
Redding et al. Impact of global change on future Ebola emergence and spread. 

1 

 

Title:  Impact of global change on future Ebola emergence and epidemic 1 

potential in Africa 2 

Authors:  D. W. Redding1*, P. M. Atkinson2, A. A. Cunningham3, G. Lo Iacono4,5, L. M. 3 

Moses6, J. Wood4, and K. E. Jones1,3*  4 

Affiliations: 5 

1 Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and 6 

Environment, University College London, Gower Street, London, WC1E 6BT, United 7 

Kingdom. 8 

2Geography and Environment, University of Southampton, Southampton SO17 1BJ, United 9 

Kingdom. 10 

3Institute of Zoology, Zoological Society of London, Regent’s Park, London, NW1 4RY, 11 

United Kingdom. 12 

4Department of Veterinary Medicine, Disease Dynamics Unit, University of Cambridge, 13 

Cambridge, United Kingdom. 14 

5Environmental Change Department, Public Health England, Didcot, United Kingdom. 15 

6Department of Global Community Health and Behavioral Sciences, Tulane University, New 16 

Orleans, Louisiana, United States of America. 17 

*Correspondence to:  D. Redding (d.redding@ucl.ac.uk); K. E. Jones 18 

(kate.e.jones@ucl.ac.uk). 19 

Keywords: bats, climate, ebola virus disease, environmental-mechanistic disease model, 20 

global change, land-use.   21 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted October 21, 2017. ; https://doi.org/10.1101/206169doi: bioRxiv preprint 

mailto:d.redding@ucl.ac.uk
mailto:kate.e.jones@ucl.ac.uk
https://doi.org/10.1101/206169


Redding et al. Impact of global change on future Ebola emergence and spread. 

2 

 

Abstract: Animal-borne or zoonotic human diseases (e.g., SARS, Rabies) represent major 22 

health and economic burdens throughout the world, disproportionately impacting poor 23 

communities. In 2013-2016, an outbreak of the Ebola virus disease (EVD), a zoonotic disease 24 

spread from animal reservoirs caused by the Zaire Ebola virus (EBOV), infected 25 

approximately 30,000 people, causing considerable negative social and economic impacts in 26 

an unexpected geographical location (Sierra Leone, Guinea, and Liberia). It is not known 27 

whether the spatial distribution of this outbreak and unprecedented severity was precipitated 28 

by environmental changes and, if so, which areas might be at risk in the future. To better 29 

address the major health and economic impacts of zoonotic diseases we develop a system-30 

dynamics approach to capture the impact of future climate, land use and human population 31 

change on Ebola (EVD). We create future risk maps for affected areas and predict between a 32 

1.75 and 3.2-fold increase in EVD outbreaks per year by 2070. While the best case future 33 

scenarios we test saw a reduction in the likelihood of epidemics, other future scenarios with 34 

high human population growth and low rates of socioeconomic development saw a fourfold 35 

increase in the risk of epidemics occurring and almost 50% increase in the risk of 36 

catastrophic epidemics. As well as helping to target where health infrastructure might be 37 

further developed or vaccines best deployed, our modelling framework can be used to target 38 

global interventions and forecast risk for many other zoonotic diseases.  39 

Significance Statement: Despite the severe health and economic impacts of outbreaks of 40 

diseases like SARS or Zika, there has been surprisingly little progress in predicting where 41 

and when human infectious disease outbreaks will occur next. By modelling the impacts of 42 

future climate, land use and human population change on one particular disease Ebola, we 43 

develop future risk maps for the affected areas and predict 1.7-3.2 times as many human 44 

Ebola outbreaks per year by 2070, and a 50% increase in the chance that these outbreaks will 45 

become epidemics. As well as helping to target where health infrastructure might be further 46 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted October 21, 2017. ; https://doi.org/10.1101/206169doi: bioRxiv preprint 

https://doi.org/10.1101/206169


Redding et al. Impact of global change on future Ebola emergence and spread. 

3 

 

developed or vaccines deployed, our approach can also be used to target actions and predict 47 

risk hotspots for many other infectious diseases. 48 

Introduction: Little is known about how the majority of human infectious diseases will be 49 

affected by predicted future global environmental changes (such as climate, land use, human 50 

societal and demographic change) (1-5). Importantly, two thirds of human infectious diseases 51 

are animal-borne (zoonotic) (6) and these diseases form a major, global health and economic 52 

burden, disproportionately impacting poor communities (7, 8). Many zoonotic diseases are 53 

poorly understood, and global health responses to them are chronically underfunded (9). The 54 

2013-2016 Ebola outbreak was unprecedented in terms of size, financial cost, and 55 

geographical location (10, 11); a stark illustration of our knowledge gaps, and demonstrating 56 

that it is imperative we develop quantitative approaches to better forecast zoonotic disease 57 

risk.  58 

Ebola virus disease (EVD) was first identified in 1976, and since then there have been 59 

approximately 23 recognized outbreaks (12), predominantly within central Africa. EVD is 60 

caused by any one of four pathogenic strains of Ebola virus: Zaire (EBOV), Sudan (SUDV), 61 

Taï Forest (TAFV), and Bundibugyo (BDBV). It presents as a non-specific febrile illness that 62 

can cause haemorrhagic fever, often with a high case fatality rate in diagnosed patients (13). 63 

Some Old World fruit bat species (Family Pteropodidae) have been suggested as reservoir 64 

hosts (14), however, while there is limited direct evidence, they are strong candidates to play 65 

a key role either as an reservoir or amplifying host (15, 16). In areas with EVD, there are 66 

frequent direct and indirect human-bat interactions, e.g., via bush meat hunting and during 67 

fruit harvesting (17), presenting numerous opportunities for bat-to-human pathogen spill-68 

overs to occur.  Additionally, a third of known zoonotic spill-overs have been connected to 69 

contact with great apes and duikers, although there is no evidence that these species act as 70 

reservoir hosts (10). It is clear, however, that once spill-over occurs human social factors 71 
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such as movement and healthcare responses greatly influence the cumulative outcome of an 72 

outbreak (18). For instance, previous work has highlighted the importance of family 73 

interactions (19), funeral practices (20) and differential transmission rates in hospitalized 74 

individuals (18).  75 

Many attempts to understand Ebola outbreak dynamics have focused on mechanistic 76 

modelling approaches of human-to-human transmission post spill-over from animal hosts 77 

(13, 18, 19, 21-24). Mechanistic, or process-based, models are ideal for capturing 78 

epidemiological characteristics of diseases and, importantly, testing how disease outbreaks 79 

might be impacted by intervention efforts (25). One downside is that mechanistic models 80 

rarely incorporate spatially heterogeneous ecological and environmental information (26), 81 

such as the known high variance of bat abundance and pathogen sero-prevalence across 82 

widespread individuals (27). In this context, correlative, or pattern-based, models (e.g. 83 

MaxEnt, Boosted-regression trees) have been used to simultaneously capture the spatial risk 84 

of both zoonotic spill-over and subsequent human-to-human infection (12). For some 85 

spatially-explicit analyses, there have been attempts to incorporate spatial patterns of human 86 

populations (28), while other have included air transportation networks (29), but no studies 87 

that we are aware of have considered whole-system analyses for major epidemic zoonoses, 88 

such as Ebola. Like other rare or poorly-sampled diseases, Ebola suffers from limited data 89 

availability, meaning pattern-finding, correlative analytical techniques are at a disadvantage 90 

(30).  91 

In 2014 a spill-over in Gueckedou district, Guinea of Ebola-Zaire virus led to an EVD 92 

outbreak approximately 100 times larger than any of the previous 21 known outbreaks (31). 93 

Such epidemics have a disproportionate impact on the affected societies. For example, the 94 

World Bank estimates a cost of US$2.2 billion to the three most affected countries (32) due 95 

to, amongst other drivers, widespread infrastructure breakdown, mass migration, crop 96 
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abandonment and a rise in endemic diseases due to overrun healthcare systems. Recent work 97 

has uncovered the human-to-human transmission patterns underlying this outbreak, using 98 

case (33) and genomic data (31) to demonstrate that EVD spread can be successfully 99 

predicted by a dispersal model that is weighted by both geographic distance and human 100 

population density. Attempting to understand zoonotic epidemic risk, however, using a 101 

human-only transmission model and without incorporating host ecology would inevitably 102 

lead to areas with high human density and connectivity being identified as the regions with 103 

the highest risk, despite some areas of these lacking competent hosts. Therefore, to model 104 

both the spatial variation in spill-over risk and, concurrently, the likely progression of 105 

subsequent outbreaks in human populations, we need to take a system-dynamics modelling 106 

approach (1, 34). Key non-linear feedbacks can also be captured, for example, the trade-off 107 

between increasing human populations and loss of reservoir host species through 108 

anthropogenic land-use conversion, and using this to design the optimal roll-out of 109 

vaccinations (35) and other interventions in a changing landscape. 110 

Here, we use a disease system-dynamics approach (Fig. 1) to extend a discrete-time, 111 

stochastic epidemiological compartmental model incorporating spatial environmental 112 

variability (Environmental-Mechanistic Model or EMM, Fig. 2) to simulate present day spill-113 

over and subsequent human-to-human transmission of the Zaire Ebola virus (EBOV) (the 114 

strain responsible for the 2013-2016 outbreak in West Africa). We model the impact of future 115 

anthropogenic changes on the occurrence and spread of this disease in 2070 (36-38) under a 116 

variety of possible integrated global change scenarios (39). We use a combination of three 117 

Representative Concentration Pathways (RCP) scenarios of increasing greenhouse gas 118 

concentrations: RCP4.5, RCP6, and RCP8.5 (40), and three possible socio-economic 119 

development scenarios (Shared Socio-economic Pathways or SSP), ordered by increasing 120 

human population density and reduced regional socio-economic cooperation: SSP1, SSP2 121 
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and SSP3. Finally, we compare the changes to spatial patterns of risk and chances of 122 

outbreaks and epidemics occurring across Africa. 123 

Results: Our EMM simulation for present day EBOV-EVD risk correctly identified areas of 124 

observed outbreaks as high risk, such as Democratic Republic of Congo, Gabon and the 125 

2013-2016 outbreak in West Africa, but also identified some areas where EVD has not been 126 

reported, such as Nigeria and Ghana (Fig. 3A). As a result, our model suggests that the at-risk 127 

area for EBOV-EVD is much larger than the areas known to have experienced disease 128 

outbreaks thus far. Our risk map also identified areas that are endemic for the other EVD 129 

strains, likely due to similar transmission pathways and reservoir host characteristics (Fig. 130 

3A). Although the index case risk map (Fig. 3B) shows a similar spatial pattern to all cases, 131 

high risk spill-over areas are constrained to more distinct hot-spots. Importantly, the locations 132 

of index cases that resulted in epidemics were even more geographically constrained, with 133 

Ghana, Sierra Leone, Liberia, Kenya Uganda and Cameroon all having medium risk but 134 

Nigeria is the focus of the highest potential for epidemic spill-over (Fig. 3C). Comparing the 135 

mean number of spill-overs per year gave higher results for present day simulations with 136 

2.464 spill-overs per year (95% CI 2.361-2.567) compared to the mean historical number 137 

over the last 40 years: 0.75 (95% CI 0.695-0.905). High risk of Ebola case importation using 138 

the current network of airline flights was seen in China, Russia, India, the United States as 139 

well as many high-income European countries (Fig. 4). Especially high importation risk, 140 

however, was seen in Italy and Germany. 141 

Similar to historic data (Fig. S3), the distribution of the final size of the simulated outbreaks 142 

was multimodal with distinct peaks at very low numbers (less than 3 cases) and medium 143 

outbreaks (approximately 3-1500 cases) (Fig. S3). Through extensive simulations we were 144 

able to explore the lower probability areas of the distribution effectively and, unique to the 145 

simulation data, there is a third peak of outbreaks (here we term ‘epidemics’) with high, to 146 
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very high, numbers of cases (1500-100,000,000 cases). This threshold of assigning an 147 

outbreak with greater than 1500 cases as an epidemic also corresponds to the top 1 percentile 148 

of a log-normal distribution approximating the variation in pre-2016 observed outbreak sizes 149 

(~1538 cases per year). Of the ~2500 simulation runs for present day conditions, epidemics 150 

(>1500) occurred approximately in 5.8% of the yearly simulations, with catastrophic 151 

epidemics (>2,000,000) occurring in around 2.3% of simulations, or once every 43.5 years 152 

given current conditions. From the sensitivity testing, the key parameters that affected 153 

outbreak size were illness length and R0, which positively increased case numbers (Fig. S4a), 154 

whereas the annual spill-over rate (Fig. S4b) was most impacted by the spill-over rate 155 

constant (strongly positive), shape of the poverty/spill-over curve (weakly positive), and by 156 

host movement distance (weakly negative). 157 

Our future EMM simulations estimate an annual increase in maximum area impacted by the 158 

disease from 3.45 million km2 to 3.8 million km2 under the scenario by 2070, with increases 159 

in maximum area seen under all future scenarios (Fig. 5A,D,G). The maximum areas where 160 

spill-overs could occur, however, increased by just 1% under the RCP4.5 SSP1 (Fig. 5B: 2.01 161 

million km2), when compared to present day (Fig. 3B: 1.99 million km2), but increased by 162 

14.7% under the RCP8.5 SSP3 (Fig. 5H: 2.29 million km2) scenario. Conversely, the total 163 

area where epidemics could start decreased under the RCP4.5 SSP1 by 47% (Fig. 5C: 0.444 164 

million km2), when compared to present day (Fig. 3C: 0.836 million km2), but again increases 165 

under RCP6 SSP2 this time by 20.5%, and by 34% under the RCP8.5 SSP3 scenario (Fig. 166 

5F,I). 167 

The increases seen in the area affected is mirrored by greater total numbers of spill-overs 168 

experienced in future scenarios, with the greatest increase seen under the RCP8.5 SSP3 169 

scenario at 7.92 (CI 7.62-8.19) spill-overs per year. Spill-over numbers increased with 170 

greenhouse gas concentrations (represented here by the RCP value) with a mean 0.257 spill 171 
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over a year increase between the RCP4.5 SSP2 and RCP6 SSP2 scenarios, and a mean 0.343 172 

spill over a year increase between the RCP6 SSP3 and RCP8.5 SSP3 scenarios. Greater 173 

increases were seen, however, with SSP change, with a mean 1.297 spill over a year increase 174 

between RCP4.5 SSP1 and RCP4.5 SSP2 and a mean 1.475 spill over a year increase 175 

between RCP6 SSP2 and RCP6-SSP3. In general, the probability of the index cases resulting 176 

in small outbreaks reduced in future environments, whereas the chance of epidemics 177 

increased (Fig. 6). For instance, the proportion of epidemics per year (>1500 cases) decreased 178 

in the RCP4.5 SSP1 to 3.43% (from 5.8% in present day) but increased in all others, with 179 

RCP6 SSP3 gaining the greatest number, with epidemics in 9.5% of all simulations. The 180 

number of catastrophic epidemics (>2,000,000), generally increased with both RCP and SSP 181 

values up to 3.43% and 3.54% for the RCP6 and RCP8.5 SSP3 scenarios respectively, but 182 

again saw a decrease from the present day level (2.3 %) to 1.19% for just the single ‘best 183 

case’ future scenario (RCP4.5 SSP1). 184 

Discussion: We show that changes in future expected disease incidence are likely to be 185 

related to the rate of global environmental change. According to our study, EVD mitigation 186 

attempts would be best placed in efforts to reduce both population growth, increase 187 

socioeconomic development and ameliorate climate change, such that global change most 188 

closely tracks the RCP4.5 SSP1 scenario. Global binding commitments to reducing climate 189 

change may act to slow the effects, but evidence (41) suggests a wholesale change is difficult. 190 

Expected decreases in poverty and a concomitant increase in healthcare resources, therefore, 191 

would appear to be the most realistic approaches to reduce the future EVD disease burden. 192 

While vaccinations may be effective, the sporadic nature of spill-over events mean it is 193 

unclear where vaccination should be targeted and whether it would be cost-effective at this 194 

time (35). More generally, increasing health care provision and poverty reduction efforts in 195 

West Africa would not only reduce the potential effects of EVD but also other diseases, 196 
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including those that have yet to emerge in earnest, such as Marburg virus disease (42), Lassa 197 

fever (43), and Nipah/Hendra virus infection (44). This, in turn, could limit disease 198 

emergence to local outbreaks, preventing nosocomial infections and acting to prevent 199 

subsequent epidemics. 200 

Changes to SSP scenarios, which control levels of poverty and human population size in our 201 

models, had a greater impact than changing the climate and land-use change (here mediated 202 

via RCP scenario). This is not surprising as poverty reduction increases the presumed EVD-203 

EBOV healthcare response in our simulations, and many of the countries in the endemic 204 

region are expected to have substantial reductions in poverty levels by 2070 (37). Similarly, 205 

contact rates in our simulation (both between humans and between humans and wildlife) 206 

depend linearly on human population growth, whereas climate change increases EVD-EBOV 207 

cases through more complex interactions. Species distribution models indicate that the 208 

presumed wildlife hosts prefer warm and wet conditions (Figs. S1-2), which are expected to 209 

increase in these regions according to the HADGem3-AO climate model (38) (Fig. S5). This 210 

expansion of the optimal conditions for presumed the wildlife host species effectively 211 

increases the at-risk human population by including more of the northern, eastern and 212 

southern areas of Africa (Fig. 3A). Predicted future anthropogenic land-use changes, 213 

however, reduces the optimal wildlife host habitat, thereby reducing human-wildlife 214 

interactions.  215 

We identify Nigeria as, not only a key area for epidemics to be initiated, but also an area with 216 

potential for many small outbreaks. This might indicate that our model has not correctly 217 

balanced the impact of healthcare infrastructure on disease spread, regional behavioural 218 

barriers to infection or regional differences in contact rates between both humans and hosts. 219 

Until these additional factors are explicitly tested, the high human density and known 220 
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presence of putative wildlife hosts mean that this area should be consider at high risk of 221 

initiating epidemics.  222 

There is a pressing need to better understand the spatial variation in other key disease 223 

transmission parameters. For instance, bush-meat hunting is an important process by which 224 

human populations come into contact with large bats resource (45) and the spatial variation in 225 

bush-meat extraction is likely a component of spill-over variation. Little is known, however, 226 

about bush-meat hunting outside a few specific studies but there is potential to use spatial 227 

interpolation techniques to make reasonable predictions in un-sampled areas. Our model does 228 

not incorporate this data or test its impact and, similarly due to lack of data resources, we do 229 

not use information about local differences in funeral practices. Hospital compartments are 230 

thought to be useful to understand quarantine and super-spreading events but there is very 231 

limited data on the quality and geographic reach of small health clinics. Some other important 232 

behavioural trends are not captured in our model, such as the post-outbreak behavioural 233 

reactions of human populations e.g. mass migration away from affected regions. Recent 234 

findings regarding the persistence of Ebola virus in semen of convalescent men may also help 235 

explain the intermittent spatiotemporal patterns of infections in endemic areas (46, 47). 236 

Future work incorporating such data, may further improve the spatial resolution and accuracy 237 

of risk estimates. 238 

Our approach demonstrates not only an important framework understanding Ebola but also 239 

for other diseases. Analysing diseases singly cannot be an effective approach for policy 240 

making at a large geopolitical scale, particularly in regions with multi-disease burden and 241 

limited healthcare resources. Net disease risk patterns, when summed across a wide variety of 242 

zoonoses, will be an emergent property of the distribution of very different wildlife host 243 

species and their respective responses to increasing anthropogenic land-use conversion and 244 

climate change. Any lack of data in the short-term does not reduce the obvious importance of 245 
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understanding future disease trends. Attempts, such as ours, establish a first heuristic step on 246 

a pathway to building intervention measures aimed at reducing overall future disease burden. 247 

Materials and Methods: 248 

Environmental Mechanistic Model (EMM) EBOV  249 

Using our discrete-time, stochastic epidemiological compartmental model incorporating 250 

spatial environmental variability (30), we extended the approach to not just simulate 251 

pathogen spill-over but also subsequent human-to-human transmission, focusing on the Zaire 252 

Ebola virus (EBOV) (Fig.2). Within grid cells (0.0416) covering continental Africa, we used 253 

a Susceptible, Exposed, Infectious, Funeral and Removed (SEIFR) EVD-EBOV disease 254 

compartmental model (following 13, 19, 23) to estimate the number of individuals per 255 

compartment, in each time step t, for present day bioclimatic, land use and demographic 256 

conditions. Although some previous compartmental models for EBOV have included a 257 

Hospital compartment (48), adding this complexity was not feasible over large and poorly 258 

known geographical areas. Without knowing more about the spatial variation in health 259 

seeking behaviour, exactly which grid cells contain clinics, and the variation of healthcare 260 

resources in these clinics, adding in this compartment would not likely significantly improve 261 

our model’s ability to predict the progression of outbreaks. Furthermore, hospital 262 

interventions had the least impact controlling EVD outbreaks in a recent meta-analysis (24). 263 

All analyses were carried out in R v.3.2.2 (49). Each stage of the EMM simulation is 264 

discussed in more detail below: 265 

Stage 1: SEIFR compartmental model within grid cells  266 

We used starting EBOV transmission characteristics of incubation time = 7 days, onset of 267 

symptoms to resolution = 9.6 days, case fatality rate (CFR) σ = 0.78, and burial time = 2 days 268 

(23) to parameterize the SEIFR compartmental model to determine transition rates α 269 

(between Exposed to Infectious compartments), 𝛾𝜎 (Infectious to Funeral), 𝛾1−𝜎 (Infectious 270 
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to Removed), and 𝛾𝐹 (Funeral to Removed) (Fig. 2). To incorporate sensitivity around these 271 

transmission parameters, we allowed values to vary for each simulation run by sampling from 272 

a Gaussian distribution where the mean was their initial value and standard deviation was 273 

fifth of the mean, to give a reasonable spread of values. For each time step t, the number of 274 

individuals moving between all compartments was estimated by drawing randomly from a 275 

binomial distribution (Section S1 Equation 1), parameterized using the respective 276 

compartmental transition rates. Transition rates for compartments were assumed to be the 277 

same in all grid cells except for the transition between Susceptible to Exposed. The per grid 278 

cell Susceptible to Exposed transition rates were determined by the force of zoonotic 279 

infection λz, and the force of infection λ (Fig. 2) and these were calculated as follows:   280 

(a) Force of Zoonotic Infection, λz. The force of infection for zoonotic transmission λz, per 281 

time step t, was estimated as the product of the probability of host presence H, and spill-over 282 

rate κ (Section S1 Equation 2). Without any evidence to the contrary (15, 50), we 283 

parameterized H by calculating the spatial probability of the presence of the most likely 284 

EBOV reservoir host species based on available data (Old World fruit bat species 285 

Epomophorus gambianus gambianus, Epomops franqueti, Hypsignathus monstrosus, and 286 

Rousettus aegyptiacus see Table S1) within each grid cell (0.0416) across the African 287 

continent using species distribution models (SDMs) (51) and assuming constant pathogen 288 

prevalence. We also calculated the spatial probability of the presence of other species which 289 

are known to provide an alternative route of infection, but likely do not act as reservoirs 290 

(Gorilla spp., Pan spp., and Cephalophus spp.) (12). SDMs for each species were inferred 291 

using boosted regression trees (BRT) using distribution data from the Global Biodiversity 292 

Information Facility (GBIF) (52) and 11 present day bioclimatic and land use variables 293 

(Table S2). Data with coarse scale GBIF spatial coordinates (decimal degree coordinates with 294 

less than four decimal places) were filtered out of the analysis. To reduce spatial 295 
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autocorrelation and duplicate records, any records that co-occurred in the same grid cell were 296 

removed. Lastly, GBIF records older than 1990 were discarded to ensure samples more 297 

closely matched the current landscapes. BRT tree complexity was set at 5 reflecting the 298 

suggested value and the learning rate was adjusted until >1000 trees were selected (53). A 299 

total of 25 models were estimated for each species using four fifths of the distribution data as 300 

a training dataset and one fifth as a testing dataset, chosen randomly for each model. Those 301 

with the highest predictive ability (high area under operating curve, AUC and true-skill 302 

statistic, TSS values) were selected as the best model for each species (Fig. S1). The most 303 

important spatial variables determining distributions across the different reservoir host 304 

species were BIO7 Temperature Annual Range, BIO13 Precipitation of Wettest Month, BIO2 305 

Mean Diurnal Temperature Range and Land Use-Land Cover (Fig. S2). The outputs from all 306 

putative reservoir (bat) species were combined into a single value representing the probability 307 

of any reservoir species being present and a similar approach was taken for the non-reservoir 308 

host species. The reservoir and non-reservoir host layers were then combined, but since only 309 

a third of index cases were attributed to non-reservoir host spill-overs (10), we down-310 

weighted the probability of the non-reservoir occurrence by two thirds and reservoir 311 

occurrence by one third when combining the layers. The final resulting probability was 312 

bounded by zero and one. Additionally, as EBOV presence in non-reservoir host species is 313 

impossible without the presence of reservoir hosts, cells with a reservoir host probability of 314 

zero were given a value of zero irrespective of the non-reservoir host score. For 315 

computational simplicity, we assume that all human individuals have equal chance of 316 

exposure to infected host species. The initial value used for spill-over rate κ, per time step t, 317 

was estimated from the number of historic outbreaks O (defined here as distinct clusters of 318 

cases) (taken from empirical EBOV outbreak data 12), and the number of historically 319 

susceptible individuals Sh (inferred from human population estimates from 1976 to 2015 from 320 
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37) (see Section S1 Equation 3). During each simulation run, κ was allowed to vary using the 321 

same method as the compartmental transmission parameters above. 322 

(b) Force of Infection, λ. The force of infection for human-to-human transmission λ per time 323 

step t, was estimated as the product of the effective contact rate β, and the number of 324 

individuals that can transmit the disease in each relevant compartment (Infectious and 325 

Funeral) per grid cell (0.0416) (Section S1 Equation 4). We assumed that β for the 326 

Infectious and Funeral compartments was equivalent, due to the contact rates of moving 327 

individuals in the Infectious compartment being offset by large aggregations of individuals at 328 

funerals. We estimated the effective contact rate β, as the basic reproduction number R0 329 

divided by the product of the total number of individuals N, and infectious duration D (the 330 

sum of Infectious and Funeral compartment time, 11 days taken from 23). As a starting value 331 

for R0 we used a value of 1.7 (54) and this was allowed to vary per simulation run using the 332 

same method as the compartmental transmission parameters above. As per previous 333 

research(30), we incorporated spatial variance in contact rates among grid cells using a 334 

weighting factor m, whereby the effective contact rate in grid cells with greater than expected 335 

contact rates was increased and decreased where fewer contacts were predicted (Section S1 336 

Equation 5). We estimated m by creating an ideal free gas model of human movement within 337 

each grid cell and approximated collision frequency per person per day, using the following: 338 

the total individuals in each grid cell (estimated from Gridded Population of the World v3 339 

55), an individual interaction sphere of radius 0.5 m, and using per person, daily walking 340 

distances in meters 𝑣𝛥𝑡, where v is walking velocity, and Δt equals time period (Section S1 341 

Equation 6). To capture geographic variation in human movement patterns, each grid cell was 342 

assigned a value for per person daily walking distance, based on the empirical relationship 343 

between daily walking distances and per person per country Gross Domestic Product 344 

(measured as Purchasing Power Parity from 37) (Table S3). As the availability of mass transit 345 
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as alternative to walking tends to be centrally controlled, we assumed that grid cells in each 346 

country had the same value. 347 

Under real conditions, the effective reproduction number Re decays over time as both efforts 348 

are made to control disease spread and as the pool of susceptible reduces, which results in R0 349 

being equal to Re only when time step t is zero. Therefore, to calculate effective contact rate 350 

β, we allowed Re to decay per time step t (Section S1 Equations 7, 8 and 9). However, 351 

countries that can invest more in health infrastructure (e.g., barrier nursing, surveillance) 352 

should see a more rapid reduction in Re over time compared to countries that do not have such 353 

infrastructure and also a concomitantly, a decrease in CFR. Therefore we derived an 354 

empirical estimate of the relationship between wealth (measured using GDP-PPP per capita) 355 

and both the relative rate of decay of Re over time (Section S1 Equation 10) and CFR (Section 356 

S1 Equation 11), and using a spatially disaggregated poverty data layer (56) we weighted the 357 

per grid cell per time step Re reduction and CFR accordingly to the values in each grid cell. 358 

While we found the relationship between wealth and both Re and CFR reduction over time to 359 

be best described using curves with exponents of -0.08 and -0.02, respectively, this was 360 

inferred using relatively few data points (Table S4). In our simulation runs, therefore, we 361 

allowed these exponents to vary similarly to the parameters above, to allow either more linear 362 

declines or deeper curves to best estimate the true impact of this relationship. 363 

Stage 2: SEIFR compartmental model between grid cells 364 

We allowed those individuals that had contracted EBOV to travel between grid cells, 365 

specifically individuals in Exposed and Infectious (but not Funeral) compartments (Fig. 2), 366 

but assumed for simplicity that the overall net movement of susceptible individuals between 367 

cells was zero. As previously supported with empirical data, we employed a movement 368 

model that was weighted by both geographic distance and human density (31, 33) and was 369 

also geographically constrained to known transportation routes. The transmission rate ε, of 370 
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individuals between target compartments of different grid cells was estimated by two 371 

different methods: between grid cells along road networks εr, and along flight routes εf.  We 372 

sampled randomly, from a binomial distribution, the number of travellers per grid cell and 373 

time step t (Section S1 Equation 1) with the probability of travel by road per day εr, being 374 

proportional to the distance to the nearest road using the Global Roads Open Access Data Set 375 

(Global Roads Open Access Data Set from 57). Global roads dataset contains in total 585413 376 

routes from tracks to multi-lane highways and has been extensively validated for Africa (58). 377 

We allowed travellers to move freely (agnostic to any particular transportation method or 378 

country boundary) across the continent up to 10 road junctions in any direction from the 379 

centroid of the starting cell along the road network (Global Roads Open Access Data Set 380 

from 57), giving a potential of up to 500 km of linear travel per time step. Each proposed 381 

travel end point was given an individual probability from the daily distance travelled 382 

probability curve from (Fig. 2(f) of 59), which is derived from transport data and validated 383 

against mobile phone data. For air travel, we set the potential pool of travellers as the 384 

individuals in grid cells containing airports across the world (from Open Flights Airport 385 

Database 60) plus all the Exposed individuals in the 8 grid cells surrounding each airport grid 386 

cell. We sampled randomly from a binomial distribution the number of travellers per grid cell 387 

and time step t (Section S1 Equation 1) with the probability of travel by air per day εf, being 388 

proportional to the total number of flights per day divided by the population of that country 389 

(37). We allowed travellers to move up to 2 edges on the current airline routes from airport 390 

origin using the (from Open Flights Airport Database 60). This approximates a traveller 391 

taking either a one or two-legged journey. Final destinations were sampled at random, based 392 

on all potential air routes having equal priority, but in most cases potential destinations were 393 

located nearby which by default meant that more distance travel was less likely than travel to 394 

a nearby location. For both road and air travellers, individuals were then added to the correct 395 
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compartment of their final destination in the new grid cell and removed from the same 396 

compartment from the original source grid cell. 397 

Stage 3: Impact of future anthropogenic change 398 

(a) Future force of zoonotic infection λz. We recalculated values of the force of zoonotic 399 

infection λz, by estimating the probability of EBOV host presence, H2070 under several 400 

different future integrated scenarios that incorporate projections of bioclimatic and land use 401 

variables (Table S2). Estimates of bioclimatic variables for 2070 were based on the 402 

HADGem3-AO climate model (61) under three Representative Concentration Pathways: 403 

RCP4.5, RCP6, and RCP8.5 (RCP45, RCP60 and RCP85 40). To estimate host presence 404 

probability in the future we needed to predict fine-scale future habitat data under the RCP 405 

scenarios. As only coarse categorisations are currently available (62), we therefore separately 406 

empirically estimated future land use-land cover (LULC) change (using MODIS data 36).  407 

For each grid cell we calculated the probability of each possible LULC change within the 408 

2001-2012 MODIS dataset within a surrounding 5x5 cell grid using satellite data from 20. 409 

Based on these probabilities we simulated yearly LULC change across the region of interest 410 

for each grid cell from 2012 until 2070, and ran this simulation 100 times to create a bank of 411 

future possible landscapes, which were then summarized into three consensus landscapes 412 

representing low (with anthropogenic changes rejected where possible) , medium (by 413 

choosing the majority consensus across all 100 runs) and high anthropogenic change, 414 

(anthropogenic changes were chosen if available across the landscape) and we aligned these 415 

three scenarios to SSP1, SSP2 and SPP3 respectively.  416 

(b) Future force of infection λ. Using predicted human demographic variables and poverty 417 

levels for 2070, we recalculated values for the force of infection λ, by estimating the number 418 

of individuals per grid cell, n and effective reproduction number, Re. We inferred human 419 

population estimates per grid cell for 2070 by using the Gridded Population of the World v4 420 
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(55) for present day and multiplying each cell by the expected future proportional change 421 

over that time period predicted by three Shared Socio-economic Pathways: SSP1, SSP2 and 422 

SSP3. Future poverty estimates per country were similarly inferred using a spatially-423 

disaggregated GDP layer (63) multiplied by the expected change in per country GDP over the 424 

time period as predicted by the SSP integrated scenario. We note that as our travel probability 425 

is defined per person, increasing future populations will see a proportion increase in the 426 

amount of both road and air travel. 427 

(c) Comparison of simulation runs. We reran the EMM simulations under 5 plausible 428 

combinations of 2070 future environmental-socioeconomic scenarios of global change and 429 

greenhouse gas concentrations: RCP4.5/SSP1, RCP4.5/SSP2, RCP6/SSP2, RCP6/SSP3, 430 

RCP8.5/SSP3 (64). These different input data options were, specifically: (i) RCP 4.5 - 431 

stabilization scenario in which total radiative forcing is stabilized shortly after 2100, (ii) RCP 432 

6 - stabilization scenario in which total radiative forcing is stabilized shortly after 2100, 433 

without overshoot, by the application of a range of technologies and strategies for reducing 434 

greenhouse gas emissions (iii) RCP 8 – worsening scenarios with increasing greenhouse gas 435 

emissions over time, leading to high greenhouse gas concentration levels, (iv) SSP1 – high 436 

regional cooperation, low population growth due high education and high GDP growth, (v) 437 

SSP2 – a ‘processes as usual’ scenario with ongoing levels of population growth and wealth, 438 

with medium estimates for both these by 2070, and (vi) SSP3 – regional antagonism, high 439 

population growth, unsustainable resource extraction and low economic growth. For each of 440 

the six scenarios we aimed for 2500 runs of 365 days, each day measuring the number of 441 

spill-overs, the number of secondary cases associated with each spill-over, and the 442 

geographical areas affected. This allowed us to measure likelihood of spill-overs leading to 443 

small, medium and very large outbreaks, and also to determine the geographical areas with 444 
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the highest risk of experiencing cases. We also noted the destination of any flights out of 445 

Africa that contained infected people. 446 
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 667 

Fig. 1. System-dynamics model of zoonotic disease transmission. Letters A-H indicate 668 

major system components, arrows showing links, and key sub-components in smaller font. 669 
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 671 

Fig. 2. Predictive Integrated Zoonotic Model (EMM) EBOV Simulation Schematic. 672 

Within 0.0416 grid cells across the globe (A), we used a SEIFR (Susceptible, Exposed, 673 

Infectious, Funeral and Removed) disease compartmental model (B), to estimate the number 674 

of people in each compartment. S-E transmission rate was determined for each grid cell by 675 

calculating the force of zoonotic infection (between hosts and humans) λz, and within human 676 

populations λ (see Materials and Methods). Travel of exposed or infectious individuals 677 

between grid cells occurred across existing road and flight transport networks, with 678 

transmission rate εfr. Mean transition rates used as the starting parameters for simulations 679 

were as follows: α for E-I was calculated as the reciprocal of incubation time in days (α= 680 

1/7), 𝛾𝜎 (I-F transition rate) was the product of the probability of the reciprocal of days 681 

infectious (𝛾=1/9.6) and poverty-weighted case fatality rate (𝜎=0.78), 𝛾1−𝜎 (I-R transition 682 
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rate) was the product of the probability of the reciprocal of days infectious (𝛾=1/9.6) and 683 

probability of recovering (1-σ), and𝛾𝐹   (F-R transition rate) was the reciprocal of the burial 684 

time of 2 days. Each simulation was run 2500 times for 365 days in each grid cell containing 685 

a human population. The total number of people in each compartment per grid cell, per day 686 

from each simulation was then used to calculate the total number of index and secondary 687 

cases and mapped spatially (C). Bioclimatic, land use and demographic conditions were then 688 

changed to predicted values for 2070 to estimate changes to λ and λz, and the simulations 689 

repeated to investigate impacts of global change on disease (D).  690 
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 705 

 706 

Fig. 3. Present day risk for Zaire Ebola virus (EBOV) from EMM simulations. Maps 707 

represent the proportion of times between zero (dark blue) and 0.01 (red) when a EVD-708 
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EBOV case was present in a grid cell (0.0416) across 2500, 365 day simulation runs for the 709 

present day, where (A) shows all cases (both index and secondary), (B) index cases only, and 710 

(C) index cases from epidemics (1500+ cases). Black open circles in (A) represent log 711 

outbreak size with the location of the index case at the centre of the circle. Black symbols in 712 

(B) represent all locations of known EVD index cases from different viral strains, where 713 

circles represent Zaire (EBOV), square Sudan (SUDV), triangles Taï Forest (TAFV), and 714 

tetrahedrons Bundibugyo (BDBV). Single black circle in (C) shows the only known site 715 

where an epidemic has occurred, with the black line highlighting its location. 716 

 717 
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 719 
Fig. 4. Most common country locations for importation of EBOV infected individuals. 720 

Map shows the countries that received, by airline flights, the most EBOV infected individuals 721 

(Red) with paler, orange and then yellow coloured countries having proportional fewer 722 

importations and white showing the EVD endemics area. Data come from 2500 simulations 723 

of EVD outbreaks under present data climate, land-use, demographic and transportation 724 

conditions. 725 
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 727 

Fig. 5. Future risk for Zaire Ebola virus (EBOV) from EMM simulations for 2070. Maps 728 

represent the proportion of times between zero (dark blue) and 0.01 (red) when a EVD-729 

EBOV case was present in a grid cell (0.0416), where (A, D, G) show all cases (both index 730 

and secondary), (B, E, H) index cases only, and (C, F, I) index cases from epidemics (1500+ 731 

cases), with data from EMM simulations for 2070, where rows show three different scenarios 732 

of global change (RCP4.5/SSP1, RCP6.0/SSP2, RCP8.5/SSP3).   733 
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 734 

Fig. 6. Comparison of 2070 EMM simulation scenarios by EVD-EBOV final epidemic 735 

size. Circles represents standardized residuals from a chi-squared test of association between 736 

simulation scenario and final outbreak size category. More orange/red colours show greater 737 

than expected number of outbreaks in a cell (for any given scenario and final outbreak size), 738 

with more blue colours representing fewer than expected outbreaks. Size of circle indicates 739 

the quantity greater or less than expected, with large circle more different than expected from 740 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted October 21, 2017. ; https://doi.org/10.1101/206169doi: bioRxiv preprint 

https://doi.org/10.1101/206169


Redding et al. Impact of global change on future Ebola emergence and spread. 

32 

 

random allocation of simulation runs among grid cells and small circles close to the expected 741 

number.  742 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted October 21, 2017. ; https://doi.org/10.1101/206169doi: bioRxiv preprint 

https://doi.org/10.1101/206169


Redding et al. Impact of global change on future Ebola emergence and spread. 

33 

 

Supplementary Information: 743 

Section S1 744 

EMM compartmental transition algorithm.  745 

For each time step t, the number of individuals moving through disease compartments 746 

both within and between grid cells (see Fig. 2) was estimated using disease transmission 747 

parameters. We predicted the likely movement between disease compartments per time step, 748 

by drawing randomly from a binomial distribution. We describe this process below, using as 749 

an example the movement of individuals moving from Exposed to Infectious compartments 750 

within grid cells.  751 

 752 

1. We determined the probability that a number of individuals were likely to move from the 753 

Exposed to Infectious compartments as: 754 

 755 

𝑝(𝑘𝑖 𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝐸𝑡) =  (𝐸𝑡
𝑘𝑖

) 𝛼𝑡
𝑘𝑖(1 − 𝛼𝑡)𝐸𝑡−𝑘𝑖 756 

 757 

where ki represents the number of individuals that enter the Infectious compartment, Et 758 

the number of Exposed individuals at time t, and αt the transition probability at time t. 759 

2. Using Equation 1, we determined for any value of ki the probability of ki individuals that 760 

move into the Infectious compartment, i.e., we computed the probability of the number of 761 

people, between 0 and the total number of individuals in the Exposed compartment, 762 

entering the Infectious compartment at time step t. We then drew randomly from this 763 

probability distribution to choose ki individuals that moved into the Infectious 764 

compartment, thereby weighting the choice towards the more likely outcomes given α. 765 

3. Once the number of people that will be infected in the next time step ki was determined, 766 

then ki individuals were removed from the Exposed compartment and added to the 767 

Infectious compartment. 768 

4. This process continued (per time step) until the number of individuals in the Exposed 769 

compartment equaled zero. 770 

 771 

The same process was applied to every compartment change using the respective 772 

transition probabilities (i.e., substituting α in the above example). Movement of individuals 773 

between respective Exposed and Infectious compartments between grid cells was also 774 

(Equation 1) 
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modelled similarly, but stopping movements if the exposed or infectious number dropped to 775 

zero but with no change to susceptible numbers. Due to the high morbidity from this disease, 776 

individuals in the Infectious compartment were deemed less likely to travel and were 777 

awarded a travel probability that was half of the expected rate for non-symptomatic 778 

individuals.  779 

 780 

Force of zoonotic infection, λz algorithms. 781 

The force of infection for zoonotic host to human transmission, λz was estimated per grid 782 

cell, per time step t, as follows:  783 

𝜆𝑧𝑡 = 𝜅𝐻 784 

 785 

where κ = spill-over risk, and H = probability of zoonotic host presence per grid cell. Spill-786 

over event probability, 𝜅 per person, per time step is given by:  787 

 788 

𝜅 = (
𝑂

𝑆ℎ𝑇
) 789 

 790 

where O = number of historic outbreaks, Sh = number of historically susceptible individuals,  791 

and T = total time when infections could have occurred. Note: Above we are estimating the 792 

probability of an individual being involved in a spill-over event directly from an animal host, 793 

which is distinct from the overall risk of contracting the disease.  794 

 795 

Force of infection, λ algorithms.  796 

The force of infection for human-to-human transmission, per grid cell and per time step 797 

t, was estimated as: 798 

𝜆𝑡 =  𝛽𝐼𝑡 + 𝛽𝐹𝑡 799 

 800 

where β = effective contact rate, It = number of individuals in Infectious compartment at time 801 

step t, and Ft = number of individuals in Funeral compartment at time step t. For simplicity 802 

we assumed that βI and βF were the same (hereafter referred to as β). When t = 0, β is given 803 

by:  804 

 805 

𝛽 = 𝑚 ∗ (
𝑅0

𝑁𝐷
) 806 

 807 

(Equation 2) 

(Equation 3) 

(Equation 4) 

(Equation 5) 
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where R0 =  basic reproduction number, m = mobility, N = population size per time step, and 808 

D = duration in days that an individual is infectious. In this context, m was used to modify the 809 

ideal free gas model of human movement with distances travelled which are spatially variable 810 

across the landscape. We calculated a two-dimensional collision frequency c, per person per 811 

grid cell(65) as follows:  812 

 813 

𝑐 =   𝑛𝑣Δ𝑡𝑞2 814 

 815 

where n = number of individuals, v = walking velocity, ∆t = time period and q = interaction 816 

sphere radius. In the context of our simulation, vΔt represents daily walking distance. Then 817 

we defined m as the inverse deviation from a mean of c such that areas with more movement 818 

have a higher effective contact rate. However, when t > 0 we redefined β as follows: 819 

 820 

𝛽 = 𝑚 ∗ (
𝑅𝑒

𝑁𝐷
) 821 

 822 

where Re =  effective reproduction number, m = mobility, N = population size per time step, 823 

and D = duration in days that an individual is infectious. Re is related to R0 but due to changes 824 

in human behaviour and health care responses, Re may be lower and decline over time, in 825 

addition to the implicit reduction in R as the pool of susceptibles decreases during an 826 

outbreak. We make the assumption that the effective reproduction number reduces on a daily 827 

basis due to increasingly strong health care responses over time. 828 

So initially, when t = 1: 829 

𝑅𝑒 = 𝑎𝑅0 830 

 831 

where Re =  effective reproduction number at t = 1, a = decay rate, and R0 =  basic 832 

reproduction number. However, when t >1: 833 

 834 

𝑅𝑒
𝑡+1 = 𝑎𝑅𝑒

𝑡  835 

 836 

where 𝑅𝑒
𝑡=  effective reproduction number at time t, and a = decay rate. We define decay rate 837 

a per grid cell, from the empirical relationship between wealth and health outcomes. Using 838 

either direct or derived empirical estimates of the gradient of the change in Re over time from 839 

(13, 19, 21, 22), we fitted an exponential decay curve between estimates of per captia Gross 840 

(Equation 6) 

(Equation 7) 

(Equation 8) 

(Equation 9) 
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Domestic Product measured as Purchasing Power Parity (from 37) and the gradient of Re 841 

change per day. The starting Re decay value a per grid cell, was given by: 842 

 843 

𝑎 = 1.024 𝑥 𝐺𝐷𝑃−𝑤2 844 

 845 

where the best estimate for exponent w2 was -0.848, GDP = Gross Domestic Product from 846 

(63), pseudo r2 = 0.76, and n = 8.  847 

 848 

The poverty-weighted Case Fatality Rate (wCFR) per grid cell, was given by: 849 

 850 

𝑤𝐶𝐹𝑅 = 0.21 ln (
1

𝐺𝐷𝑃
)−𝑤1 851 

where the best estimate for exponent w1 was -0.0239, GDP = Gross Domestic Product from 852 

(63), pseudo r2 = 0.9081, and n = 20.  853 

  854 

(Equation 10) 

(Equation 11) 
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 855 

 856 
 857 

Fig. S1| Maps of present day occurrence probability, H of EBOV host and other 858 

infection source species estimated from boosted-regression trees (BRT) models. 859 

Probability of species occurrence per grid cell (0.0416) is represented on a linear color scale 860 

where green is most suitable (p(H) = 1) and white unsuitable (p(H) = 0) where (A) 861 

Epomophorus gambianus gambianus; (B) Epomops franqueti; (C) Hypsignathus monstrosus; 862 

(D) Rousettus aegyptiacus; (E) Gorilla spp.; (F) Pan spp.; (G) Cephalophus spp.; and (H) all 863 

species combined. Axis labels indicate degrees in a World Geodetic System 84 projection. 864 

Filled black circles represent GBIF (52) occurrence records.  865 
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866 
  867 

Fig. S2| Response curves from boosted-regression trees (BRT) models of EBOV host 868 

species occurrences. Each plot represents the shape of the normalized fitted functions for 869 

each variable where (A) Epomophorus gambianus gambianus; (B) Epomops franqueti; (C) 870 

Hypsignathus monstrosus; and (D) Rousettus aegyptiacus. The relative percentage 871 

contribution of each variable to the model in terms of variance explained is given in 872 

parenthesis, where only the top eight variables of the model are included for each species. 873 

Variable abbreviations are defined in table S2.  874 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted October 21, 2017. ; https://doi.org/10.1101/206169doi: bioRxiv preprint 

https://doi.org/10.1101/206169


Redding et al. Impact of global change on future Ebola emergence and spread. 

39 

 

 875 

 876 

 877 

Fig. S3| Distributions of relative frequency of EBOV cases per year. Violin plots 878 

represent the empirical observed (n=23 outbreaks) data of log total number of cases per year 879 

from 1967-2016 (66), and log total number of cases per year (n=2500 runs) from EMM 880 

simulations for present day environmental and demographic conditions. 881 
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 883 

 884 
Fig. S4| Sensitivity plots of input parameters for (a) total number of annual log EVD 885 

cases, and (b) mean annual spill-overs. Black dots show the response values per simulation 886 

and are jittered for greater clarity. Red dots represent the median values for each parameter 887 

value, and red lines join the medians to aid interpretation of any trend. Parameters are as 888 

follows: illness length - mean number of days in the infectious compartment; R0 – basic 889 

reproductive number; incubation - mean number of days in the exposed compartment; CFR - 890 

mean case fatality rate per illness; immunity - mean immunity to re-infection where 1 is 891 

totally immune; cases per year - mean spill-over rate constant; host distance - mean daily 892 

distance (m) travelled by host reservoir species; density - mean number of reservoir host 893 

individuals per grid cell; w2 - shape of the effective reproductive number (Re) decay curve, 894 

where low values represent a less curved, more linear negative relationship; and w1 - shape 895 

of the CFR~poverty curve, where lower values represent a less curved, more linear negative 896 

relationship. 897 
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 899 

 900 
Fig. S5| Map of future occurrence probability, H2070 of EBOV host and other infection 901 

source species estimated from boosted-regression trees (BRT) models under the medium 902 

outlook RCP6 scenario. Probability of species occurrence per grid cell (0.0416) is 903 

represented on a linear color scale where green is most suitable (p(H) = 1) and white 904 

unsuitable (p(H) = 0) for all species combined. Axis labels indicate degrees in a World 905 

Geodetic System 84 projection. 906 

 907 
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Table S1| Seroprevalance of EBOV in reservoir host species. Species assignments 909 

followed the taxonomy in (67). Prevalence was measured as the proportion of positive results 910 

per sample and raw prevalence data was transformed to a rank within each study. Direct 911 

prevalence comparisons were not possible due to methodological differences. We estimated 912 

the most important EBOV host species as those that appear as the top two ranks in all 913 

sources. We identified four candidate bat species hosts: Epomops franqueti, Epomophorus 914 

gambianus gambianus, Hypsignathus monstrosus, and Rousettus aegyptiacus. N represents 915 

sample size; Hipp Hipposideridae; Molo Molossidae; Ptero Pteropodidae; CI Côte d'Ivoire; 916 

SL Sierra Leone; LR Liberia; GH Ghana; CG Congo; and GA Gabon.  917 

 918 

Family Species Country N Prevalence Rank Source 

Hipp Hipposideros sp. CG, SL, LR 98 0.04 4 (68) 

Molo Mops condylurus CI, SL, LR, CG 37 0.05 4 (68) 

Ptero Eidolon helvum GH 252 0.004 - (69) 

Ptero Epomophorus gambianus 

gambianus 

GH 37 0.38 2 (70) 

Ptero Epomops franqueti GH 27 0.37 2 (70) 

Ptero Epomops franqueti GA, CG 11 0.07 2 (14) 

Ptero Epomops franqueti GA, CG 805 0.04 2 (27) 

Ptero Epomops franqueti CI, SL, LR, CG 62 0.08 3 (68) 

Ptero Hypsignathus monstrosus GH 16 0.44 1 (70) 

Ptero Hypsignathus monstrosus GA, CG 17 0.24 1 (14) 

Ptero Hypsignathus monstrosus GA, CG 125 0.07 1 (27) 

Ptero Hypsignathus monstrosus CI, SL, LR, CG 70 0.16 2 (68) 

Ptero Micropteropus pusillus GA, CG 197 0.02 4 (27) 

Ptero Micropteropus sp. CG 40 0.03 4 (68) 

Ptero Myonycteris torquata GA, CG 58 0.07 3 (14) 

Ptero Myonycteris torquata GA, CG 573 0.03 3 (27) 

Ptero Myonycteris torquata CI, SL, LR, CG 307 0.01 5 (68) 

Ptero Nanonycteris veldkampii GH 4 0.25 3 (70) 

Ptero Rousettus aegyptiacus GA, CG 307 0.08 1 (27) 

Ptero Rousettus aegyptiacus CG 2 1.00 1 (68) 
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Table S2| Details of bioclimatic and land use variables used to estimate probability of 920 

EBOV host presence, H. Nine most orthogonal (<75% correlation) bioclimatic variables 921 

were chosen from (71).  For analysis, all variables were reduced in latitudinal extent to 85 N, 922 

58 S and resampled to a 0.0416 grid cell size using a World Geodetic System 84 projection. 923 

LULC is a categorical dataset where the most predominant land use-land cover type in each 924 

grid cell is given within the following categories: Evergreen needle leaf forest; Evergreen 925 

broadleaf forest; Deciduous needle leaf forest; Deciduous broadleaf forest; Mixed forest; 926 

Closed shrublands; Open shrublands; Woody savannah; Grassland; Permanent wetlands; 927 

Cropland; Urban and built-up; Cropland/natural vegetation mosaic; Snow and ice; Barren or 928 

sparsely vegetated; and Water bodies.  929 

 930 

No. Variable Description Original 

Spatial 

Extent 

Original Spatial 

Resolution (cell 

size at equator) 

Temporal 

Resolution 

Source 

1 BIO2 Mean Diurnal Temperature Range Global 1km 2012 (71) 

2 BIO5 Maximum Temperature of 

Warmest Month 

Global 1km 2012 (71) 

3 BIO6 Minimum Temperature of Coldest 

Month 

Global 1km 2012 (71) 

4 BIO7 Temperature Annual Range Global 1km 2012 (71) 

5 BIO10 Mean Temperature of Warmest 

Quarter 

Global 1km 2012 (71) 

6 BIO11 Mean Temperature of Coldest 

Quarter 

Global 1km 2012 (71) 

7 BIO12 Annual Precipitation Global 1km 2012 (71) 

8 BIO13 Precipitation of Wettest Month Global 1km 2012 (71) 

9 BIO14 Precipitation of Driest Month Global 1km 2012 (71) 

10 ALT Digital Elevation Model Global 1km 2008 (72) 

11 LULC Land Use-Land Cover  Global 500m  2001-2012 (36) 
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Table S3| Estimates of global daily walking distances, vΔt. Estimates of daily walking 932 

distances were collected from the literature per country. Daily step numbers were converted 933 

to distance (km) using an average step length of 1.41m (73). As studies have suggested that 934 

daily walking distance is stratified among income categories (74), countries were assigned to 935 

income bands based on per capita Gross Domestic Product (GDP) (measured as Purchasing 936 

Power Parity from 37) such that the poorest countries were given a value of 1 and the richest 937 

4. A mean estimate of walking distance was calculated for each band. Countries were then 938 

assigned a walking distance corresponding to their GDP band. No estimates were found for 939 

band 3 ($1600 - $35000), so countries in this band were given daily walking distances 940 

halfway between bands 2 and 4. 941 

 942 

Country Steps Distance 

(km) 

GDP  

band 

 

GDP PPP  

Per capita 

(lower 

bound) 

$ 

GDP PPP  

Per capita 

(upper 

bound) 

$ 

Mean 

km 

Per 

GDP 

Band 

Source 

 

Niger - 7 1 0 1600 9.6 (75) 

Central African 

Republic 
- 8 1 0 1600 9.6 

(75) 

Chad - 15 1 0 1600 9.6 (75) 

Mali - 13.2 1 0 1600 9.6 (75) 

Niger - 4.8 1 0 1600 9.6 (75) 

South Africa 12471 8.85 2 1600 13000 8.5 (76) 

Tanzania - 8.3 2 1600 13000 8.5 (77) 

Australia 9695 6.88 4 35000 128530 5.6 (78) 

Japan 7168 5.08 4 35000 128530 5.6 (78) 

Switzerland 9650 6.85 4 35000 128530 5.6 (78) 

United States 5117 3.63 4 35000 128530 5.6 (78) 
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Table S4| Collated epidemiological data on EBOV outbreaks. Data on 19 locations that 945 

have experienced EBOV outbreaks or importations and have data on either Case Fatality Rate 946 

(CFR) (13, 18, 54, 79-83) or on Effective Reproductive Number change (21, 54, 79, 84-86) 947 

(Re gradient per week). The latter data was either taken directly from tables or text from 948 

within literature sources or estimated (Spain, United Kingdom, Nigeria, United States) from 949 

descriptions of outbreak events detailed in the sources. Child mortality data for the year of 950 

outbreak is taken from World Bank Development Indicators (37) 951 

 952 

Location County Year 
ln GDP per capita  

for year 
CFR Re gradient per week 

United States Texas 2014 4.74 0.3 0.5 

Guinea  2014 3.09 0.707 0.113636 

Sierra Leone  2014 3.31 0.69 0.076923 

Liberia  2014 2.99 0.723 0.04 

Germany  2014 4.66 0  

Spain Madrid 2014 4.53 0 0.5 

United Kingdom London 2014 4.59 0 3 

Nigeria  2014 3.77 0.666667 0.533333 

Mali  2014 3.24 0.75  

Congo, Dem. Rep.  1976 2.72 0.88 0.105 

Gabon  1994 4.14 0.61  

Congo, Dem. Rep.  1995 2.72 0.81  

Gabon  Early-1996 4.17 0.68  

Gabon  Late-1996 4.17 0.75  

Gabon  2001–2002 4.15 0.82  

Congo, Rep.  2001–2002 3.58 0.76  

Congo, Rep.  Early-2003 3.6 0.89  

Congo, Rep.  Late-2003 3.6 0.83  

Congo, Rep.  2005 3.65 0.75  

 953 
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