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ABSTRACT 
Understanding complex systems such as the human brain requires characterization of the 
system’s architecture across multiple levels of organization – from neurons, to local circuits, to 
brain regions, and ultimately large-scale brain networks. Here we focus on characterizing the 
human brain’s large-scale network organization, as it provides an overall framework for the 
organization of all other levels. We developed a highly principled approach to identify cortical 
network communities at the level of functional systems, calibrating our community detection 
algorithm using extremely well-established sensory and motor systems as guides. Building on 
previous network partitions, we replicated and expanded upon well-known and recently-
identified networks, including several higher-order cognitive networks such as a left-lateralized 
language network. We expanded these cortical networks to subcortex, revealing 358 highly-
organized subcortical parcels that take part in forming whole-brain functional networks. Notably, 
the identified subcortical parcels are similar in number to a recent estimate of the number of 
cortical parcels (360). This whole-brain network atlas – released as an open resource for the 
neuroscience community – places all brain structures across both cortex and subcortex into a 
single large-scale functional framework, with the potential to facilitate a variety of studies 
investigating large-scale functional networks in health and disease. 
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INTRODUCTION 
Understanding the highly distributed neural computations that underlie cognitive abilities in 
humans will require a framework that places neural events in the context of overall brain 
network organization. Several such frameworks have been introduced (Power et al., 2011; Yeo et 
al., 2011), based on the idea that the brain exhibits a modular functional architecture (Bullmore 
and Sporns, 2009). Consistent with this, distant brain regions are strongly functionally 
interconnected (showing high statistical association between time series), composing distinct 
functional networks. These functional networks can be detected using resting-state functional 
connectivity (RSFC) with functional MRI (fMRI), capitalizing on the phenomenon of 
spontaneous but coherent low-frequency fluctuations of the BOLD (blood-oxygen level 
dependent) signal. This phenomenon can give insight into the brain’s intrinsic functional 
network organization that likely underlies a host of computations, including higher-order 
cognition. This intrinsic organization is thought to be functionally relevant since brain activity 
patterns during rest and task have high overall correspondence (S. M. Smith et al., 2009). 
Moreover, task-evoked activity flow (the movement of task-evoked activations between brain 
regions) can be accurately predicted using RSFC, suggesting that resting-state functional 
networks provide the pathways over which cognitive task activations flow (Cole et al., 2016a). It 
is likely also the case that a slower, Hebbian-like learning process allows coactivation patterns to 
shape RSFC (Harmelech et al., 2013). These hypotheses are additionally supported by findings 
of strong correspondence between resting-state and task-state functional connectivity: Only 
subtle changes are observed in brain-wide functional connectivity organization during a wide 
variety of (functionally distinct) tasks and rest (Cole et al., 2014a; Krienen et al., 2014). These 
findings suggests that, although smaller task-specific changes in cortical organization occur 
during tasks, the main functional network architecture is already present during rest.  

Based on this idea that intrinsic network organization largely reflects the brain’s 
functional network organization regardless of state, a number of network partitions have been 
developed (Doucet et al., 2011; Gordon et al., 2016; Laumann et al., 2015), with two of the most 
widely-utilized partitions developed by Power et al. (2011) and Yeo et al. (2011). Their 
widespread impact likely stems from their strong correspondence with well-established primary 
sensory-motor systems, as well as correspondence with well-replicated co-activation patterns 
(e.g., frontoparietal co-activations during working memory tasks) in the task fMRI literature (S. 
M. Smith et al., 2009; Yeo et al., 2015). Both groups used clustering algorithms to identify 
functional networks based on distributed patterns of high RSFC between brain regions (for 
Power et al. (2011)) or a grid of cortical surface locations (for Yeo et al. (2011)). Together, they 
revealed a common brain network organization with bilaterally distributed visual, sensorimotor, 
default mode, and attention networks. Furthermore, both solutions revealed a task-positive 
system (the fronto-parietal, dorsal attention and cingulo-opercular networks) and a task-negative 
system consisting of the default mode network (Fox et al., 2005). These network partitions have 
proven to be remarkably valuable in elucidating functional brain organization and have provided 
an initial framework for functional network analyses in a variety of studies, both in health and 
disease, yielding important new insights in multiple fields of neuroscience (Sporns, 2014).  

Yet there are several outstanding issues with existing network partitions, which have 
limited our understanding of the human brain’s large-scale functional network organization. 
Most fundamentally, it has been unclear how to define network communities in a principled 
manner. This difficulty reflects the fact that RSFC values are continuous, with network 
identification requiring partitioning of these continuous values into labeled clusters. Yeo et al. 
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(2011) were statistically principled in choosing to partition these continuous RSFC values based 
on the statistical stability of the partition solution at each clustering threshold. Despite this 
stability, however, there is a major problem with the resulting network partitions: The auditory 
system is merged with the somatomotor system. The separation of these two systems is a basic 
property of cortical network organization known for over a century (Fritsch and Hitzig, 1870), 
and thus serves to question the choice of network partition threshold. In contrast, the Power et al. 
(2011) partition (and others (Gordon et al., 2016)) has the auditory system separated from the 
somatomotor system. However, Power et al. (2011) reported nine partitions, with only the most 
strict cluster threshold yielding a separate auditory system. The nine Power et al. (2011) 
partitions were subsequently combined into a single partition (Cole et al., 2013; Power and 
Petersen, 2013) for use in subsequent studies – in a similar manner as a recent surface-based 
network partition by Gordon et al. (2016). Critically, consensus was achieved across the 
partitions by hand, raising potential issues with reproducibility. More fundamentally 
problematic, however, is the possibility that this consensus partition combined networks from 
distinct levels of organization, by merging network clusters across distinct cluster thresholds. 
This calls into question the equivalence of the networks in the Power et al. (Power et al., 2011) 
(and (Gordon et al., 2016)) partition, with potentially problematic implications for studies that 
utilize this partition (e.g., comparisons of functional systems with functional sub-systems). 

In the present study – in light of the primary goal to develop and publicly release a 
network partition that would be useful to the neuroscience community – we sought to combine 
the statistically principled approach of Yeo et al. (2011) with the neurobiologically principled 
approach of Power et al. (2011) (in which the auditory system was separated from the 
somatomotor system). Specifically, we sought a single-threshold network partition that was 
statistically stable and that was calibrated to a neurobiologically and functionally meaningful 
level of organization – the large-scale functional systems level – based on emergence of large-
scale sensory-motor systems during network community detection. We chose these systems 
(visual, auditory, somatomotor) – as opposed to any of a variety of potential networks in 
association cortex – because (unlike these other networks) the sensory-motor systems are 
established beyond question. We could thus focus on identification of these networks and be 
confident that we had identified a fundamental functional systems level of organization even in 
association cortex, where it remains unclear which networks are fundamental functional systems. 
Subsequent to identifying our initial network partition, we also used identification of networks 
reported in the recent RSFC and task activation literatures as supplementary evidence of network 
partition quality. However, given our principled approach to identifying the functional level of 
organization, any previously-identified networks that were not identified here were considered 
likely to be at a distinct level of organization (e.g., the salience network (Seeley et al., 2007) 
could be a sub-system within a superordinate cingulo-opercular network (Dosenbach et al., 
2007)). 

As a secondary goal to developing this statistically and neurobiologically principled 
approach to network detection, we sought to address several methodological limitations of earlier 
partitions. First, as a starting point, we leveraged a recently-developed surface-based cortical 
parcellation (Glasser et al., 2016), which combined multiple neuroimaging modalities (i.e., 
myelin mapping, cortical thickness, task fMRI, and RSFC) to improve confidence in cortical area 
assignment. Similar to another recent brain region parcellation (Fan et al., 2016), these 
improvements were driven by convergence across independent MRI-based modalities, each with 
complementary strengths and weaknesses. Second, we used multiband fMRI data from the 
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Human Connectome Project (Van Essen et al., 2013), allowing for higher spatio-temporal 
resolution (i.e., simultaneous acquisition of multiple slices at a small voxel size) relative to data 
used for most previous network partitions (Feinberg et al., 2010; Moeller et al., 2010). This 
increased the spatial and temporal detail of the RSFC estimates and the resulting network 
partition. Third, we increased the spatial specificity and anatomical fidelity of the group-level 
RSFC data by using a high-resolution surface-based analysis in combination with multimodal 
(functional and anatomical) alignment across subjects (Robinson et al., 2014). Such surface-
based methods – especially in combination with multimodal alignment – yield improved cross-
subject alignment of cortical geometry (Anticevic et al., 2008; Glasser et al., 2013; Robinson et 
al., 2014) (relative to volume-based methods). This collectively results in less spatial blurring 
across sulcal boundaries within an individual and superior cross-areal alignment across 
individuals (Uğurbil et al., 2013). Notably, several recent cortical network partitions made use of 
cortical surface data (Gordon et al., 2016; Laumann et al., 2015), demonstrating the utility of this 
approach for cortical network identification and facilitating the use of surface data in the present 
study. 

Building on these methodological advances, a principled network partition should have a 
neurobiologically plausible number of networks, including well-known functional systems 
(Mesulam, 1998; Ryali et al., 2012; Stark et al., 2008) as well as subcortical components 
(Buckner et al., 2011; Choi et al., 2012). For example, although many known systems were 
already included in previous network partitions, many of these do not include clear assignment 
of a language network (e.g. Power et al., 2011). Furthermore, although a few parcellations (e.g. 
Yeo et al., 2011) have reported the presence of a language network, none have extensively 
characterized the representation in the subcortex, even though there is ample evidence in the 
literature for the existence of a distributed language system in humans (Broca, 1861; Hampson et 
al., 2002; Wernicke, 1874), and perhaps even a homologous network in non-human primates 
(Mantini et al., 2013). Indeed, this was a major knowledge gap that was partially addressed by 
the Glasser cortical parcellation – namely identification of putatively novel language-related 
cortical regions, with clear but heretofore undefined boundaries (Glasser et al., 2016). Therefore, 
we explicitly tested the hypothesis that a methodologically improved and neurobiologically-
plausible network solution should yield a distributed language network based on RSFC graphs. 
In turn, such a language network should pass the test of mapping onto language-relevant 
computations based on independent overlap with task-evoked activity during language 
processing. 

We additionally sought to overcome an unresolved technical limitation of previously-
developed network partitions whereby there was high uncertainty about the network assignment 
of the ventral cortical surface. This uncertainty stems from sinus-related MRI dropout (due to 
magnetic field inhomogeneities) in these regions. The use of multiband fMRI data not only 
provides a higher signal-to-noise ratio (SNR) due to higher temporal resolution, but also affords 
less dropout due to higher spatial resolution (Merboldt et al., 2000; Smith et al., 2013). We 
hypothesized that this would improve network assignments for regions in MRI dropout areas 
such as orbitofrontal cortex, for which no consensus network assignment currently exists. 

Finally, a fundamental knowledge gap in the field is a lack of a unified whole-brain 
network partition, which includes all of cortex and subcortex. Prior work utilized the Yeo et al. 
(2011) cortical network assignment to delineate network partitions for the striatum (Choi et al., 
2012) and the cerebellum (Buckner et al., 2011), which revealed a shared functional topography 
between these large anatomical structures (i.e., cortex, striatum, and the cerebellum). However, 
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no study has extended this approach simultaneously across the striatum, cerebellum, thalamus 
and the brainstem in a common framework. More generally, there is currently no network 
partition of the entire human brain that capitalizes on the aforementioned cortical mapping 
advances and that concurrently provides a comprehensive subcortical network mapping. To 
address this knowledge gap, we derived a network assignment of all subcortical voxels, which 
we mapped using a connectivity-based clustering analysis building on our cortical network 
solution (similar to (Buckner et al., 2011; Choi et al., 2012), but including the entire subcortex). 
The obtained quantitative relationships between subcortical units (voxels) and cortical regions 
thus help clarify the functional organization of subcortical structures in the context of cortical 
brain systems. 

In summary, the primary purpose of the present effort was to develop and publicly 
release a brain-wide network partition for the broader neuroscience community. Key innovations 
beyond prior work include: i) A highly neurobiologically principled definition of cortical 
network organization, based (in part) on identification of the extremely well-established sensory 
and motor systems. This criterion was used to calibrate the clustering threshold that identified the 
brain’s fundamental functional level of organization (i.e., sensory and motor systems). ii) Use of 
multimodal inter-subject alignment along with surface-based cortical analysis across hundreds of 
subjects for enhanced precision of the network partition, iii) Use of task and hemispheric 
lateralization tests to determine reassignment of the previously-labeled “ventral attention” 
network (Power et al., 2011) as the language network, and iv) Extension of the cortical network 
assignments to the entire subcortex, providing a whole-brain network solution that expands on 
prior work that focused on the striatum (Choi et al., 2012) and cerebellum (Buckner et al., 2011). 
While future improvements of the reported Cole-Anticevic Brain-wide Network Partition version 
1.0 (CAB-NP v1.0) are anticipated, this initial solution is shared with the neuroscience 
community to facilitate studies investigating large-scale functional networks in human health and 
disease (https://github.com/ColeLab/ColeAnticevicNetPartition). 

 

METHODS 

Experimental Model and Subject Details 

Subjects and Dataset  
The analyzed dataset consisted of 337 healthy volunteers from the publicly available Washington 
University – Minnesota (WU-Min) Human Connectome Project (HCP) data (Van Essen et al., 
2013). Complete details of all HCP acquisition can be found online 
(https://www.humanconnectome.org/storage/app/media/documentation/s900/HCP_S900_Releas
e_Reference_Manual.pdf). Further details about the dataset and preprocessing methods can be 
found in the Supplementary Materials. 

Quantification and Statistical Analysis 
The methodological workflows for creating cortical and subcortical network partitions are 
displayed in Fig. 2a and Fig. 4a. Specifically, for both partitions, data were first preprocessed via 
HCP convention, followed by calculation of an average FC matrix (parcel-to-parcel for cortical 
data or parcel-to-voxel for subcortical data). A cortical partition was then calculated using a 
clustering algorithm and several pre-determined (hard and soft) criteria, followed by a 
quantitative evaluation of network solutions. The initial cortical assignment steps are described 
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in detail in forthcoming sections. In turn, this cortical network partition was then used to 
calculate subcortical network assignment. Here the subcortical voxel was assigned to the cortical 
network with which is was most highly correlated on average, followed by several quality 
assurance steps described below. 

Resting-State Cortical FC Matrices 
To sample data at the regional level, we used a recently-developed cortical parcellation (Glasser 
et al., 2016), which contains 180 symmetric cortical parcels per hemisphere. This parcellation is 
defined in terms of surface vertices and is thought to be more accurate than prior parcellations 
due to the consistency of areal borders between data from different modalities and an accurate 
representation of cortical geometry for each subject via the CIFTI file format (Glasser et al., 
2016). Each parcel varied in size and shape based on alignment between functional and 
anatomical borders across multiple imaging modalities. See Glasser et al. (2016) for details 
regarding region size and shape. For each subject, BOLD time courses were extracted from the 
360 independently identified parcels using Workbench. An average BOLD time course for each 
parcel was calculated by averaging across all vertices/grayordinates within that region. 
Subsequently, RSFC between each pair of parcels was calculated for each subject using Pearson 
correlation. A functional connectivity matrix for N regions is defined as the N×N matrix M, 
where M(i, j) contains the Pearson correlation of the time courses between region i and region j. 
In this way, a 360 x 360 RSFC matrix was formed for each subject. Finally, a single group 
average RSFC matrix was formed by averaging across all subjects in the cohort, and setting the 
diagonal to zero. 

Network Detection Using Clustering Algorithm: Louvain Clustering Algorithm 
We sought to establish a neurobiologically principled approach to community detection driven 
by minimal assumptions and excluding qualitative decisions. Our approach was based roughly 
on (Cole et al., 2014a), which was adapted from methods proposed by Power et al. (Power et al., 
2011). We identified three “hard” criteria for what we considered a principled network partition 
solution, with two additional “soft” criteria.  

The hard criteria, as described in the Introduction, included: i) separation of primary 
sensory-motor cortical networks (visual, auditory, and somatomotor) from all other networks. 
This criterion is based on unequivocal evidence supporting the existence of these as functionally 
distinct (and fundamentally functionally meaningful) sensory and motor systems in the human 
brain. If a network partition is to be neurobiologically-grounded it should pass this standard. 
Note that previous functional network partitions of the human brain have had difficulty 
separating auditory cortex from somatomotor cortex (Yeo et al., 2011). Consistent with these 
prior observations, auditory cortex tended to be merged with somatomotor cortex for most of the 
tested algorithms and algorithm parameters. Notably, because the auditory network emerged 
only at a high resolution parameter (after most other potential networks of interest emerged), 
using any of a wide variety of known large-scale networks (e.g., the DMN or FPN) as additional 
hard criteria would not have altered the results. Further, the ease of identifying primary sensory-
motor networks (due to their extensive characterization from over a century of neuroscientific 
investigation) suggests that this criterion will be highly replicable in future studies. ii) high 
stability (similarity of network partitions) across nearby parameters in the network detection 
algorithm. This criterion served as a heuristic for detecting likely low-noise-influenced partition 
solutions. iii) High modularity (high within-network connectivity relative to between-network 
connectivity). This final criterion is implicit in community detection algorithms, which attempt 
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to optimize network partitions for modularity. However, we included this as an additional 
explicit quantitative criterion to ensure that optimizing for other criteria did not reduce 
modularity substantially. A putative network solution had to meet the three “hard” criteria to 
even be considered.  

The two “soft” criteria for network partition selection included: i) We optimized the 
network partition with the constraint that the number of large-scale functional networks should 
be roughly similar to the number of networks identified in previous functional network solutions 
using RSFC data (Power et al., 2011; Yeo et al., 2011). These ranged from 7 networks to 17. 
Importantly, this number of networks is largely consistent with the number of networks typically 
described in the human fMRI task activation literature, as well as the number of large-scale 
systems described in the animal neuroscience literature. Put differently, while statistically 
possible, a network partition with an order of magnitude finer granularity (e.g. >100 sub-
networks) would not be considered. ii) We sought a network partition with non-primary 
networks (other than primary sensory-motor cortical networks that were part of the “hard” 
criteria our partition, e.g., frontoparietal cognitive control network, default-mode network) 
qualitatively similar to those that were previously identified using RSFC and fMRI task 
activations (Power et al., 2011; S. M. Smith et al., 2009; Yeo et al., 2015, 2011). Critically, these 
two soft criteria had only minimal influence on the finalized partition, since only the hard criteria 
were used to identify that partition. Instead, these criteria were more important for assessing 
community detection algorithms, wherein we determined if a given algorithm was providing 
results (without full parameter optimization) largely consistent with the RSFC, fMRI task 
activation, and animal neuroscience literatures. Notably, RSFC, fMRI task activation, and animal 
neuroscience all have weaknesses that are largely non-overlapping (e.g., movement confounds 
RSFC more than fMRI task activations), such that considering constraints across these sources of 
evidence strengthens our conclusions. 

We started by applying the described criteria across a variety of community detection 
algorithms. Among the different algorithms explored were OSLOM (Lancichinetti et al., 2011), 
k-means, hierarchical clustering, SpeakEasy (Gaiteri et al., 2015), InfoMap (Rosvall and 
Bergstrom, 2008), and the Louvain algorithm (Blondel et al., 2008). Ultimately, the Louvain 
clustering algorithm method was selected for its ability to easily adjust the resolution of 
community clustering (i.e., the tendency for smaller communities to be detected), which allowed 
for optimization of the community clustering based on the “hard” criteria described above. This 
algorithm was also selected because produced solutions exhibited evidence in support of the 
“soft” criteria – a number of communities that were broadly similar in number and configuration 
to what was found in previous RSFC studies and in meta-analyses of fMRI task data. Briefly, the 
Louvain algorithm works in the following way: First, it searches for small communities by 
optimizing local modularity. Second, it combines small communities into nodes and builds a new 
network. Finally, this process is iteratively repeated until modularity changes minimally. Note 
that we used a modified version of the Louvain algorithm that can accomodate weighted graphs 
with both positive and negative weights (Rubinov and Sporns, 2011), which allowed us to avoid 
thresholding the RSFC data used by the algorithm. Ultimately, as with other community 
detection algorithms, the Louvain algorithm attempts to optimize for the strength of within-
community connections relative to the strength of between-community connections (i.e., 
modularity) (Blondel et al., 2008).  

Iterative Louvain Clustering and Cluster Consolidation 
We started by using a gamma (partition resolution) parameter of 1.0, since this is used as a 
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standard resolution for the Louvain algorithm (Blondel et al., 2008). Initially, this parameter 
yielded a network partition with the auditory network merged with the somatomotor network, 
violating one of our “hard” criteria. We therefore initiated a search over gamma values based on 
the hard criteria described above. As a randomly seeded algorithm dependent on optimization, it 
is possible that one iteration of Louvain would fail to identify the global (or a near-global) 
maximum for community modularity. To address this issue, we ran 1000 randomly-initialized 
iterations of Louvain for each gamma value (range of 1.2 to 1.4 in increments of 0.005), using 
the Rutgers-Newark supercomputing cluster (Newark Massive Memory Machine). We assessed 
partition quality by quantifying the stability of the partition solution at each gamma value. 
Stability estimates were computed as the z-rand partition similarity (Traud et al., 2011) averaged 
across all iterations for a given gamma value. Thus, if the same parcels were more consistently 
assigned to the same networks across randomly-initialized iterations for a given gamma value 
then there would be a higher z-rand score for that gamma value, indicating higher partition 
stability. The randomly-initialized iteration with the highest average z-rand (i.e., highest mean 
similarity with all other iterations) was selected as the representative partition solution for that 
gamma value. Z-rand scores and a calculated modularity score for each generated partition were 
subsequently examined in the gamma stability analysis described below. 

Partition Stability Calculation 
For each gamma value, z-rand scores and modularity scores across all iterations were averaged 
to find representative z-rand and modularity values. Next, each mean z-rand score (quantifying 
partition stability across 1000 iterations) was multiplied by its corresponding modularity score to 
find a modularity-weighted z-rand score. The gamma value corresponding to the peak of the 
modularity-weighted z-rand score plot was selected, constrained by the criterion of finding a 
plausible number of networks including primary sensory/motor networks (see Fig. 2b). The 
partition corresponding to this gamma value was further evaluated for validity and stability 
across a number of metrics detailed below.  

Functional Network Validation and Quality Assessment for the Cortical Network Partition 
To test the reliability of our network partition (in a distinct manner from the gamma stability 
analysis), we conducted an independent split-half validation analysis across two randomly 
selected subsamples of participants. The network detection algorithm was repeated with the same 
gamma value (1.295) that provided the initial partition solution (based on  separation of sensory-
motor systems, optimal modularity, and gamma stability), but now with two separate subsets of 
the data (N=168 and N=169) consisting of demographically matched subjects (see Results 
section for details on these matched data subsets).  

To further quantitatively assess the final cortical network partition and validate the parcel 
assignments, we used several additional measures. First, a network assignment confidence score 
was calculated for each region to express the certainty with which that region could be assigned 
to a particular network (Wang et al., 2015). This confidence score was computed as the 
difference between the assigned network’s correlation value and the out-of-network correlation 
values for a region i: 

 
where Ci is the network assignment confidence score for region i (one of 360 brain regions), rs i,j 
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is the Spearman correlation coefficient between the RSFC patterns of region i and region j in the 
same network, nj is the total number of other regions in regions i’s network, rs i,k is the Spearman 
correlation coefficient between RSFC patterns of region i and region k outside of regions i’s 
network, and nk is the total number of regions outside region i’s network. If a region’s RSFC 
pattern is very similar to that of the other regions in its assigned network, the confidence score 
will be high, but if it is also similar to other networks, the confidence score will be lower.  

Second, in addition to these network assignment confidence scores, we calculated signal-
to-noise ratio (SNR) and participation coefficient (Rubinov and Sporns, 2010) 
(https://sites.google.com/site/bctnet/measures/list), and correlated these measures to assess 
whether our network assignment results were affected by SNR (i.e. lower functional connectivity 
in dropout regions) and/or by nodes with extensive between-network RSFC that violate the 
assumption of network modularity (as assessed by the  participation coefficient).  

Third, RSFC pattern asymmetry was calculated to see how similar a region’s or 
network’s RSFC pattern was to that region’s homologue on the other hemisphere. Based on 
decades of evidence suggesting strong symmetry across hemispheres in RSFC patterns (Biswal 
et al., 1995; Power et al., 2011; Yeo et al., 2011), we reasoned that high network symmetry (with 
the likely exception of the language network) was an indicator of network partition quality. In 
light of the language network being a likely exception, we additionally used this measure to test 
the hypothesis that there would be especially high (left-lateralized) asymmetry for the language 
network. For each subject, we correlated each region’s (unilateral) RSFC pattern with that of its 
homologue (as identified by (Glasser et al., 2016)), and subtracted this value from 1. We 
subsequently averaged these RSFC pattern asymmetries by network. Finally, scores were 
averaged across subjects.  

Fourth, a measure of inter-subject connectivity variability was used to indicate how 
similar a region’s functional connectivity pattern is across subjects. To calculate a region’s inter-
subject connectivity variability, the rank correlation for each subject’s RSFC pattern for a given 
region with all other subjects was calculated, resulting in a 337 x 337 (number of subjects X 
number of subjects) connectivity matrix. Averaging all values in this matrix to generate a mean 
pairwise similarity score “S” for each region, and subtracting this score from 1, resulted in a 
region’s inter-subject connectivity variability score (1-S). 

Once these quality metrics were calculated, each parcel was assessed for reassignment 
(i.e. assigning a parcel to a different network than the one resulting from the Louvain clustering 
algorithm, based on quantitative assessment of its original assignment). We reassigned parcels if 
the reassignment increased their confidence scores. Reassignment was applied for only three of 
the 360 cortical regions. Two left hemisphere DMN regions (regions 26 and 75) were re-
assigned to LAN, and one left hemisphere LAN region (region 135) was re-assigned to VMM 
(due to this resulting in higher confidence scores for all three regions). The left hemisphere LAN 
region (region 135) also failed to replicate on the split-half test, further indicating a poor initial 
assignment. The reported quality metrics for the partition were recalculated after reassignment of 
those three regions. 

Subcortical Network Assignment 
Once the cortical network partition was finalized, the subcortical assignment was computed 
using the cortical partition as a reference. To assign subcortical voxels to networks, FC matrices 
were first created for each subject containing the correlations between the 360 cortical parcels 
and 31870 grayordinates covering the entire subcortical CIFTI space. The group FC matrix was 
then calculated by averaging Fisher’s z-transformed Pearson correlation values across subjects. 
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Next, the FC of each subcortical grayordinate (i.e. gray-matter vertices or voxels) was averaged 
across all parcels in each cortical network. In turn, the grayordinate was assigned to the network 
with the highest mean Fisher’s z-transformed correlation. This approach was chosen to account 
for the differences in cortical network size, as an unweighted approach would result in a bias 
towards networks with more cortical parcels. 

To account for any signal bleed-over from the adjacent cerebral cortex or partial volume 
effects in the cerebellum, we removed cerebellar voxels within 2mm of the cortex from the initial 
network assignment (Supplemental Fig. S1). These effects were not prominent in other 
subcortical structures. We additionally performed cleanup steps of the raw network assignment 
due to low confidence in making inferences from very small clusters in fMRI data. To achieve 
cleanup, we removed isolated single-voxel parcels that did not share a network assignment with 
any adjacent voxels, and parcels of size 2-4 voxels that did not have a counterpart with the same 
network assignment within a 2mm radius in the contralateral hemisphere. The total number of 
voxels removed by this process and the map of removed voxels are given in Supplemental Fig. 
S2. We also searched for 5-voxel parcels that would be removed under the same criteria. The 
difference achieved with the 5-voxel criteria was minimal. An additional 5 voxels, or 0.016% of 
the total subcortex, was flagged in the 5-voxel version (Supplemental Fig. S2), suggesting that 
the 4-voxel version was already fairly stable. To provide a complete functional atlas of the entire 
subcortical space, we used nearest-neighbour interpolation to reassign the voxels removed from 
network assignment in the previous steps. Lastly, parcels which shared a corner and had a 
continuous contralateral counterpart were combined. 

Subcortical Network Assignment of Data with and without Global Signal Regression 
Given the well-known concerns surrounding artifact removal from BOLD data,  we also 

computed two a solutions of the subcortical network assignment using BOLD signal with and 
without global signal regression (GSR) performed on top of the canonical HCP-style de-noising 
(i.e. minimal preprocessing + FIX ICA, (Glasser et al., 2016)). Specifically, GSR was performed 
by regressing the global mean gray matter signal from each resting-state BOLD time series for 
each subject. We then repeated the network assignment for subcortical voxels using the same 
procedure as described above (“Subcortical Network Assignment”). The similarity between the 
two versions was quantified by calculating the proportion of each network in the original 
partition that was stably replicated with the GSR version (see Supplemental Fig. S4). Chance 
overlap was calculated using the hypergeometric test, as described below above (“Evaluating the 
Subcortical Network Assignment”). 

Evaluating the Subcortical Network Assignment 
The stability of the subcortical network assignment was tested using a split-half 

validation analysis, similar to the procedure performed for the cortical network partition. The 
same network assignment steps described above were performed independently for two separate 
samples (N=168 and N=169) consisting of matched subjects (Fig. 4a-b). To quantitatively 
compare the discovery and replication solutions, the proportion of voxels which were assigned to 
the same network in both solutions was computed. This was done before and after the described 
cleanup steps were performed (Fig. 4e-d). The proportion of voxels expected to overlap by 
chance in both solutions was calculated for each network, by using the hypergeometric test for 
proportions given the total number of voxels in the network and the total number of all 
subcortical voxels. 95% confidence intervals for chance were calculated with the Clopper-
Pearson method (Clopper and Pearson, 1934). 
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Additionally, the asymmetry of the subcortical partition was evaluated. Asymmetry was 
also computed voxelwise because the network assignment for the subcortex was computed on 
per-voxel level, rather than per-parcel level (as with the cortex). A homologous pair of 
subcortical voxels was defined such that they had to be equidistant along the x-axis relative to 
the midline (y-axis). Observed symmetry was computed as the proportion of voxels in each 
subcortical network for which the homologous voxel was assigned to a different network (Fig. 
5e). Chance asymmetry was calculated as the proportion of voxels in each network that would be 
expected to overlap between left and right hemispheres if the voxels were randomly assigned, 
given the number of voxels in the network and the total number of voxels in the subcortex. 
Additionally, the proportion of each subcortical network in the left and right hemispheres was 
computed (Fig. 5f). Because anatomical connections to and from the cerebellum cross the 
midline at the level of the pons (van Baarsen et al., 2016) and functional representation (e.g. of 
somatotopic maps) is mirrored relative to the rest of the brain, the left and right cerebellar 
hemispheres were exchanged in this analysis. 

Task Activation fMRI Analyses 
We evaluated the correspondence of the identified networks using task fMRI data from a 
language processing task and a motor task in the same sample of subjects. Briefly, the language 
processing task consisted of two runs, each with 4 blocks of a ‘LANGUAGE’ processing task, 
which consisted of three components: (i) Auditory sentence presentation with detection of 
semantic, syntactic and pragmatic violations; (ii) auditory story presentation with comprehension 
questions; (iii) Math problems that involved sets of arithmetic problems and response periods. 
Both the ‘Story’ and ‘Math’ trials of the LANGUAGE task were presented auditorily and 
participants chose one of two answers by pushing a button. Further details concerning the 
LANGUAGE task have been previously described in full by Barch and colleagues (Barch et al., 
2013; Binder et al., 2011). Notably, Glasser and colleagues (2016) demonstrated that Area 55b, 
defined through multi-modal parcellation, was robustly activated in the ‘Story versus Baseline’ 
task contrast from the HCP’s ‘LANGUAGE’ task. Here we leveraged that contrast to validate 
the language system. Specifically, task-evoked signal for the LANGUAGE task was computed 
by fitting a general linear model (GLM) to preprocessed BOLD time series data. Two predictors 
were included in the model, for the ‘Story’ and ‘Math’ blocks respectively. Each block was 
approximately 30s in length and the sustained activity across each block was modeled (using the 
Boynton hemodynamic response function (Boynton et al., 1996)). In turn, three unique contrasts 
were computed for the LANGUAGE task: i) Story versus Baseline, ii) Math versus Baseline, and 
iii) Story versus Math. Here we focused on the ‘Story versus Baseline’ contrast, as reported by 
(Glasser et al., 2016). The motor task used in the HCP consisted of two runs, based on the task 
protocol used by (Power et al., 2011; Yeo et al., 2011) and (Buckner et al., 2011; Choi et al., 
2012). Each run was composed of 13 blocks: 3 fixation blocks, 2 blocks of tongue movements, 4 
of hand movements (2 right and 2 left), and 4 of foot movements (2 right and 2 left), with each 
block lasting 12 seconds (10 movements).  Participants were given a 3 second visual cue at the 
start of each block to signal which body part to move. Here, we computed the foot and hand 
versus tongue contrasts to suppress visual and attentional effects in the task-related activation. As 
reported in (Buckner et al., 2011; Choi et al., 2012), while the movement versus fixation 
contrasts produced similar activation maps, the comparison of two movements removed 
nonspecific responses in both cortex and subcortex. 
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Data and Software Availability 
Data, software, and the network partition are available here: 
https://github.com/ColeLab/ColeAnticevicNetPartition and 
https://doi.org/10.5281/zenodo.1455791. 
  

RESULTS 

Cortical Network Partition 
The overarching objective of this study was to identify a brain-wide large-scale 

functional network organization based on clusters of multimodally-defined cortical regions – the 
likely next-lowest level of organization from the large-scale functional network level (Felleman 
and Van Essen, 1991; Glasser et al., 2016; Van Essen and Glasser, 2014). Since higher levels of 
organization emerge from the units at lower levels, increased accuracy in mapping brain regions 
(lower level) may yield more accurate large-scale brain networks (higher level). We therefore 
quantified functional networks based on regions recently identified via convergence across 
multiple modalities via both functional and structural criteria (Glasser et al., 2016), increasing 
confidence of their spatial precision. This yielded a cortical network organization (Fig. 1a and 
Fig. 1c) largely consistent with known and recently-identified functional networks, along with 
several previously-unidentified but highly robust networks. 
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Figure 1. Cortical-subcortical network partition. A) The cortical network partition, as calculated with 
cortical surface resting-state fMRI data using graph community detection. We focused on identifying the 
network level of organization based on interactions among the next-lowest level of organization – 
functional regions. Network detection was calibrated based on identification of the well-established 
primary sensory-motor cortical systems (visual, somatomotor, auditory). Identifying clusters of 
multimodally-defined cortical regions replicated many known and revealed several novel large-scale 
networks. B) The network partition identified in cortex was extended to all subcortical gray matter voxels. 
Briefly, each voxel was assigned to the cortical network with the strongest average resting-state functional 
connectivity (FC) with that voxel. C) The region-with-region FC matrix within cortex, sorted by network 
assignment. The block-like structure along the diagonal provides a visualization of the greater FC strength 
within (relative to between) each network. The darker off-diagonal lines reflect stronger cross-hemisphere 
FC within networks (since left hemisphere regions are listed first within each network). D) The parcel-to-
parcel FC (covariance) matrix, including both cortical and subcortical parcels. Covariance is a non-
normalized version of Pearson correlation, used here to account for higher standard deviation of time series 
in subcortical parcels. We previously validated covariance as a valid alternative to Pearson correlation for 
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FC estimation (Cole et al., 2016b). 
 

Briefly, we used graph community detection to identify clusters of highly interconnected 
cortical regions based on RSFC (Fig. 2a; see Methods for details). We used a standard 
community detection algorithm that identifies communities by optimizing for modularity (high 
within-network and low between-network connectivity strength) (Blondel et al., 2008). Several 
principles were used to calibrate the definition of network communities as we searched over 
different “resolution” (gamma) parameters in the community detection algorithm: i) We required 
that primary sensory-motor cortical regions (visual, auditory, somatomotor) – which have been 
known for over a century to be functionally distinct neural systems (Fritsch and Hitzig, 1870) – 
would be identified as separate functional networks. Such separation was clear at the default 
“resolution” setting of the community detection algorithm (gamma=1) for separation of visual 
and somatomotor networks, but the auditory network was merged with the somatomotor 
network. We therefore increased the community resolution parameter until auditory and 
somatomotor networks separated. ii) We optimized for stability (similarity of network partitions 
across neighboring parameter settings) and iii) we optimized for modularity (high within-
network and low between-network connectivity strength) (Fig. 2b; Supplemental Fig. S5). Note 
that we had a “soft” requirement (see Methods) that the major networks identified in the fMRI 
task activation and RSFC literatures (DMN, FPN, DAN, and CON) would be present, but these 
networks emerged with the above criteria (no additional steps necessary). This approach revealed 
12 networks consisting of well-known sensory-motor networks, previously-identified cognitive 
networks, and several novel networks. 

Well-known networks included primary visual (VIS1), secondary visual (VIS2), auditory 
(AUD), and somatomotor (SMN) networks. Previously-identified cognitive networks – networks 
identified in the last few decades – included the cingulo-opercular (CON), default-mode (DMN), 
dorsal attention (DAN), and frontoparietal cognitive control (FPN) networks. Two primary 
functional network atlases were used to identify these previously-identified networks: Power et 
al. (2011) (which was updated by (Cole et al., 2013)) and Yeo et al. (2011). Novel networks 
included the posterior multimodal (PMM), ventral multimodal (VMM), and orbito-affective 
(ORA) networks. We include additional analyses below to better establish the robustness of these 
networks, given that they have not (to our knowledge) been previously described. Notably, we 
also identified a language network (LAN), which has been known for over a century (Broca, 
1861; Wernicke, 1874), yet has been missing from most previous atlases of large-scale 
functional networks (e.g. Power et al., 2011) and never extensively characterized subcortically. 
We include additional analyses below to establish that this network is involved in language 
functions and is likely equivalent to the previously-characterized left-lateralized language 
network consisting of Broca’s area and Wernicke’s area (among other language-related regions). 
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Figure 2. Cortical partition solution workflow and statistics. A) Schematic workflow used to create 
cortical partition. Data were preprocessed for 337 subjects, functional connectivity was calculated between 
all regions for each subject, and an FC matrix was constructed for each participant. After averaging across 
subjects, the Louvain clustering algorithm was run with 1000 iterations to detect communities of networks 
for a range of gamma-values. The final cortical partition was a result of two criteria; a plausible number of 
networks that included primary sensory/motor networks had to be present, and the most stable and modular 
partition solution was chosen. B) Plots presenting the modularity-weighted z-rand scores and number of 
networks in the partition for each gamma-value. The dashed line indicates at which gamma-value the 
community detection gave the most stable and (neurobiologically) plausible results. C) Split-half validation 
results for the cortical partition. The original dataset was split in two smaller sets consisting of matched 
subjects’ data and the Louvain clustering algorithm was run with the same parameters as for the original 
partition. The two resulting network partitions were both highly similar to each other (92.5% overlap in 
network assignments) and highly similar to the original one presented in Fig. 1a, indicating that our 
partition is reliable. See main text for more details. 
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Assessing Quality of Cortical Network Partition 
 We used a split-half analysis to estimate the reliability of the cortical network partition 
(Fig. 2c). The identical algorithm (with identical parameters) was applied to a pseudo-random set 
of 168 subjects (selected from the total set of 337 subjects), and then independently to the 
remaining 169 subjects. The split-half sets were matched on a variety of demographics in order 
to reduce the chance that observed differences were driven by group differences of potential 
interest (e.g. age or gender). The 168 subjects were selected by first creating a random list of 
subjects then exchanging subjects between the groups such the 168 subjects were matched, at the 
group level, with the remaining 169 subjects on the following demographics: age, gender, 
handedness, and education. This analysis revealed a highly similar network partition across the 
the two independent matched samples (Fig. 2c): adjusted z-rand (Traud et al., 2011) of z=190.2 
(p<0.00001) and 92.5% of regions with identical network assignments. These results 
demonstrate high reliability of the main cortical network partition. 
 To further quantitatively evaluate the cortical partition, we calculated a network 
assignment confidence score (Fig. 3a & c), inter-subject connectivity variability (Fig. 3b), 
network-level split-half overlap (Fig. 3d), and network RSFC pattern asymmetry (Fig. 3e & Fig. 
8d) for each parcel and network. As shown in Fig. 3a & c, most networks exhibited broadly 
similar confidence, with a mean score of 0.36 (SD=0.08), indicating higher RSFC pattern 
correlation between a region and its assigned network than with other networks. Only ORA had a 
substantially lower confidence score (mean=0.19, SD=0.1), possibly as a result of lower SNR in 
regions assigned to the ORA network (mean SNR=152 with range 143-194) compared to other 
networks (mean SNR all networks=228, range 79-371). Note that it is possible for confidence 
scores to be negative, which would indicate more confidence in an alternative assignment than 
the one provided by the network partition. Thus, the positive confidence values across all 
networks indicates accuracy of the network assignments.  

A fundamental assumption of network partition analyses is that the brain’s functional 
network architecture is highly modular (i.e., that it has minimal between-network connectivity). 
We reasoned that confidence scores – which closely reflect this modularity assumption – would 
be lower as a function of how much this assumption is violated. Based on this, we hypothesized 
that low confidence could reflect three potential sources, each driving real or apparent between-
network connectivity: low SNR, high participation (Guimerà et al., 2005), or high intersubject 
variability. First, we reasoned that low SNR would result in additional (though likely weak) 
random connections, reducing the apparent clustering/modularity of connections and therefore 
decreasing confidence scores. Second, we reasoned that the modularity assumption would be 
violated by between-network connector hubs – which would have high partition coefficients 
(Guimerà et al., 2005; Power et al., 2013, 2011) – since such nodes do not fit neatly into a single 
network partition. Finally, we reasoned that high inter-subject variability could result in apparent 
low modularity via averaging connectivity of distinct brain regions (with connectivity to 
potentially distinct networks), lowering confidence scores. Our primary strategy for testing these 
hypotheses was to assess the relationship between these three factors and confidence scores.  
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Figure 3. Quantitative assessment of cortical network partition. A) Cortical map with Network 
Assignment Confidence scores, reflecting a region’s fc pattern similarity (calculated using Spearman’s rank 
correlation) to its assigned network divided by similarity to all other networks. These scores are used as a 
measure of certainty that the network to which a parcel was assigned is the correct one. The mostly 
homogeneous map indicates similar confidence across regions. Inset shows the distribution of confidence 
scores across the 360 cortical regions. B) Cortical map displaying Inter-Subject Connectivity Variability, a 
measure comparing the connectivity patterns for each region across subjects. Similar to panel A, most 
cortical regions appear to have highly similar values. Inset shows the distribution of intersubject variability 
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across the 360 cortical regions. C) Network averages of the parcel-level network assignment confidence 
scores (in panel A) are displayed. Error bars indicate standard deviations. Highest confidence scores were 
found in DMN and lowest in the new orbito-affective network (but note the lower SNR in this area). D) 
Split-half replication assignment overlap by network. This quantifies the amount of overlap between the 
split-halves in Fig. 2c. E) Group FC Pattern Asymmetry, reflecting similarity between a region’s 
(unilateral) functional connectivity pattern and that of its supposed homologue region on the opposite 
hemisphere. Note the relatively high asymmetry for the language network (LAN) resulting from the left-
lateralized language parcels in our partition. F) Scatterplot showing the relationship between Network 
Assignment Confidence score, Participation Coefficient and SNR for each parcel. See main text for the 
logic behind this analysis. The non-significant correlation between Confidence and SNR indicates that 
Confidence scores were not substantially affected by SNR. However, a negative correlation between 
Confidence and Participation Coefficient could indicate that lower confidence regions partly consist of 
connector hubs that are shared between multiple networks (violating modularity).   

 
We evaluated these possibilities, as shown in Fig. 3f. SNR and confidence scores were 

not significantly correlated (r=0.06, p=.29), which is inconsistent with the possibility that low 
SNR strongly affected confidence scores in these data. Regions with higher participation 
coefficients, a measure indicating how distributed a node’s edges are across networks 
(potentially violating the assumption of a modular network organization), exhibited lower 
confidence scores (r=-0.25, p<0.00001). This suggests that low confidence might be explained 
by connector hubs (regions connecting to multiple networks). Note that participation coefficient 
was calculated on the single-subject level, ruling out the possibility that high inter-subject 
variability drove the participation results. 

Together, these results suggest network assignment quality was primarily influenced by 
high participation coefficient (strong RSFC with multiple networks) rather than low SNR. This 
suggests that the human brain violates modularity to some extent, reducing assignment 
confidence because some regions are connected to multiple networks. Note, however, that 
connectivity of single regions with multiple networks is not entirely surprising since the brain 
must somehow integrate functionality between networks, which requires variable inter-network 
connectivity. These results suggest the degree of multi-network connectivity may be small 
overall, however, since participation accounts for only 6.25% of the linear variance in confidence 
scores (participation-confidence r=-0.25; r2=0.0625). 

We also expected that low confidence could be driven by high inter-subject connectivity 
variability, which we calculated as the mean dissimilarity of a given region’s cortex-wide RSFC 
pattern across subject. This could have been driven by the kinds of subject-to-subject variability 
in RSFC patterns shown in several recent studies (Braga and Buckner, 2017; Gordon et al., 
2017). Inconsistent with this being a major factor, we found a relatively homogeneous level of 
inter-subject variability across the Glasser parcels (Fig. 3b), with a mean variability score of 0.42 
(SD=0.13) for the networks. Overall, most networks exhibited low inter-subject connectivity 
variability, relative to a maximum value of 1.0 (in which every subject’s connectivity pattern 
would differ completely from every other). One network with higher inter-subject variability was 
the VMM network (mean=0.59, SD of 4 VMM regions=0.006), but this network’s high 
confidence score suggests its networks assignment are nonetheless accurate overall. The ORA 
network also showed numerically higher inter-subject connectivity variability between subjects 
compared to the other networks (mean=0.7, SD of 6 ORA regions=0.15), in concordance with 
this network's lower confidence score. Note that rather than true inter-subject variability this may 
have been driven by somewhat lower SNR (i.e., greater measurement noise) in ORA regions 
(Spearman correlation between ORA inter-subject variability and SNR: r=-0.25, p<0.00001), 
likely due to MRI signal dropout from nearby sinuses. These results suggest some details are lost 
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by using group-level RSFC (rather than individual-level RSFC) to identify networks, but that 
most network assignments are likely accurate. 

We additionally assessed partition quality by quantifying inter-hemispheric asymmetry, 
under the assumption that most networks would be highly symmetric across the hemispheres. 
This assumption is based on the well-established observation that most cortical regions have high 
RSFC with their homologue in the other hemisphere, despite overall higher within-hemisphere 
RSFC and some variability in inter-hemispheric symmetry (Stark et al., 2008). This metric 
served as a “proxy” test of reliability, since we did not constrain the network partition to be 
symmetric. Asymmetry scores were calculated as the dissimilarity of cortex-wide RSFC patterns 
across hemispheric homologues (see Methods). Asymmetry results in Fig. 3e show that for most 
regions/networks RSFC patterns were very similar to a region’s/network’s homologue on the 
contralateral hemisphere (network mean=0.05, SD=0.04; all far below complete asymmetry of 
1.0). An exception to this, which was expected based on the language neuroscience literature, 
was the LAN network having the highest cortical asymmetry score. This reflects the left 
lateralization of this network (see also Fig. 8 and additional analyses for LAN below), with 14 
LAN regions on the left hemisphere vs. 9 regions assigned to LAN by the Louvain algorithm on 
the right hemisphere. Overall, this result further demonstrates the quality of the network 
partition, given that all networks showed substantial inter-hemispheric symmetry with the 
expected exception of the LAN network. 

Subcortical Extension of the Cortical Network Partition 
 Previous functional atlases of the human brain have focused primarily on cortical 
network assignments. However, it is well established that vital neural computations are also 
implemented by subcortical regions. Furthermore, many of the subcortical nuclei form functional 
loops, via the thalamus, with cortical territories. Thus, we expanded our network mapping to 
subcortical structures to develop a comprehensive whole-brain functional network atlas. We built 
on recent efforts to extend cortical network definitions into cerebellum (Buckner et al., 2011) and 
striatum (Choi et al., 2012), but extended our network assignment to all subcortical structures, 
additionally including: thalamus, hypothalamus, amygdala, hippocampus, brainstem, and all of 
basal ganglia, in addition to all other subcortical nuclei (Fig. 1b). Together with the cortical 
partition this yielded a whole-brain solution for large-scale functional networks whose raw 
covariance matrix we present in Fig. 1d and Supplementary Fig. S6-S7.  

Briefly, we assigned each voxel to the network with which it shared the highest mean 
connectivity (using Pearson correlation) across cortical parcels. We then implemented a number 
of quality control cleanup steps to eliminate small parcels that may be noise-driven, or that may 
have been driven by partial volume effects near the edge of cerebellum (Fig. 4a; see Methods 
and Supplementary Fig. S8 for details). Parcels were also constrained to anatomical boundaries 
between major subcortical structures, as defined by Freesurfer, to conform to the gross anatomy 
of the subcortex. We computed a subcortical network solution using both resting-state fMRI data 
with and without GSR (hereafter referred to as wGSR and woGSR, respectively), due to 
concerns that low SNR in the subcortex may lead to extensive assignment of voxels to the visual 
networks (see Methods). The wGSR subcortical parcellation produced a largely symmetric 
solution with 358 parcels, presented in Fig. 4. This solution was highly replicable across split-
half samples, both qualitatively (Fig. 4b-c) and quantitatively (Fig. 4d-e, see Methods). The 
proportion of voxels that were assigned to the same network in both Discovery (N=168) and 
Replication (N=169) samples was highly significantly above chance for all networks (Fig. 4d). 
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After quality control cleanup steps were performed for each of these split-half solutions, the 
proportion of replicated voxels increased for all networks (with the exception of VMM,  Fig. 4e). 
Critically, we found that all 12 cortical networks, including higher-order associative networks 
(such as the FPN and CON), were represented in the subcortex with predominantly symmetrical 
and robustly replicable assignments. 

The woGSR parcellation also resulted in a highly symmetric and replicable solution 
(Supplemental Fig. S3 and Supplemental Fig. S4), despite the possibility of more noise being 
present due to global signal artifact. Voxelwise network assignment and cleanup steps were 
performed identically to the wGSR version, as described above. The woGSR parcellation 
produced 288 distinct subcortical parcels after all cleanup steps, and showed more extensive 
assignment of the visual networks. The number of voxels with stable assignments was 
significantly above chance for all networks given the total number of voxels in the subcortex. 

 

 
Figure 4. Subcortical partition solution workflow and statistics. A) Schematic workflow used to create 
subcortical partition. B & C) Split-half replication of the subcortical partition. The subcortical network 
assignment procedure was performed independently on two smaller sets of subjects matched for 
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demographic variables. D) Proportion of voxels in each network with replicated assignments, before any 
cleanup steps. Gray bars show proportion of voxels expected to replicate by chance given the size of each 
network. Solid and dashed red lines indicate upper and lower 95% confidence interval for chance, 
respectively. E) Proportion of voxels in each network with replicated assignments, after cleanup steps were 
performed (see Methods). The proportion of voxels with identical network assignments in both Discovery 
and Replication samples was significantly above chance for 11 out of the 12 networks (p<0.05) , suggesting 
that the subcortical solution is highly replicable. 
 

To additionally verify the subcortical network partition and evaluate the wGSR versus 
woGSR versions, we compared the network assignments to Motor task activation maps 
computed in the same sample of subjects. This task has previously been used for localizing 
motor regions in both the cortex and subcortex (Barch et al., 2013; Buckner et al., 2011; Cole et 
al., 2016a; Yeo et al., 2011) within the boundaries of the SMN. In the subcortex, while both the 
wGSR version (Fig. 5b) and the woGSR version (Fig. 5c) overlap with task-activated regions, 
the congruence of motor task activation with the wGSR version is higher both qualitatively and 
quantitatively (Fig. 5d). This effect was notable even with single task-related contrasts. As an 
exemplar, Fig. 5e highlights the task activation in the cortex of the left foot (LF) versus Cue 
contrast, which falls cleanly within the contralateral (right) SMN. In the subcortex, the wGSR 
version of the parcellation clearly delineates the task-activated area in the contralateral thalamus 
(Fig. 5f) and the ipsilateral (left) cerebellum (Fig. 5h). While the SMN in the woGSR version of 
the parcellation largely occupies the same areas, the overlap with task-activated regions is 
noticeably less clean (Fig. 5g, Fig. 5i). Due to this, we present results using the wGSR version of 
the subcortical parcellation for our remaining analyses, although the woGSR parcellation is also 
available as part of our public release. The high degree of convergence between our derived 
whole-brain networks and task-related activation patterns is a strong indication that these 
networks (even in the subcortex, where FC values were lower) are functionally relevant. 
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Figure 5. Convergence of cortical and subcortical network partition and motor task activation. The 
motor network is shown as evidence for valid extension of cortical functional networks to subcortical 
regions. A) Combined motor task responses for comparisons between two movements [(left foot > tongue), 
(left hand > tongue), (right hand > tongue), (right foot > tongue), and (tongue > right foot)] in the cortex, 
with the SMN outlined in green. B) Combined motor task responses in the subcortex, with the SMN from 
the wGSR subcortical parcellation outlined in fuchsia. Arrows highlight regions of convergence between 
task activation and SMN. C) Same data as B but with the woGSR SMN. D) Comparison of overlap 
between subcortical task activation and subcortical SMN from the wGSR and woGSR partitions. Dashed 
lines indicate 95% confidence interval for chance. Because the degree of convergence is higher for the 
wGSR version, we use this for all subsequent subcortical analyses presented in this study. E) Map of the 
left foot (LF) > tongue (T) contrast in the cortex, with the SMN outlined in green. F) Map of the left hand 
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(LH) > right hand (RH) contrast in the thalamus, with the SMN from the wGSR subcortical parcellation 
and G) the SMN from the woGSR subcortical parcellation outlined in fuchsia. H) Map of the LH > RH 
contrast in the cerebellum, with the SMN from the wGSR subcortical parcellation and I) the SMN from the 
woGSR subcortical parcellation outlined in fuchsia. Note the ipsilateral representation of the hand 
movements in the cerebellum and the higher convergence of the wGSR parcels relative to the woGSR 
parcels with task activation. 

 
Importantly, prior subcortical network assignment attempts did not incorporate the 

thalamus and the brain stem in their reported solutions. As noted, thalamic subnuclei are well-
known to form functional circuits with cortical networks (Barbas, 2000; Zhang et al., 2008) and 
have been shown to exhibit robust patterns of diffusion MRI-derived probabilistic tractography 
with cortical territories (Behrens et al., 2003). Therefore, it was vital to demonstrate that the 
subcortical network solution captures the well-established thalamic nuclei configuration. Two 
established thalamic structures are the lateral geniculate nucleus (LGN), which receives initial 
visual inputs from the retina via the optic nerve and projects in an organized anatomical fashion 
to V1 in the mammalian neocortex; and the medial geniculate nucleus (MGN), which relays 
auditory information from the inferior colliculus to the auditory cortex. Therefore, we tested 
whether our thalamic solution included the LGN and MGN (Fig. 6a). As expected, we observed 
that the LGN was assigned to the primary visual network (VIS1) and that the MGN was assigned 
to the auditory network (AUD). Notably, the MGN was not assigned to the auditory network in 
the woGSR version of the partition (Fig. 6b). Structural and functional connectivity of the LGN 
(Fig. 6d, f-j) and MGN (Fig. 6e, k-o) parcels defined by the partition reveal connectivity with 
expected visual (e.g. superior colliculi, primary visual cortex) and auditory (e.g. inferior colliculi, 
primary auditory cortex) processing regions respectively. 
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Figure 6. Thalamic network assignment. A) Network assignment of the thalamus and ventral 
diencephalon from the network partition described in the manuscript. Top row highlights the horizontal, 
sagittal, and coronal views of the lateral geniculate nucleus (LGN), indicated by green arrows, and the 
medial geniculate nucleus (MGN), indicated by pink arrows. White stars mark the voxel seeded for 
functional connectivity in D and E. Bottom row shows cross-sectional view of the parcellation at different 
slices. B) Network assignment of the thalamus and ventral diencephalon from the parcellation performed 
without GSR (woGSR). Without GSR, the auditory network assignment of the MGN was not 
distinguishable in the parcellation. C) Network assignment of thalamus and ventral diencephalon using 
cortical network parcellation from Yeo et al. (2011). Note the lack of an auditory network in the Yeo et al. 
(2011) partition limits the ability to map thalamus relative to the new partition reported here. D) Cortical 
functional connectivity of the bilateral LGN parcels. VIS1 parcels are outlined in blue. Right hemisphere is 
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shown; similar results were seen in the left hemisphere. E) Cortical functional connectivity of the bilateral 
MGN parcels. AUD parcels are outlined in blue. Right hemisphere is shown; similar results were seen in 
the left hemisphere. F) Probabilistic tractography (i.e. ‘structural’ connectivity) of the right primary visual 
cortex (V1) shown in flat cortical map. Seed grayordinate is highlighted with green dot and arrow. Cortical 
VIS1 network parcels are outlined in blue. Tractography results were computed from diffusion MRI data 
obtained from the same subjects and averaged over the entire group. G) Magnified view of V1 seed (green 
dot) in flat cortical map. H) Inflated cortical view of V1-seeded probabilistic tractography results. I) Right 
LGN identified using the Jülich atlas (Bürgel et al., 2006; Eickhoff et al., 2005), similar coordinates also 
reported in (Linzenbold et al., 2011; Marx et al., 2004; A. T. Smith et al., 2009). J) Tractography of V1 
seed to subcortex, including the right LGN (green arrows). White stars mark the right LGN voxel from 
which functional connectivity was seeded in D. Connectivity was strongest between V1, right LGN, and 
other visual processing regions, including the superior colliculus and brainstem nuclei (blue arrows). 
Results were similar for the left LGN. K) Probabilistic tractography of the right primary auditory cortex, 
displayed in flat cortical map. Seed grayordinate is highlighted with green dot and arrow. Cortical AUD 
network parcels are outlined in fuchsia. L) Magnified view of primary auditory seed (green dot) in flat 
cortical map. M) Inflated cortical view of auditory-seeded probabilistic tractography results. N) Right 
MGN identified using the Jülich atlas. O) Tractography of primary auditory seed to subcortex, including 
right MGN (purple arrows). White stars mark the right MGN voxel from which functional connectivity was 
seeded in E. Connectivity was strongest between right auditory cortex, right MGN, other thalamic nuclei, 
and auditory processing regions such as the inferior colliculi (blue arrow). Results were similar for the left 
MGN.  Abbreviations: Lat., lateral; Med., medial; Ant., anterior; Pos., posterior. 

 

Identification of Novel Functional Networks: Posterior Multimodal, Ventral Multimodal, 
and Orbito-Affective Networks 
 Three networks emerged from the reported network detection approach that, to our 
knowledge, do not correspond to previously-described large-scale networks in the human brain 
(Fig. 7). These networks include PMM (posterior multimodal), VMM (ventral multimodal), and 
ORA (orbito-affective) networks. We found converging evidence to support the robustness of all 
three networks. First, all three networks were present for both groups of subjects in the cortical 
split-half analysis (Fig. 2c). Second, all three networks had subcortical representations which 
were statistically significant at p<0.05 (with the exception of VMM) in a split-half replication of 
those assignments (Fig. 4d-e, Fig. 7, Methods). Third, the PMM and VMM networks were 
within one standard deviation of the cross-network mean confidence scores, suggesting 
equivalent confidence in these networks as better-established networks. While the ORA network 
exhibited the lowest confidence score, it was still well above chance, consistent with ORA 
regions having higher RSFC among themselves than with regions of other networks. Fourth, the 
inter-subject variability across the PMM network RSFC patterns was near the mean value across 
all networks (PMM inter-subject variability=0.41, cross-network mean=0.42), suggesting that 
PPM inter-subject variability was not appreciably different. In contrast, the VMM and ORA 
networks had somewhat higher inter-subject variability than the cross-network mean. While it is 
not possible to assess statistical significance of this result (due to this statistic being calculated 
across all subjects simultaneously, precluding the ability to use, e.g., t-tests), the high symmetry 
and replicability of these networks suggest these networks are well-defined. While we cannot 
altogether exclude the possibility that some of the subcortical network assignments were partially 
influenced by data smoothing (particularly in the case of VMM), together these results suggest 
that the three novel network identified here are robust and are therefore likely to be of broad 
functional relevance. It will nonetheless be important for future studies to further validate the 
existence of these network and better determine their functional roles. 
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Figure 7. New posterior multimodal, orbito-affective, and ventral multimodal networks. A) Cortical 
parcels that are part of the posterior multimodal (PMM) network as detected by the Louvain clustering 
algorithm. B) Subcortical areas that were identified as PMM based on correlation with cortical regions. C) 
Cortical seed map of the PMM network showing connectivity to all other parcels (within-network 
connectivity is 1 in all PMM parcels). D) Cortical parcels that make up the orbito-affective (ORA) network 
as detected by the Louvain clustering algorithm. E) Subcortical areas associated with the ORA network. F) 
Cortical seed map of the ORA network showing connectivity of this network to all other cortical parcels. 
G) Cortical parcels that are part of the ventral multimodal (VMM) network as detected by the Louvain 
clustering algorithm. H) Subcortical areas associated with the VMM network. I) Cortical seed map 
showing connectivity of the VMM network to all other parcels.  
 

Characterizing the Laterality and Function of the Language Network 
As mentioned above, the network identified as a language network (LAN, including well-

known language-related areas such as Broca’s and Wernicke’s areas) showed high asymmetry 
for its regions’ cortex-wide RSFC patterns. To further test the hypothesis that this network 
carries out language-related functionality, we first analyzed the LANGUAGE task fMRI data 
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provided by the HCP to map the amount of overlap of the derived whole-brain LAN network 
with language-activated grayordinates (see Fig. 8a-b for cortical and subcortical maps). This 
overlap was significantly higher than expected by chance (Fig. 8c), suggesting that these areas 
are indeed largely overlapping with language processing areas (>85% observed overlap). 
Second, we quantified the network’s asymmetry (see Methods) by calculating asymmetry for 
each cortical parcel (Fig. 8d) and subcortical voxel (Fig. 8e-f). Compared to other networks, the 
LAN network was appreciably more asymmetric in cortex (LAN vs VMM: t(336)=3.38, 
p=0.0008, LAN vs. mean of all other networks: p<0.00001, also see Fig. 8e). Further, there were 
more LAN parcels identified in the left hemisphere (14 parcels) than the right hemisphere (9 
parcels) of cortex. Also in subcortex, LAN emerged as one of the most asymmetric networks, as 
can be seen when comparing the proportion of non-overlapping subcortical voxels in left and 
right hemispheres. Similar left lateralization as in cortex was observed in subcortex when 
quantifying the proportion of total voxels in left and right hemisphere (left and right reversed for 
cerebellum, as expected). This asymmetry far exceeded chance levels (chance proportion of 
voxels in left subcortex/right cerebellum for all networks=0.50; proportion of voxels in left 
subcortex/right cerebellum for LAN=0.71;𝜒"=8.878, p=0.0029). In turn, we focused on a single 
asymmetric left-lateralized LAN region, area PSL. RSFC seed maps of left and right PSL (Fig. 
8g-h) were strikingly different, with left PSL showing high LAN connectivity and low CON 
connectivity, but right PSL showing the opposite pattern. The LAN regions overlapping with 
language task activations, observed strong left-lateralized lateralization, and qualitatively-distinct 
connectivity patterns in asymmetric regions together strongly support the hypothesis that this 
network implements language functionality.  
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Figure 8. Language network evaluation. A & B) Overlap between the language network (LAN, teal 
outline) from our resting-state based network partition and activations from an independent language 
processing task (collected in the same sample of 337 subjects) in cortical and subcortical regions. Pink 
areas indicate overlap between LAN and task activation. Underlay shows task activation t-statistics from 
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the ‘Story versus Baseline’ contrast of the LANGUAGE task, replicating the analysis conducted by Glasser 
and colleagues (2016). Note that t-scores are shown here because the high statistics resulted in infinity 
values when converting to Z-scores. C) Percentage overlap between LAN and task activation in the 
language processing task expected by chance (gray bar) and actual observed overlap in panels A&B (pink 
bar). Dashed lines indicate 95% confidence intervals. D) Cortical map displaying the asymmetry of parcels. 
The teal outline indicates the language network, which is highly asymmetric compared to the other 
networks, with left hemisphere dominance. E & F) Network asymmetry in the subcortex. Colored bars in 
Panel E show the proportion of subcortical voxels in each network that do not overlap when comparing left 
and right hemispheres. Complete asymmetry (no overlap) is indicated by dotted line at 100% for reference. 
gray bars indicate chance asymmetry calculated given the size of each network. Solid and dashed red lines 
indicate 95% upper and lower confidence intervals for chance respectively. Panel F displays the proportion 
of total voxels in left and right hemispheres for each network. Chance level for this measure is 50% for all 
networks; confidence intervals are calculated given the total number of voxels in each network. Because 
functional representation of left and right is reversed in the cerebellum relative to the rest of the brain (due 
to the midline crossing of projecting fibers (van Baarsen et al., 2016)), left and right cerebellar hemispheres 
were exchanged in calculating this measure. Like the cortical networks, panel E&F show that subcortical 
networks are symmetric in general, with a left lateralized LAN. In subcortex, VMM is also significantly 
asymmetric. G & H) Functional connectivity seed maps for left and right perisylvian language areas (PSL) 
based on resting-state data in 337 subjects. Both the left and right language seed area show strongest 
connections to ipsilateral regions.   
 

Improved Reproducibility and Statistics of  Language-Related Activation Using the 
Cortical-Subcortical Network Partition 

We next sought to demonstrate the practical utility of the network partition and its 
beneficial impact on actual data analysis. The partition could be applied in a variety of ways, 
such as interpreting task-evoked activations or functional connections in terms of a canonical set 
of functional networks. For this demonstration we focused on the identification of a putative 
“language” network. If this mapping is veridical in relation to the language system, then we 
hypothesized two effects to emerge: i) There should be high overlap between the language 
network and the task-evoked signal produced by the ‘Story versus Baseline’ LANGUAGE task 
(demonstrated in Fig. 8); ii) There should be an appreciable statistical improvement in the ‘Story 
versus Baseline’ LANGUAGE task contrast when going from a ‘dense’ grayordinate-level effect 
to a parcellated effect (as shown for several language-related local areas by Glasser et al. (2016)) 
in language network regions. Additionally, if the identified language network indeed maps onto 
independently-defined language-related task-evoked fMRI signal, then there should be even 
greater statistical improvement if computing the GLM-derived task-evoked signal across the 
entire language network. Showing such a statistical improvement would demonstrate a powerful 
and empirically useful application of the network partition for detecting neurocognitive effects in 
a more robust way. 

To address the second hypothesis, we calculated statistics for the ‘Story versus Baseline’ 
LANGUAGE task contrast after separately fitting the task GLM to: dense grayordinate-level 
time series data (Fig. 9a-b, identical to underlay in Fig. 8a), time series data averaged within a 
given parcel (Fig. 9c-d), and time series data averaged within a given whole-brain network (Fig. 
9e-f). As hypothesized, the t-statistic across the whole-brain LAN network was markedly higher 
when data were first averaged at the network level before fitting the task GLM, compared to 
fitting the task GLM on the ‘dense’ grayordinate level or parcel-level time series and then 
averaging across LAN regions (network t=24.71; parcel mean t=12.38, SD=10.91; dense mean 
t=8.50, SD=6.98; Fig. 9g). This effect was robustly present within the cortex (network t=24.71; 
parcel mean t=10.93, SE=11.66; dense mean t=8.74, SD=7.00; Fig. 9h) and the subcortex 
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(network t=24.71; parcel mean t=1.45, SD=3.86; dense mean t=3.37, SD=3.72; Fig. 9i). Overall, 
t-statistics for all three LANGUAGE task contrasts were markedly improved by fitting the task 
GLM to parcel-level time series, rather than fitting to dense time series and averaging across 
parcels afterwards (Fig. 9j, note sigmoidal deviation from diagonal). Importantly, t-statistics 
were further improved when the task GLM was fit on network-averaged time series, compared to 
parcellating by network after fitting on dense (Fig. 9i) or parcel time series (Fig. 9l). This result 
strongly supports that the signal-to-noise ratio was substantially improved by first averaging 
BOLD time series data within the identified LAN network. Of note, this result also reinforces the 
inference that the LAN asymmetry reflects true lateralization. Together, these task-evoked 
effects add confidence to the identified language network definition and demonstrate the 
practical utility of the network partition, which is released publicly as part of this study. 
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Figure 9. Demonstration of improved reproducibility and statistics with new partition. Panels A-F 
show task activations for a language processing (LANGUAGE task ‘Story versus Baseline’ contrast) task 
at three different levels.  A) Cortical activation map of dense-level analysis. B) Subcortical activation map 
of dense-level analysis. C) Cortical activation map of parcel-level analysis. Task fMRI data were first 
parcellated at the parcel level before model fitting. D) Subcortical activation map of parcel-level analysis. 
E) Cortical activation map of network-level analysis. Task fMRI data were first parcellated at the network 
level before model fitting. F) Subcortical activation map of network-level analysis. Yellow arrows 
highlight subcortical regions with a high task-activated t-score, which overlap with parcels in the LAN 
network. G) t-statistics (LANGUAGE task ‘Story versus Baseline’ contrast) shown in panels A-F 
significantly improve for the parcel-level vs. dense-level analysis, and for the network-level vs. parcel-level 
analysis in a combined cortex and subcortex analysis. Error bars are inter-parcel standard deviations. H) t-
statistics (LANGUAGE task ‘Story versus Baseline’ contrast) in cortex alone again show significantly 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 10, 2018. ; https://doi.org/10.1101/206292doi: bioRxiv preprint 

https://doi.org/10.1101/206292
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

33 

better results for the network-level analysis compared to the dense- and parcel-level analyses. I) t-statistics 
(LANGUAGE task ‘Story versus Baseline’ contrast) in subcortex showed substantially better results for the 
network-level analysis compared to the dense- and parcel-level analyses. Note that – in contrast to the 
results for cortex – parcel-level analysis in subcortex does not give an advantage over dense-level analysis. 
J) An improvement in t-statistics was found when task designs were fit on parcellated time series instead of 
on dense time series and subsequently averaging for parcels. Blue dots represent 718 parcels × 3 
LANGUAGE task contrasts (‘Story versus Baseline’; ‘Math versus Baseline’; ‘Story versus Math’). Insets 
show the 360 cortical parcels × 3 contrasts (top, green dots) and 358 subcortical parcels × 3 contrasts 
(bottom, purple dots) separately. K) Improvement in t-statistics was also found when fitting task designs on 
network time series compared to fitting on dense time series and then averaging for networks. Blue dots 
represent 12 networks × 3 LANGUAGE task contrasts. Insets show the 12 cortical networks × 3 contrasts 
(top, green dots) and 12 subcortical parcels × 3 contrasts (bottom, purple dots) separately. L) A further 
improvement in t-statistics was found when fitting on networks versus fitting on parcels and then averaging 
for networks. Blue dots represent 12 networks × 3 LANGUAGE task contrasts. Insets show the 12 cortical 
networks × 3 contrasts (top, green dots) and 12 subcortical parcels × 3 contrasts (bottom, purple dots) 
separately. 

 

DISCUSSION 
The human brain is a unified dynamical computational system that, ultimately, can only 

be understood as a whole. Simultaneously, understanding any dynamical system requires 
identifying its functional components and their interactions. We therefore sought to build on 
previously-developed network partitions to create a whole-brain network partition, identifying 
large-scale network communities of brain regions across both cortex and, for the first time, all 
subcortical areas. We created this whole-brain partition as a resource to aid neuroscience 
research generally, and we are therefore releasing the partition (along with the data and code that 
produced it) to the neuroscience community (available at 
https://github.com/ColeLab/ColeAnticevicNetPartition once through peer review). 
 
 As with all neuroscientific methods there are limitations to the approach used here 
(detailed below), but also several advantages. First, we used a large dataset relative to most 
neuroscientific studies to date (337 subjects), increasing the effective SNR and the likelihood 
that the results will generalize to new groups of individuals. Second, we used multiple quality 
control metrics to ensure stability and reliability of the network partition, which were found to be 
fairly high by all applied standards. Third, we used a principled approach to decide on the 
network partition algorithm and associated parameters, involving both stability optimization and 
calibration of parameters based on well-established neurobiologically-grounded constraints (e.g. 
the existence of primary sensory-motor networks). Fourth, we extended the cortical network 
partition to subcortical structures, resulting in a comprehensive map of brain-wide functional 
networks. Finally, we used task fMRI data to demonstrate a practical advantage of using this 
network partition: an increased ability to detect network-level functional activations. 
 Notably, previously published large-scale network partitions have already made a 
substantial positive impact on neuroscientific investigations across health and disease. We expect 
the network partition developed here to also be useful across a variety of neuroscientific 
investigations. For instance, the network partition could be used to interpret possible functions of 
a region-level activation using fMRI, EEG, or local field potentials. Alternatively, the network 
partition could be used in studies of network dynamics, placing interactions in a larger functional 
context to aid in summarizing and interpreting results. Another use of the network partition could 
be as a data reduction approach, increasing data processing efficiency while maintaining 
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functionally-meaningful large-scale network units. Finally, this partition makes it possible to test 
hypotheses about brain-wide functional network organization, spanning cortex, striatum, 
thalamus, amygdala, hippocampus, brainstem, the cerebellum, and other structures. It is also 
notable that unlike the brain region and brain network levels, lower levels of organization such as 
the neuron or local circuit are not expected to generalize across individuals. This is due to the 
very low likelihood of functionally-equivalent individual neurons aligning anatomically between 
individuals. Thus, like identifying brain regions, characterizing large-scale brain networks 
provides units of brain organization that can provide a testbed for the following question, “what 
does this brain structure do functionally across individuals?” – a key question for generalized 
understanding of human brain function. 

Extending Prior Network Partitions to Converge on a Global Characterization of Human 
Brain Network Organization 
 The network partition identified here is, as expected, similar in many ways to previously-
identified network partitions. However, there are several differences that provide novel 
discoveries regarding the large-scale network architecture of the human brain. Similar to both the 
Power et al. (2011) and Yeo et al. (2011) cortical network partitions, a variety of well-known 
sensory-motor and previously-discovered cognitive large-scale functional networks were 
identified. Common to both of these network partitions, we identified FPN, CON, DMN, DAN, 
visual, and somatomotor networks. Unlike Yeo et al. but similar to Power et al., we identified a 
separate auditory network consistent with the primary auditory cortical system. Notably, this 
auditory network was merged with the somatomotor network at various parameter settings of our 
network detection algorithm, consistent with the Yeo et al. result. This illustrates the difficulty of 
identifying the correct “data-driven” metrics when using a clustering algorithm – auditory and 
somatomotor regions are known to perform highly distinct functions yet their RSFC patterns 
were difficult to separate without explicitly forcing this neurobiologically-established separation. 

We identified three networks that, to our knowledge, have not been previously identified: 
PMM (posterior multimodal), VMM (ventral multimodal), and ORA (orbito-affective). Unlike 
the language network, we did not predict the existence of these networks based on the prior 
literature. Importantly, lack of pre-existing evidence of the VMM and ORA networks was likely 
driven by signal dropout in the proximity of these networks, due to magnetic field 
inhomogeneities from nearby sinuses (Deichmann et al., 2003). The multiband fMRI data used 
here (Uğurbil et al., 2013) appears to have reduced the signal dropout near sinuses. This is likely 
due to smaller voxels (2 mm cubic voxels used here rather than the standard-to-date 3+ mm 
voxels), which can reduce MRI signal dropout (Merboldt et al., 2000; Smith et al., 2013). The 
increased precision from using a cortical surface analysis (Anticevic et al., 2008), averaging 
across vertices within each parcel, and averaging with a large sample size likely all contributed 
to an increased ability to map RSFC in these dropout areas. While we found some evidence for 
lower SNR in these regions relative to other cortical regions, we also identified strong reliability 
of the networks using split-half validation (Fig. 2c & Fig. 3d) and found a symmetric, replicable 
and robust subcortical contribution to these networks, further validating these networks. It will 
be important for future studies to corroborate the existence of these networks, identify their 
functional roles, and enumerate the factors (such as voxel size) that affect the ability to detect 
them. 

It is unclear at this point what functions these networks might perform, given that they 
represent a novel discovery. While we appreciate this partially reflects reverse inference, we 
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used observations of the constituent parts of the networks to infer possible functionality and 
provide a label. This is most evident in the case of the ORA network, which overlaps with 
portions of cortex associated with “reward processing” functionality in posterior orbitofrontal 
cortex (Kahnt et al., 2011; Schultz, 2006). Corroborating this interpretation, ORA connected 
strongly with known reward-related areas in subcortex. These included the ventral striatum 
(Delgado et al., 2000; Schultz et al., 1992), midbrain nuclei consistent with the substantia nigra / 
ventral tegmental area (which contain dopamine neurons) (Fiorillo et al., 2003), and the globus 
pallidus (Justin Rossi et al., 2017). Further, this portion of cortex was modulated differentially by 
rewarding stimuli (Camara et al., 2010). This is consistent with a strong role for reward-related 
dopamine projections to ORA, suggesting strong reward processing functionality for this 
network. 

The VMM network consists of four cortical regions on the ventral surface of the temporal 
lobe. The VMM extends into subcortex only minimally, with a cluster in the right ventral 
striatum and small bilateral clusters in the hippocampus. One possible function of this network is 
to represent higher-order semantic categories, consistent with studies of anterior (Rogers et al., 
2006) and inferior temporal lobe (De Baene and Vogels, 2010). The novelty of this network 
reduces our ability to identify its functionality, however, such that it will be important for future 
studies to better determine what the functional specializations of this network might be.  

The PMM network consists of bilateral dorsomedial parietal lobe, bilateral temporal-
parietal-occipital junction, and right dorsocaudal temporal lobe. The PMM also extends into a 
variety of subcortical locations. These locations include: bilateral amygdala, portions of the 
brainstem, the putamen, multiple portions of cerebellum, a small portion of the caudate, a small 
portion of thalamus, and a portion of the diencephalon consistent with the basal forebrain. Most 
of these subcortical locations were assigned symmetrically across hemispheres and showed 
strong split-half replication. This demonstrates that while these assignments were widespread 
they were nonetheless robust, suggesting the existence of previously-unknown widespread PMM 
circuits. One possible function of this network could be spatial navigation, given the importance 
of dorsomedial parietal lobe for spatial navigation (Marchette et al., 2014). Additionally, PMM 
might be important for identifying and representing event structure in narratives, given that 
PMM regions were recently shown to represent long narrative structures during movie watching 
(Baldassano et al., 2017). It will be important for future studies to carefully map the PMM as 
identified here to particular functions such as spatial navigation and representing 
situational/narrative structures. 

Our ability to map the ventral surface of cortex presented a unique opportunity, since 
most previous network partitions omitted these territories due to MRI signal dropout. We not 
only identified two novel networks in these dropout zones, but were also able to test for 
expansion of previously-identified networks into an extensive portion of cortex for the first time. 
We found that orbitofrontal cortex (OFC) was split into thirds, with nearly equal assignment of 
OFC parcels to FPN, DMN, and ORA. It is notable that so much of OFC was assigned to FPN 
given that the FPN is classically described as primarily lateral prefrontal cortex and parietal 
cortex. This result suggests that the task-rule-oriented representations in lateral prefrontal cortex 
(Cole et al., 2011; Stokes et al., 2013) likely interact extensively with action-outcome and 
stimulus-reward associations in OFC (Kahnt et al., 2011). Indeed, some nonhuman primate 
studies have suggested such interactions occur during task performance (Wallis and Miller, 
2003). The present study suggests these interactions occur as a part of a global system likely 
specialized for cognitive control and associated goal pursuit (Cole et al., 2014b, 2013; Duncan, 
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2010). It will be important for future studies to more fully characterize the relationships between 
classic portions of FPN and these portions of OFC previously unassigned due to MRI signal 
dropout. 

Mapping a left-lateralized brain-wide language network in the human brain 
 Unlike many previous network partitions, we identified a whole-brain network highly 
consistent with language functionality. This was based on the proximity of its regions to the 
well-established Broca’s and Wernicke’s areas, its left lateralization being consistent with known 
left lateralization of language functionality (Gazzaniga, 2005; Gazzaniga et al., 1962), as well as 
its activation during a language task. Additionally, several of the regions included in this network 
were thoroughly investigated by Glasser et al. (2016), establishing these regions as distinct 
functional entities with clear language functionality. Notably, the Power et al. (2011) partition 
(updated and visualized more fully by (Cole et al., 2013)) included a network consistent with this 
language network, but labeled the “ventral attention network”. The present results suggest this 
network was previously mislabeled, since its connectivity pattern, anatomical location, and task 
activations are most consistent with language functionality. 
 One key feature of the language network identified here is its left lateralization. We 
found that the cortical language network was the most lateralized network in terms of RSFC 
pattern asymmetry (Fig. 3e, 8g, & 8h), that the subcortical voxels assigned to the language 
network were more left-lateralized than expected by chance (Fig. 8e & 8f), and that the language 
network overlapped more with language task activations than chance (Fig. 8a, 8b & 8c). 
Lateralization of language functionality is one of the most well-established findings in the human 
brain (Mesulam, 1998), making it somewhat surprising that this has not been emphasized in 
previous RSFC literature. A recent study (McAvoy et al., 2015) found that left-lateralized 
language functionality only emerged in their RSFC analysis when global signal regression was 
not included as a preprocessing step. Inconsistent with this, however, the Power et al. (2011) 
network similar to our identified language network was left lateralized (with dorsal and medial 
frontal network assignments being more extensive in the left hemisphere), despite use of global 
signal regression. Thus, while not performing global signal regression may have assisted our 
identification of the language network, it was unlikely that avoiding global signal regression was 
necessary to identify this network. 
 Beyond simply counting more language-assigned parcels in the left hemisphere (14 left, 9 
right), our use of pattern asymmetry was important for precisely quantifying lateralization. RSFC 
pattern asymmetry revealed that several language network regions had highly distinct global 
patterns of RSFC with their right-hemisphere homologues. This striking qualitative difference 
across homologous parcels is illustrated in detail in Fig. 8g & 8h. This parcel, which is 
consistent with Wernicke’s area on the left, was assigned with high confidence to the language 
network on the left but with high confidence to CON on the right. Consistent with this 
assignment difference, many regions with low RSFC for the left hemisphere parcel are high for 
the right hemisphere parcel, and vice versa. Together these results demonstrate the strength of 
left lateralization of the language network, both in terms of the number of left-lateralized parcels, 
asymmetry of global RSFC patterns, as well as its subcortical contributions. 

Mapping the complex relationships between subcortical structures and cortical networks 
We found that all 12 cortical functional networks, including higher-order associative 

networks (such as the FPN and CON), were reliably represented across the entire subcortex and 
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the cerebellum. This is consistent with known functional loops between all portions of cortex and 
thalamus (Behrens et al., 2003), which in turn loop through basal ganglia (Middleton and Strick, 
1994) and cerebellum (Kelly and Strick, 2003). Also consistent with the observed widespread 
connectivity between cortex and subcortical nuclei, various subcortical nuclei involving a variety 
of neurotransmitters (e.g., substantia nigra, basal forebrain, raphe nucleus) are known to project 
broadly throughout cortex (Herlenius and Lagercrantz, 2004). Finally, regions such as amygdala 
(Barbas, 2000; Jolkkonen and Pitkänen, 1998) and hippocampus (Eichenbaum et al., 2007) are 
thought to project to and from multiple cortical networks. Importantly, most of what is known 
about these subcortical structures comes from non-human animal studies or localized functional 
neuroimaging studies in humans, with relatively few focused RSFC studies (Buckner et al., 
2011; Choi et al., 2012). The reported results represent the first comprehensive attempt to assign 
each subcortical voxel to a given cortical network. In turn, we establish the replicability, 
stability, symmetry and task-evoked relevance of such a subcortical functional network solution. 
Nevertheless, there were some unexpected findings that will be important to follow up on in 
future research. First, we found that the language network exhibits notable connectivity with the 
amygdala. Second, we identified a large and robust subcortical contribution to the primary visual 
network, perhaps reflecting a distributed ‘attentional system’, involved in overt attention and 
wakefulness. Of note, we did explicitly enforce a separate of the V1 and secondary visual 
cortical networks. Recent work suggests that there may be some residual artifact associated 
primarily with visual and somatomotor systems (respiration, sleep, movement) (Bijsterbosch et 
al., 2017; Glasser et al., 2017). It may be possible that assignment of some subcortical structures 
to VIS1 is inflated due to this artifact (perhaps due to eyes open vs. closed correlating with 
sleep+respiration changes). This current limitation that can be improved in future iterations of 
the partition by leveraging recently proposed advances in temporal de-noising that circumvents 
global signal removal (Glasser et al., 2017). 

Importantly, prior subcortical network assignment attempts did not incorporate the 
thalamus and the brain stem in their reported solutions. As noted, thalamic sub-nuclei are well-
known to form functional circuits with cortical networks (Barbas, 2000; Zhang et al., 2008) and 
have been shown to exhibit robust patterns of diffusion MRI-derived probabilistic tractography 
with cortical territories (Behrens et al., 2003). Therefore, it was vital to demonstrate that the 
subcortical network solution captures the well-established thalamic nuclei configuration. A 
ubiquitously established thalamic structure is the lateral geniculate nucleus (LGN), which 
receives initial visual inputs from the retina via the optic nerve and projects in an organized 
anatomical fashion to V1 in the mammalian neocortex. Therefore, we established that our 
thalamic solution included LGN. We observed a well-preserved correspondence of the thalamic 
network assignment whereby the LGN was encompassed by the primary visual network (VIS1) 
(see Fig. 6). 
 

Limitations and opportunities for further improvement of the network partition 
 There are several limitations to the approach used here that represent important 
opportunities for future improvements to understanding the large-scale functional organization of 
the human brain. For instance, any network partition necessarily oversimplifies brain 
organization by removing/downplaying inter-network interactions. Nonetheless, it is useful to 
know the overall network organization while acknowledging the smaller/rarer interactions 
between networks. Additionally, this is not a fully exhaustive search over all possible network 
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organizations. Our partition was likely not fully optimal due to the need to use heuristics to 
identify network organization (for computational tractability) (Blondel et al., 2008; Girvan and 
Newman, 2002). This leaves open the possibility of more accurate network organizations in the 
future. Nonetheless, we assessed multiple algorithms and ran a large-scale parameter search, 
achieving a highly optimal and reliable network partition as quantified by a variety of quality 
assessment metrics. 
 Despite covering the whole brain (unlike most previous network partitions), we 
nonetheless maintained a cortical-centric approach. Specifically, we began by creating a cortical 
network partition, which was then extended into subcortical voxels by quantifying the 
relationship between subcortex with the cortical networks. This may introduce a cortico-centric 
bias as the subcortical solution is explicitly driven by defining the cortex partition first. 
Nonetheless, we used this approach to aid in bridging the currently cortico-centric view of 
human brain function to subcortical structures. We also used this approach given the historical 
utility of understanding subcortical functions based on connectivity with specific cortical 
structures. For instance, mapping cerebellar connectivity with cortex in macaque monkeys has 
aided in understanding functional specialization in cerebellum (Kelly and Strick, 2003). 
Furthermore, this approach has proved highly productive and impactful in prior attempts at 
mapping striatum and cerebellum onto cortical networks (Buckner et al., 2011; Choi et al., 
2012). We nonetheless expect that future research will benefit from a more even-handed 
partitioning of cortical-subcortical gray matter. This would involve creating functional-defined 
three-dimensional brain parcels in subcortical structures, just as was done as an initial step in 
cortex (Glasser et al., 2016). These parcels would then be included in a community detection 
algorithm along with the cortical parcels. This may reveal distinct subcortical parcels from what 
we identified here, in addition to potentially distinct networks. Notably, it is possible that two 
functional parcels that are neighbors in anatomical space could be merged in our current 
approach if they were both assigned to the same network. Nonetheless, we expect that our 
approach has advanced understanding of subcortical structures, putting them in the functional 
context defined by large-scale cortical networks. 

Additional improvements on the present network partition could stem from even more 
precisely defining the cortical parcels. Presently used parcels were identified based on 
convergence across multiple neuroimaging modalities (e.g., fMRI and structural MRI), likely 
limiting biases from any one modality. Nevertheless, certain decisions were made when deriving 
this parcellation that may be reconsidered in future. For instance, the Glasser parcels force the 
face and non-face representations in the primary motor homunculus to be merged (since primary 
sensory and primary motor regions were defined in part based on cytoarchitecture), even though 
it is clear that these portions of the motor homunculus have distinct RSFC patterns (Power et al., 
2011; Yeo et al., 2011). Despite such potential limitations the use of multiple modalities when 
defining parcels by Glasser and colleagues likely reduced biases present in any one modality 
(e.g., RSFC). 

There is evidence that global signal removal (GSR) is important for reducing respiratory 
and motion artifacts that plague RSFC (Power et al., 2017b, 2014). GSR was not used for the 
primary analyses in the cortex of the current study because Glasser et al.(2016) reported that 
GSR appreciably shifts RSFC gradients (relative to other modalities only minimally affected by 
respiratory/motion artifacts) used for identifying the cortical parcels, which could invalidate use 
of these regions in the present study. However, we used GSR in the subcortical parcellation to 
test the hypothesis that GSR could reduce the extensive assignment of low-SNR subcortical 
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voxels to the visual networks (Supplemental Fig. S3). As expected, the visual networks were 
less extensively represented in the version with GSR, but all networks were replicated 
significantly above chance in both the wGSR and woGSR versions. Because the wGSR version 
of the subcortical partition revealed known neurobiological structures such as the MGN as well 
as higher convergence of SMN with motor task activation, we present this version of the 
subcortical parcellation in our primary analyses, although many of the analyses using the woGSR 
version revealed comparable results (Supplemental Fig. S3-S4). Importantly, GSR may serve to 
reduce artifact-related noise in particular in the subcortex of these HCP data. Other studies in the 
literature have demonstrated that GSR helps to reduce noise even in data that has undergone 
ICA-FIX (Power et al., 2017a, 2017b, 2014), suggesting a need for further improvements in 
methods for removing global noise. Simultaneous with the present study an approach involving 
temporal independent components analysis (ICA) has been developed to remove global noise 
while leaving global signal of neural origin (Glasser et al., 2017). This results in RSFC with 
global noise distortions removed without GSR-driven distortions such as RSFC gradient shifts. 
Future work should generate a revised version of the partition after the parcellation has been re-
computed using this new temporal ICA de-noising method. 

We identified several previously-unidentified networks, finding at they replicated across 
independent sets of subjects. A major limitation of these discoveries, however, is the possibility 
that noise properties particular to the MRI sequences and scanner biased the results, driving the 
observed replication. It would be helpful to use alternative MRI sequences and scanners (or even 
highly distinct methods such as magnetoencephalography) to rule out this possibility in order to 
better validate these new networks. Additionally, these networks would be better validated if 
they were found to match coactivation patterns using task fMRI, as was the case with the 
language network being active during the language task and the somatomotor network during the 
motor task here. 

Another opportunity for future improvement is to better characterize the hierarchical 
nature of brain network organization. This reflects the fact that network organization is likely 
hierarchical in the sense that each large-scale brain network could be broken down into smaller 
and smaller components, eventually reaching the single-region level. Critically, however, we 
used a principled approach to define our target level of organization by setting parameters to 
detect well-established primary sensory-motor cortical systems. Thus, we created a whole-brain 
network partition intentionally defined as being at (or near) the same level of organization as 
these well-established brain systems. We therefore expect that the calibration of our community 
detection algorithm likely identified networks in association cortex that are at the same (or a 
similar) level of organization, and are therefore of similar importance for higher-level cognitive 
functions as primary sensory-motor systems are for perceptual-motor functions. Notably, this 
principled calibration may have led some previously-identified networks (such as the “salience” 
network (Power et al., 2011; Seeley et al., 2007)) to not be identified here, likely because they 
are at a lower level of organization (e.g., salience network being part of the cingulo-opercular 
network identified here) than the brain systems used for calibration. It will be important for 
future network partition efforts to characterize the hierarchical sets of networks at different levels 
of organization. 

Conclusions 
 The results presented here describe the current version (v1.0) of a novel whole-brain 
functional network characterization of the human brain. The primary purpose of this study is to 
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describe the network partition dataset, which is now publicly available. We additionally reported 
a series of quality assessments and validations of the provided network partition. We found 
evidence that the partition was of high quality and exhibited robust replicability across 
independent samples as well as across cortical and subcortical structures. While we propose a 
number of important future improvements of the provided version 1.0, this constitutes the most 
accurate estimate of whole-brain functional network organization in humans to date. We 
additionally demonstrated the existence of novel functional networks, such as the lateralized 
language network, providing additional understanding of human brain organization. The result 
was successfully applied to a language fMRI task, demonstrating strikingly improved statistical 
power to detect task-related activations when using the network partition. Collectively, this study 
demonstrates the value of this whole-brain network partition for scientific inquiry into human 
brain organization as well as specific task functionality. 
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