.8
Eosinophil count UK Biobank 25–27 ∼ 460** 20.8

Reticulocyte count UK Biobank 25–27 ∼ 460 19.9
Lymphocyte count UK Biobank 25–27 ∼ 460 22.7

Mean corpuscular hemoglobin UK Biobank 25–27 ∼ 460 14.3
Mean platelet volume UK Biobank 25–27 ∼ 460 15.7

Monocyte count UK Biobank 25–27 ∼ 460 15.1
Platelet count UK Biobank 25–27 ∼ 460 20.2

Platelet distribution width UK Biobank 25–27 ∼ 460 17.1
RBC distribution width UK Biobank 25–27 ∼ 460 19.7

RBC count UK Biobank 25–27 ∼ 460 17.5
White cell count UK Biobank 25–27 ∼ 460 20.7

Bone mineral density - heel UK Biobank 25–27 ∼ 460 29
Balding*** UK Biobank 25–27 ∼ 230 16.1

BMI UK Biobank 25–27 ∼ 460 27.5
Height UK Biobank 25–27 ∼ 460 24.7

BP - diastolic UK Biobank 25–27 ∼ 460 32.3
BP - systolic UK Biobank 25–27 ∼ 460 28.3
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College UK Biobank 25–27 ∼ 460 19.1
Smoking status UK Biobank 25–27 ∼ 460 24.9

Eczema UK Biobank 25–27 ∼ 460 21.8
Asthma UK Biobank 25–27 ∼ 460 16.8

Dermatology UK Biobank 25–27 ∼ 460 9.1
Myocardial infarction UK Biobank 25–27 ∼ 460 18.6

High cholesterol UK Biobank 25–27 ∼ 460 15.6
Hypertension UK Biobank 25–27 ∼ 460 36.2

Hypothyroidism UK Biobank 25–27 ∼ 460 20.1
Type 2 Diabetes UK Biobank 25–27 ∼ 460 19.5

Basal metabolic rate UK Biobank 25–27 ∼ 460 23.4
FEV1/FVC UK Biobank 25–27 ∼ 460 17.7

FVC UK Biobank 25–27 ∼ 460 18.8
Neuroticism UK Biobank 25–27 ∼ 460 28.7

Morning person UK Biobank 25–27 ∼ 460 21.1
Age at menarche UK Biobank 25–27 ∼ 230 24

Age at menopause UK Biobank 25–27 ∼ 230 19.1
Number children - female UK Biobank 25–27 ∼ 230 14.4
Number children - male UK Biobank 25–27 ∼ 230 15.1

Table S7: 52 GWAS datasets included in the analysis. Most UK Biobank summary
statistics are publicly available.27 All datasets have heritability Z-score Zh > 7 and esti-
mated genetic correlation ρ̂g < 0.9 with other traits. Summary statistics for ∼ 1,000,000
HapMap3 SNPs were used, excluding the MHC region. *Total number of samples
genotyped by OncoArray; actual sample size is slightly less than 447k. These numbers
are excluded from average reported sample size for non-UK Biobank traits. **Actual
sample size for UK Biobank analyses is slightly less than 460k (respectively 230k for
sex-specific traits), owing to incomplete phenotype data. For most case control traits,
effective sample size is substantially less than 460k due to the low fraction of cases.
***The balding phenotype was the “balding 4” UK Biobank category, corresponding
to nearly-complete baldness.
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trait 1 trait 2 pLCV ρ̂g (std err) ˆgcp(post std err) MR ref
Triglycerides Hypertension 5 × 10−39 0.25 (0.04) 0.95 (0.04)

BMI Myocardial infarction 3 × 10−9 0.34 (0.09) 0.94 (0.11) 30,34
Triglycerides Myocardial infarction 8 × 10−32 0.30 (0.06) 0.90 (0.08) 4
Triglycerides BP - systolic 6 × 10−41 0.13 (0.03) 0.89 (0.08)

HDL Hypertension 6 × 10−22 -0.29 (0.06) 0.87 (0.09)
LDL High cholesterol 8 × 10−7 0.77 (0.07) 0.86 (0.11)

Triglycerides BP - diastolic 5 × 10−39 0.11 (0.04) 0.86 (0.10)
Fasting glucose Anorexia 2 × 10−16 -0.24 (0.10) 0.85 (0.11)

Mean platelet volume Platelet count 6 × 10−10 -0.66 (0.03) 0.84 (0.10)
BMI Hypertension 2 × 10−16 0.38 (0.03) 0.83 (0.11) 9,34

Fasting glucose Autism 6 × 10−19 -0.27 (0.10) 0.81 (0.10)
Triglycerides Platelet distribution width 5 × 10−17 0.19 (0.04) 0.81 (0.13)

LDL Bone mineral density - heel 4 × 10−34 -0.12 (0.05) 0.80 (0.12)
BMI FVC 4 × 10−13 -0.22 (0.03) 0.79 (0.17) 60

Triglycerides Reticulocyte count 2 × 10−10 0.33 (0.05) 0.79 (0.14)
Triglycerides Eosinophil count 3 × 10−17 0.14 (0.05) 0.75 (0.16)

Balding Number children - male 2 × 10−30 -0.16 (0.05) 0.75 (0.13)
HDL Platelet distribution width 8 × 10−17 -0.14 (0.04) 0.75 (0.16)

RBC distribution width Type 2 Diabetes 3 × 10−4 0.11 (0.03) 0.73 (0.19)
LDL Myocardial infarction 2 × 10−31 0.17 (0.08) 0.73 (0.13) 3,11

Platelet distribution width Platelet count 1 × 10−7 -0.47 (0.04) 0.73 (0.15)
Hypothyroidism Type 2 Diabetes 2 × 10−4 0.22 (0.05) 0.73 (0.29)

HDL Type 2 Diabetes 2 × 10−7 -0.40 (0.06) 0.72 (0.17)
Hypothyroidism Myocardial infarction 6 × 10−12 0.26 (0.05) 0.72 (0.16)
High cholesterol Myocardial infarction 2 × 10−4 0.52 (0.12) 0.71 (0.19)

HDL BP - diastolic 4 × 10−17 -0.12 (0.06) 0.70 (0.18)
Platelet distribution width Reticulocyte count 1 × 10−7 0.13 (0.04) 0.69 (0.20)

LDL College 1 × 10−10 -0.13 (0.05) 0.68 (0.30)
Triglycerides Monocyte count 1 × 10−4 0.14 (0.04) 0.67 (0.21)

Type 2 Diabetes Ulcerative Colitis 2 × 10−5 -0.14 (0.07) 0.65 (0.23)
BMI Reticulocyte count 4 × 10−5 0.39 (0.03) 0.64 (0.25)

Fasting glucose FVC 8 × 10−24 -0.08 (0.04) 0.64 (0.15)
Fasting glucose Myocardial infarction 4 × 10−4 0.19 (0.07) 0.62 (0.23) 33

HDL FEV1/FVC 1 × 10−13 -0.09 (0.04) 0.56 (0.08)
Fasting glucose HbA1C 3 × 10−5 0.37 (0.13) 0.55 (0.19)
High cholesterol Neuroticism 2 × 10−14 0.09 (0.03) 0.55 (0.19)

Triglycerides Basal metabolic rate 2 × 10−8 0.08 (0.04) 0.55 (0.13)
Height Bone mineral density - heel 3 × 10−14 -0.09 (0.04) 0.50 (0.14)

Triglycerides Height 3 × 10−14 -0.10 (0.03) 0.45 (0.09)
HbA1C High cholesterol 5 × 10−22 0.25 (0.06) 0.44 (0.16)

Age at menarche Height 7 × 10−11 0.16 (0.04) 0.43 (0.10) 9
High cholesterol Smoking status 5 × 10−19 0.13 (0.03) 0.42 (0.02)

Reticulocyte count Hypertension 2 × 10−4 0.27 (0.04) 0.41 (0.13)
BMI Asthma 4 × 10−14 0.21 (0.03) 0.40 (0.27) 60

High cholesterol Monocyte count 4 × 10−4 0.09 (0.03) 0.40 (0.15)
Height Basal metabolic rate 10 × 10−9 0.57 (0.03) 0.39 (0.07)
Eczema FEV1/FVC 2 × 10−15 -0.08 (0.03) 0.36 (0.10)
Height College 3 × 10−6 0.17 (0.03) 0.33 (0.10) 59

Prostate cancer Hypothyroidism 10 × 10−5 -0.12 (0.05) 0.30 (0.38)
Crohns Disease LDL 4 × 10−13 -0.12 (0.06) 0.29 (0.15)
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High cholesterol Type 2 Diabetes 4 × 10−6 0.42 (0.05) 0.24 (0.30)
RBC count Monocyte count 8 × 10−7 0.14 (0.05) 0.24 (0.46)

HbA1C BMI 7 × 10−17 0.25 (0.05) 0.23 (0.35)
Basal metabolic rate Hypothyroidism 6 × 10−21 0.11 (0.04) 0.21 (0.04)

Platelet distribution width Mean corpuscular hemoglobin 5 × 10−14 -0.06 (0.02) 0.15 (0.14)
Depressive symptoms Asthma 4 × 10−4 0.21 (0.05) 0.14 (0.08)

BMI High cholesterol 2 × 10−6 0.33 (0.06) 0.13 (0.12) 32
Age at menopause Depressive symptoms 2 × 10−7 -0.27 (0.06) 0.12 (0.32)
White cell count BMI 7 × 10−5 0.24 (0.03) 0.09 (0.16)

Asthma Lymphocyte count 2 × 10−4 0.09 (0.04) 0.08 (0.19)
Number children - male Hypothyroidism 9 × 10−11 0.18 (0.05) 0.03 (0.26)

College High cholesterol 2 × 10−8 -0.23 (0.03) 0.01 (0.08)
RBC distribution width High cholesterol 4 × 10−4 0.11 (0.04) 0.00 (0.17)

Table S8: Pairs of traits with evidence of partial genetic causality. We restricted
to pairs of traits having a nominally significant genetic correlation (p < 0.05; 710 trait
pairs) and reported all traits with strong evidence of partial causality (1% FDR). Trait
pairs are ordered so that trait 1 is genetically causal or partially genetically causal for
trait 2. For some trait pairs, there was strong evidence for partial causality but low
and noisy gcp estimates. This phenomenon may occur due to multiple intermediaries,
which can cause the estimated mixed fourth moments to have opposite signs. When
this occurs, the approximate likelihood function is sometimes bimodal, with no support
for any specific value of gcp (because there is no value of gcp that produces mixed fourth
moments of opposite signs). While this phenomenon appears to occur for several traits
with gcp estimates close to zero, there were no trait pairs for which the true mixed
fourth moments certainly had opposite signs.

Table S9: LCV results for all pairs of phenotypes. See Excel file.
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Trait 1 Traits conditioned pLCV ρ̂g (std err) ˆgcp(post std err)

BMI LDL, TG 6 × 10−26 0.28(0.09) 0.48(0.42)
Triglycerides LDL, BMI 1 × 10−20 0.18(0.07) 0.82(0.13)

LDL TG, BMI N/A 0.02(0.09) N/A
Hypothyroidism LDL, TG, BMI 2 × 10−23 0.17(0.06) 0.78(0.14)
High cholesterol LDL, TG, BMI 0.006 0.42(0.15) 0.59(0.23)
Fasting glucose LDL, TG, BMI N/A 0.11(0.09) N/A

HDL LDL, TG, BMI 0.8 -0.16(0.06) -0.15(0.48)

Table S10: Conditional analyses on MI and potential MI risk factors. Trait 1 summary
statistics were residualized on summary statistics for BMI, LDL and triglycerides,
and these were analyzed in conjunction with summary statistics for MI (see Online
Methods). LCV results are reported for traits whose genetic correlation with MI
remained significant (p < 0.05) after residualizing; results are reported as N/A for other
traits. BMI, LDL and triglycerides were chosen as covariates because they represent
well-established causal risk factors for MI. This approach is motivated by a scenario in
which the covariates have fully genetically causal effects on both trait 1 and MI. If the
covariates are genetically correlated with but not causal for trait 1, then this approach
could potentially introduce collider bias and false positive associations. Moreover, if
the effect of trait 1 on MI is mediated by one of the covariates, evidence for a causal
effect may persist. Due to these limitations, we view this approach as a sensitivity
analysis; it is a direction for future work to develop a variant of the LCV model that
explicitly models the relationships between multiple traits.

Table S11: Simulation parameters (see excel file). px is the proportion of SNPs with a
nonzero value of “x.” ρe is the environmental correlation.
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3 Supplementary Figures
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Figure S1: Scatterplot of estimated SNP effect sizes on each trait in simulations.
Each row (indexed a-f) corresponds to a panel of Figure 2. Estimated effect sizes
are shown for 10% of SNPs (randomly selected, left), SNPs that are significant (p <
5×10−8) for trait 1 (middle), and SNPs that are significant for trait 2 (right). (a) Null
simulation with uncorrelated pleiotropic effects and zero genetic correlation. (b) Null
simulation with a nonzero genetic correlation. The correlation is apparent both from
the scatterplot with all SNPs and from the scatterplots with significant SNPs. (c) Null
simulation with a nonzero genetic correlation and differential polygenicity between the
non-shared genetic component of each trait. The correlation is more apparent for SNPs
that are significant for trait 2 than it is for SNPs that are significant for trait 1, since
the effects on trait 2 only are small and few of them reach genome-wide significance.
(d) Null simulation with a nonzero genetic correlation and differential power between
the two traits. (e) Causal simulation. (f) Partially causal simulation (gcp = 0.5).

39

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 18, 2017. ; https://doi.org/10.1101/205435doi: bioRxiv preprint 

https://doi.org/10.1101/205435
http://creativecommons.org/licenses/by-nc/4.0/


−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Posterior mean gcp

M
ea

n 
ac

tu
al

 g
cp

All simulations

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Posterior mean gcp

M
ea

n 
ac

tu
al

 g
cp

Ascertained simulations

Figure S2: Unbiasedness of posterior mean gcp estimates in simulations with LD and
random true gcp values. Estimated values of gcp were binned and averaged, and mean
true values of gcp are plotted for each bin, with standard errors. Points above the
line indicate that gcp estimates were downwardly biased (toward -1). (a) Ascertained
simulations (43%) with significant genetic correlation (p < 0.05) and evidence for partial
causality (p < 0.001). Only bins with count at least 10 are plotted. (b) All 10k
simulations.
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