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Abstract

Motivation: Although seldom acknowledged explicitly, count data generated by sequencing platforms
exist as compositions for which the abundance of each component (e.g., gene or transcript) is only coherently
interpretable relative to other components within that sample. This property arises from the assay technology
itself, whereby the number of counts recorded for each sample is constrained by an arbitrary total sum
(i.e., library size). Consequently, sequencing data, as compositional data, exist in a non-Euclidean space
that renders invalid many conventional analyses, including distance measures, correlation coefficients, and
multivariate statistical models.

Results: The purpose of this review is to summarize the principles of compositional data analysis
(CoDA), provide evidence for why sequencing data are compositional, discuss compositionally valid meth-
ods available for analyzing sequencing data, and highlight future directions with regard to this field of study.

1 From raw sequences to counts
Automated Sanger sequencing served as the primary sequencing tool for decades, ushering in significant accom-
plishments including the sequencing of the entire human genome ([50]). Since the mid-2000s, however, attention
has shifted away this “first-generation technology” toward new technologies collectively know as next-generation
sequencing (NGS) ([50]). A number of NGS products exist, each differing in the sample preparation required
and chemistry used ([50]). Although each product tends toward a different application, they all work by deter-
mining the base order (i.e., sequence) from a population of nucleotides, such that it becomes possible to estimate
the abundances of unique sequences ([50]). However, these sequence abundances are not absolute abundances
because the total number of sequences measured by NGS technology (i.e., the library size) ultimately depends
on the chemistry of the assay, not the input material.

Depending on the input material, NGS has many uses. These include (1) variant discovery, (2) genome
assembly, (3) transcriptome assembly, (4) epigenetic and chromatin profiling (e.g., ChIP-seq, methyl-seq, and
DNase-seq), (5) meta-genomic species classification or gene discovery, and (6) transcript abundance quantifica-
tion ([50]). The application of NGS to catalog transcript abundance is better known as RNA-Seq ([50]) and can
be used to estimate the portional presence of transcript isoforms, gene archetypes, or other. RNA-Seq works by
taking a population of (total or fractionated) RNA, converting them to a library of cDNA fragments, optionally
amplifying the fragments, and then sequencing those fragments in a “high-throughput manner” ([73]). When
sequencing smaller RNA (e.g., microRNA), an additional size selection step is used to ensure a uniform size of
the RNA product ([36]).

The result of RNA-Seq is a virtual “library” of many short sequence fragments that are converted to a
numeric data set through alignment (most often to a previously established reference genome or transcriptome)
and quantification ([33]). The alignment and quantification steps summarize the raw sequence data (i.e., reads)
as a “count matrix”, a table containing the estimated number of times a sequence successfully aligns to a
given reference annotation. The “count matrix” therefore provides a numeric distillation of the raw sequence
reads collected by the assay; as such, it constitutes the data routinely used in statistical modeling, including
differential expression analysis ([33]). Two factors complicate alignment and quantification. First, assembled
references (e.g., genomes or transcriptomes) are only just references: sequences measured from biological samples
will have an expected amount of variation, either systematic or random, when compared with the reference.
This variation necessitates that the alignment procedure accommodates (at least optionally) a certain amount
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of mismatch ([16]). Meanwhile, some reads (notably short reads) can ambiguously map to multiple reference
sites, an undesired outcome that is amplified by mismatch tolerance ([16]). Many alignment and quantification
methods exist (e.g., TopHat ([68]), STAR ([18]), Salmon ([51]), and others) and are reviewed elsewhere (e.g.,
[29]; [27]; [42]; [21]; [34]; [9]; [72]; [8]).

The “count matrix” (or equivalent) produced by alignment and quantification is routinely analyzed using
statistical hypothesis testing (e.g., generalized linear models) or data science techniques (e.g., clustering or
classification). Most commonly, data are studied using differential expression analysis, a constellation of methods
that seek to identify which unique sequence fragments (if any) differ in abundance across the experimental
condition(s). Like alignment and quantification, many differential expression methods exist (e.g., Cufflinks
([69]), limma ([55]), edgeR ([56]), DESeq ([7]), and others) and are reviewed elsewhere (e.g., [17]; [54]; [63]; [26];
[35]; [59]; [61]; [65]; [49]). However, it is important to note that conclusions drawn from RNA-Seq data appear
to have a certain “robustness” to the choice in the alignment and quantification method, such that the choice
in the differential expression method impacts the final result most ([75]).

The focus of this review is not to elaborate on the niceties of alignment, quantification, or differential
expression, but rather to discuss the relative (i.e., compositional) nature of sequencing count data and the
implications this has on many analyses (including differential expression analysis). In this review, we show how
sequencing count data measure abundances as portions, rendering many conventional methods invalid. We then
discuss methods available for dealing with portional data. Finally, we conclude by discussing challenges specific
to these analyses and by considering advancements to this field of study. Although we emphasize RNA-Seq
data throughout this paper, the principles discussed here apply to any NGS abundance data set.

2 Counts as parts of a whole

2.1 Image brightness as portions
As an analogy, let us imagine that we instructed two photographers to take a series of black and white pho-
tographs using a digital camera. We can represent the captured images as a set of N -dimensional vectors where
each element (i.e., pixel) records the amount of light that hit a corresponding part of the film sensor. Consider-
ing this data set, let us ask a pointed experimental question: which photographer captured their photographs
in brighter light? Better yet, for which pixels, on average, did Photographer A capture brighter light than
Photographer B?

On first glance, this appears straight-forward. However, we want to know about the amount of light present
when the photograph was taken, not the amount of light recorded by the film sensor. Although related, many
factors influence the light measured at a given pixel. These include, for example, exposure time, aperture
diameter, and the sensitivity of the film sensor. Changing any one of these parameters will change the image.
Of course, such a change in the image does not mean a change in the reality.

At each pixel, we could then define two variables: luminance, the amount of light present at the moment of
the photograph, and brightness, the amount of light perceived by the film sensor. Intuitively, we can understand
brightness (the observed value, o), as a function, f , of luminance (the actual value, a):

o = f(a) (1)

Even if we do not know the function, f , that relates these two measures, we see here that the total brightness
recorded (i.e.,

∑
o) is an artifact of the conditions under which the luminance is measured. Yet, if we can assume

that the film sensor responds proportionally to light and does not clip (an unrealistic and idealized assumption),
then the portional brightness would equal the portional luminance:

o∑
o
=

a∑
a

(2)

In this scenario, we can understand each element of o as a portion of the whole. As such, the brightness of
a single pixel is only meaningful when interpreted relative to the total brightness (or to the brightness of the
other pixels). Importantly, it follows that the ratio of any two parts of brightness will equal the ratio of any
two parts of luminance.

2.2 Sequence abundance as portions
RNA-Seq data, through alignment and quantification, measure transcript abundance as counts. However, like
the brightness of a digitalized image, the amount of RNA estimated for each transcript depends on some factors
other than the amount of RNA molecules present in the assayed cell. Like a photograph, it is possible to change
the observed magnitude while keeping the actual input the same. As such, RNA-Seq count data are not actually
counts per se, but rather portions of a whole.
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Figure 1: The top panel shows the absolute abundances of 4 features measured across 4 samples. The bottom
panel shows their relative (i.e., portional) abundances for those same samples. Although Feature 4 is less
abundant in samples A and B, it appears equally abundant across all samples when viewed as portions. Although
Feature 1 is equally abundant across all samples, it appears more abundant in samples A and B when viewed
as portions.

In fact, this is a property of all NGS abundance data: the abundances for each sample are constrained by an
arbitrary total sum (i.e., the library size) ([63]). Since the library size is arbitrary, the individual values of the
observed counts are irrelevant. However, the relative abundances of the observed counts still carry meaning.
We can understand this by considering how, for a given sample, o, the library size (i.e.,

∑
o) cancels for a ratio

of any two transcripts, i and j:

oi
oj

=
oi/
∑

o

oj/
∑

o
(3)

Analogous to how the relationship between luminance and brightness is unique to each photograph, the
relationship between the actual abundances and the observed abundances is unique to each sample. Each
independent sample, whether derived from a human subject or a cell line, may have undergone systematic or
random differences in processing at any stage of RNA extraction, library preparation, or sequencing, causing
between-sample biases ([63]). As such, library sizes typically differ between samples, making direct comparisons
impossible ([63]). However, because the counts are portions of a whole, the interpretation is complicated even
when library sizes are constant. For example, a large increase (or large decrease) in only a few transcripts will
necessarily lead to a decrease (or increase) in all other measured counts ([63]). Figure 1 provides an abstracted
visualization of how this might happen.

3 Counts as compositional data

3.1 The definition of compositional data
Compositional data measure each sample as a composition, a vector of non-zero positive values (i.e., components)
carrying relative information ([2]). Compositional data have two unique properties. First, the total sum of all
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component values (i.e., the library size) is an artifact of the sampling procedure ([71]). Second, the difference
between component values is only meaningful proportionally (e.g., the difference between 100 and 200 counts
carries the same information as the difference between 1000 and 2000 counts ([71]).

Examples of compositional data include anything measured as a percent or proportion. It also includes
other data that are incidentally constrained to an arbitrary sum. NGS abundance data have compositional
properties, but differ slightly from the formally defined compositional data in that they contain integer values
only. However, except for possibly at near-zero values, we can treat so-called count compositional data as
compositional data ([43]; [53]). Note that it is not a requirement for the arbitrary sum to represent complete
unity: many data sets (including possibly NGS abundance data) lack information about potential components
and hence exist as incomplete compositions ([1]).

3.2 The consequences of compositional data
Compositional data do not exist in real Euclidean space, but rather in a sub-space known as the simplex ([2]).
Yet, many commonly used metrics implicitly assume otherwise; such metrics are invalid for relative data. This
includes distance measures, correlation coefficients, and multivariate statistical models ([12]). For composi-
tional data, the distance between any two variables is erratically sensitive to the presence or absence of other
components ([4]). Meanwhile, correlation reveals spurious (i.e., falsely positive) associations between unrelated
variables ([52]). In addition, multivariate statistics yield erroneous results because representing variables as
portions of the whole makes them mutually-dependent, multivariate objects (i.e., increasing the abundance of
one decreases the portional abundance of the others) ([12]). All of this applies to NGS abundance data too
([43]).

In the life sciences, count data are usually modeled using the Poisson distribution or negative binomial
distribution ([11]). For NGS abundance data, the negative binomial model is preferred because it accommodates
situations in which the variance is much larger than the mean, a common feature of biological replicates in RNA-
Seq studies ([63]). These models are necessary because analyzing non-normalized and non-transformed count
data as if they were normally distributed would imply that it is possible to sample negative and non-integer
values, contradicting the assumptions behind many statistical hypotheses ([15]) (although it is possible to
extend Gaussian analysis to counts by use of precision weights ([39])). Moreover, NGS abundance data are
compositional counts, not counts, meaning that the measured variables (i.e., components) are not univariate
objects ([13]).

3.3 Normalization to effective library size
Although the negative binomial distribution is still used to model NGS abundance data ([63]), doing so neces-
sitates (at the very least) an additional normalization step ([63]). The simplest normalization would involve
rescaling counts by the library size (i.e., the total number of mapped reads from a sample) ([63]), but this
does not transform compositional counts into absolute counts. Instead, analysts most often use other, more
elaborate normalization methods that (generally speaking) adjust the individual counts of each sample based
on the counts of a reference (or pseudo-reference) sample ([17]). The sum of these rescaled counts is called the
effective library size.

Effective library size normalization for RNA-seq data was first proposed in an attempt to address the
relative (i.e., closed) nature of the data through a method known as the trimmed mean of M (TMM) ([57]).
This normalization works by inferring an ideal (i.e., unchanged) reference from a subset of transcripts based on
the assumption that the majority of transcripts remain unchanged across conditions. Here, the reference was
chosen to be a trimmed mean ([57]), although others have proposed using the median over the transcripts as
the reference ([7]). The TMM normalizes data to an effective library size based on the principle that if counts
are evaluated relative to (i.e., divided by) an unchanged reference, the original scale of the data is recovered.
In the language of compositional data analysis, this approach is described as an attempt to “open” the closed
data, and is often criticized on the basis that “there is no magic powder that can be sprinkled on closed data
to make them open” ([3]). Yet, if the data were open originally (and only incidentally closed by the sequencing
procedure), this point of view is perhaps extreme. On the other hand, if the cells themselves produce closed
data by default (e.g., due to their limited capacity for mRNA production ([60])), any attempt to open the data
might prove futile.

Given the difficulties in identifying a truly unchanged reference (and in interpreting it correctly in the
case that closed data is being produced by the cells themselves) avoiding normalization altogether would seem
desirable. After all, the choice of normalization method impacts the final results of an analysis. For example, the
number and identity of genes reported as differentially expressed change with the normalization method ([41]),
as do false discovery rates ([40]). This also holds true for compositional metabolomic data ([58]). Moreover,
at least some normalization methods are sensitive to the removal of lowly abundant counts ([41]), as well as to
data asymmetry ([63]).
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Figure 2: The left panel shows a 3D scatter of 100 samples, belonging to one of two groups, measuring the
absolute abundances of 3 features. The right panel shows a ternary diagram of those same samples with the
3 features measuring relative (i.e., portional) abundances. Although the difference between the two groups is
apparent in absolute space, the boundary between them becomes unclear in relative space. Note that for these
relative data, it is not possible to reclaim a clear separation of the groups through transformation owing to the
limited number of features available and the magnitude of the noise.

4 Principles of compositional data analysis

4.1 Approaches to compositional data
In lieu of normalization, many compositional data analyses begin with a transformation. Although compositional
data exist in the simplex, Aitchison first documented that these data could get mapped into real space by
use of the log-ratio transformation ([2]). By transforming data into real space, measurements like Euclidean
distance become meaningful ([4]). However, it is also possible to analyze compositional data without log-ratio
transformations. One approach involves performing calculations on the components themselves (called the
“staying-in-the-simplex” approach) ([47]). Another involves performing calculations on ratios of the components
(called the “pragmatic” approach) ([32]). Nevertheless, many compositional data analyses still begin with a
log-ratio transformation.

Unlike normalizations, log-ratio transformations do not claim to open the data. Instead, the interpretation
of the transformed data (and some of their results) depend on the reference used. In contrast, normalizations
assume that an unchanged reference is available to recover the data (i.e., up to a proportionality constant)
as they existed prior to closure by sequencing. Yet, while log-ratio transformations are conceptually distinct
from normalizations, they are sometimes interpreted as if they were normalizations themselves ([25]). Although
this contradicts compositional data analysis principles, conceiving of transformations as normalizations is help-
ful in understanding their use in some RNA-Seq analyses. Such log-ratio “normalizations”, like conventional
normalizations, aim to recast compositional data in absolute terms, allowing for a straight-forward univariate
interpretation of the data. Like effective library size normalization, this is done through use of an ideal reference.

4.2 The log-ratio transformation
First, let us consider a small relative data set with only 3 features measured across 100 samples. These samples
belong to one of two groups. One of the features, “X”, can differentiate these groups perfectly. The other features,
“Y” and “Z”, constitute noise. We can turn an absolute data set into a compositional data set by dividing each
element of the sample vector by the total sum. Figure 2 shows how the relationship between the samples
(represented as points) changes when made compositional. Although the two groups appear clearly linearly
separable in absolute space, the boundaries between groups become unclear in relative space. Meanwhile, the
distances between samples become arbitrary.

When analyzing compositional data, it is sometimes possible to reclaim the discriminatory potential of
relative data through transformation. For example, by setting all or some of the features relative to (i.e.,
divided by) a reference feature, one might discover that the resultant ratios can separate the groups ([66]). In
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fact, any separation revealed by such ratios can be analyzed by standard statistical techniques ([66]). This
illustrates the concept behind the additive log-ratio (alr) transformation, achieved by taking the logarithm of
each measurement within a composition (i.e., each sample vector containing relative measurements) as divided
by a reference feature (i.e., xD) ([2]):

alr(x) =
[
ln

xi
xD

; ...; ln
xD−1

xD

]
(4)

Instead of a specific reference feature, one could use an abstracted reference. In the case of the centered
log-ratio (clr) transformation, the geometric mean of the composition (i.e., sample vector) is used in place of
xD ([2]). We use the notation g(x) to indicate the geometric mean of the sample vector, x. Note that because
these transformations apply to each sample vector independently, the presence of an outlier sample does not
alter the transformation of the other samples:

clr(x) =
[
ln

xi
g(x)

; ...; ln
xD
g(x)

]
(5)

Likewise, other transformations exist that use the geometric mean of a feature subset as the reference. For
example, the ALDEx2 package introduces the inter-quartile log-ratio (iqlr) transformation, which includes only
features that fall within the inter-quartile range of total variance in the geometric mean calculation ([24]; [25]).
Another, more complex, transformation, called the isometric log-ratio (ilr) transformation ([20]), also exists and
is used in geological studies ([15]) and at least one analysis of RNA-Seq data ([67]). The ilr transforms the
data with respect to an orthonormal coordinate system that is constructed from sequential binary partitions of
features ([13]). Its default application to standard problems has been criticized by Aitchison on the basis that
it lacks interpretability ([5]). Applications where the basis construction follows a microbiome phylogeny seem
an interesting possibility ([74]).

4.3 The log-ratio “normalization”
In some instances, the log-ratio transformation is technically equivalent to a normalization. For example, let us
consider the case where we know about our data the identity of a feature with a fixed abundance in absolute
space across all samples. We could then use a log-ratio procedure to “sacrifice” this feature in order to “back-
calculate” the absolute abundances. This is akin to using the alr transformation as a kind of normalization.
However, because a single unchanged reference is rarely available or knowable (although synthetic RNA spike-ins
may represent one way forward ([37])), we could try to approximate an unchanged reference from the data. For
this, one might use the geometric mean of a feature subset, thereby using a clr (or iqlr) transformation as if it
were a normalization.

Although log-ratio “normalizations” differ from log-ratio transformations only in the interpretation of their
results, transformations alone are still useful even when they do not normalize the data. This is because they
provide a way to move from the simplex into real space ([4]), rendering Euclidean distances meaningful. Impor-
tantly, clr- and ilr-transformed data impart four key properties to analyses: scale invariance (i.e., multiplying a
composition by a constant k will not change the results), perturbation invariance (i.e., converting a composition
between equivalent units will not change the results), permutation invariance (i.e., changing the order of the
components within a composition will not change the results), and sub-compositional dominance (i.e., using a
subset of a complete composition carries less information than using the whole) ([13]). Yet, the interpretation of
transformation-based analyses remains complicated because the analyst must consider their results with respect
to the chosen reference, or otherwise translate the results back into compositional terms.

4.4 Measures of distance
Euclidean distances do not make sense for compositional data ([4]). In contrast, the Aitchison distance does,
providing a measure of distance between two d-dimensional compositions, x and X ([4]):

d(x,X) =

√√√√ d∑
i=1

[
ln

xi
g(x)

− ln
Xi

g(X)

]2
(6)

Although the Aitchison distance is simply the Euclidean distance between clr-transformed compositions,
this distance (unlike Euclidean distance) has scale invariance, perturbation invariance, permutation invariance,
and sub-compositional dominance. Few other distance measures satisfy all four of these properties, including
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none of the metrics routinely used in hierarchical clustering ([45]) (a routine part of RNA-Seq analysis). The
property of sub-compositional dominance is especially important: even if the log-ratio transformation does not
normalize the data, the addition of more sequence data will never make two samples appear less distant. This
follows logically: as the amount of information available grows, the distance between samples should not shrink.

4.5 Measures of association
Like the Aitchison distance, there also exists a compositionally valid measure of association: the log-ratio
variance (VLR) measures the agreement between two components (a and b) across two or more compositions.
Specifically, it computes the variance of the logarithm of one component as divided by a second component.
As such, a D-component data set contains D2 associations (albeit with symmetry). Unlike Aitchison distance,
however, the VLR does not require a log-ratio transformation whatsoever; in fact, if using log-ratio transformed
data, the reference denominators would cancel out. Note that, while distances occur between compositions (i.e.,
between samples), associations occur between components (i.e., between transcripts).

VLR(a,b) = var
[
ln
ai
bi
; ...; ln

ak
bk

]
(7)

We can gain an intuition of the VLR by considering its formula. Recall that the relationship between
components is one of relative importance: for the feature pair [a,b], the coordinates [2, 4] and [4, 8] have
equivalent meaning. Therefore, it follows that the features a and b are associated if a

b remains constant across
all samples. Hence, we measure the variance of the (log-)ratios, such that VLR ranges from [0, inf] where 0
indicates a perfect association. Unfortunately, VLR lacks an intuitive scale, making non-zero values difficult to
interpret ([43]).

Importantly, the VLR is sub-compositionally coherent : the removal of a third feature c would have no bearing
on the variance of the (log-)ratio a

b . Yet, the VLR suffers from a key limitation: it is unscaled with respect
to the variances of the log components ([43]). In other words, the magnitude of VLR depends partially on
the variances of its constituent parts (i.e., var(a) and var(b)). This makes it difficult to compare VLR across
pairs (e.g., comparing a

b with b
c ) ([43]). Still, unlike correlation, the VLR does not produce spurious results for

compositional data, and in fact, provides the same result for both relative data and the absolute counter-part,
all without requiring normalization or transformation.

4.6 Principal Component Analysis
Just as there are problems regarding between-sample distances and between-feature correlations, it follows
that Principal Component Analysis (PCA) should not get applied directly to compositional data. Instead,
analysts could apply PCA to clr-transformed data (resulting in an additional centering of the rows after log-
transformation) ([6]). However, analysts must take care when interpreting the resultant PCA: covariances and
correlations between features now exist with respect to the geometric mean reference. As such, when plotting
features as arrows in the new coordinate space, the angles between them (i.e., the correlations) will usually
change when subsets of the data are analyzed. However, the distances between feature pairs (i.e., the links
between the arrow heads) remain invariable with respect to sub-compositions: these correspond to their log-
ratio variance ([6]). Meanwhile, the usual PCA plot (with samples as points in a new coordinate space) projects
the distances between samples using the Aitchison distance (which has the desired property of sub-compositional
dominance). In combining these into a joint visualization of features and samples, the resultant log-ratio biplot
(i.e., the “relative variation biplot”) reveals associations between samples and features, and can also be used to
infer power law relationships between features in an exploratory analysis ([6]). Such biplots are reminiscent of
the visualizations obtained by Correspondence Analysis (CA). In fact, CA can indeed be used to approximate
relative variation biplots provided the data are raised to a (small) power ([30]), the optimal size of which can
be obtained by analyzing sub-compositional incoherence ([31]). Using CA with power transformation has the
advantage that zeros in the data are handled naturally by the technique.

5 Compositional methods for sequence data

5.1 Methods for differential abundance
The ALDEx2 package, available for the R programming language, uses compositional data analysis principles
to measure differential expression between two or more groups ([24]; [25]). Unlike conventional approaches to
differential expression, ALDEx2 uses log-ratio transformation instead of effective library size normalization.
The algorithm has five main parts. First, ALDEx2 uses the input data to create randomized instances based
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on the compositionally valid Dirichlet distribution ([24]; [25]). This renders the data free of zeros. Second,
each of these so-called Monte Carlo (MC) instances undergoes log-ratio transformation, most usually clr or
iqlr transformation ([24]; [25]). Third, conventional statistical tests (i.e., Welch’s t and Wilcoxon tests for two
groups; glm and Kruskal-Wallis for two or more groups) get applied to each MC instance to generate p-values
(p) and Benjamini-Hochberg adjusted p-values (BH) for each transcript ([24]; [25]). Fourth, these p-values get
averaged across all MC instances to yield expected p-values ([24]; [25]). Fifth, one considers any transcript with
an expected BH < α as statistically significant ([24]; [25]).

Although popular among meta-genomics researchers for analyzing the differential abundance of operational
taxonomic units (OTUs) (e.g., [48]; [70]), the ALDEx2 package has not received wide-spread adoption in the
analysis of RNA-Seq data. In part, this may have to do with our observation that ALDEx2 requires a large
number of samples. This requirement may stem from its use of non-parametric testing, as suggested by the
reduced power of other non-parametric differential expression methods ([61]; [75]), for example NOISeq ([64]).
However, competing software packages like limma ([62]) and edgeR ([56]) also benefit from moderated t-tests
that “share information between genes” to reduce per-transcript variance estimates and increase statistical
power.

Still, even in the setting of large sample sizes, ALDEx2 has one major limitation: its usefulness depends
largely on interpreting the log-ratio transformation as a normalization. If the log-ratio transformation does
not sufficiently approximate an unchanged reference, the statistical tests will yield results that are hard to
interpret. Another tool developed for analyzing the differential abundance of OTUs suffers from a similar
limitation: ANCOM ([44]) uses presumed invariant features to guide the log-ratio transformation. The tendency
to interpret differential abundance results as if they were derived from log-ratio “normalizations” highlights the
importance of pursuing numeric and experimental techniques that can establish an unchanged reference. It also
highlights the benefit of seeking novel methods that do not require using log-ratio transformations as a kind of
normalization.

5.2 Methods for association
The SparCC package, available for the R programming language, replaces Pearson’s correlation coefficient with
an estimation of correlation based on its relationship to the VLR (and other terms) ([28]). The algorithm
works by iteratively calculating a “basis correlation” under the assumption that the majority of pairs do not
correlate (i.e., a sparse network) ([28]). Another algorithm, SPIEC-EASI, makes the same assumption that the
underlying network is sparse, but bases its method on the inverse covariance matrix of clr-transformed data
([38]).

The propr package ([53]), available for the R programming language, implements proportionality as intro-
duced in ([43]) and expounded in ([22]). Proportionality provides an alternative measure of association that is
valid for relative data. One could think of proportionality as a modification to the VLR that uses information
about the variability of individual features (gained by a log-ratio transformation) to give the VLR scale. It can
be defined for the i-th and j-th features (e.g., transcripts) of a log-ratio transformed data matrix, ãi and ãj , and
thus also depends on the reference used for transformation. Unlike SparCC and SPIEC-EASI, proportionality
does not assume an underlying sparse network.

At least three measures of proportionality exist. The first, φ, ranges from [0, inf] with 0 indicating perfect
proportionality ([43]):

φ(ãi, ãj) =
var(ãi − ãj)

var(ãi)
. (8)

Its definition adjusts the VLR (in the numerator) by the variance of one of the log-ratio transformed features
in that pair (in the denominator). The use of only one feature variance in the adjustment makes φ asymmetric
(i.e., φ(ãi, ãj) 6= φ(ãj , ãi)).

The second, φs, also ranges from [0, inf] with 0 indicating perfect proportionality, but has a natural symmetry
([53]). Its definition adjusts the VLR by the variance of the log-product of the two features:

φs(ãi, ãj) =
var(ãi − ãj)

var(ãi + ãj)
. (9)

The third, ρp, like correlation, takes on values from [−1, 1], where a value of 1 indicates perfect proportionality
([22]). Its definition adjusts the VLR by the sum of the variances of the log-ratio transformed features in that
pair (as subtracted from the value 1). Thus, ρp is symmetric.

ρp(ãi, ãj) = 1− var(ãi − ãj)

var(ãi) + var(ãi)
. (10)
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Note that ρp and φs are monotonic functions of one another (i.e., you can compute ρp directly from φs
and vice versa) (e.g., see ([22]) where φs is called β̃2). Unlike Pearson’s correlation coefficient, proportionality
coefficients tend not to produce spurious results ([53]). Instead, proportionality serves as a robust measure of
association when analyzing relative data ([43]). Although proportionality gives VLR scale, it is limited in that
its interpretation still depends partly on using transformation as a kind of normalization (i.e., for the calculation
of individual feature variances) ([22]). Still, its interpretability, along with its observed resilience to spurious
results, makes it a good choice for inferring co-expression from RNA-Seq data ([43]) or co-abundance from
meta-genomics data ([10]).

6 Challenges to compositional analyses

6.1 Challenges unique to count compositions
Compositional data analysis, because it relies on log-transformations, does not work when the data contain
zeros. Yet, count compositional data are notably prone to zeros, those of which could signify either that a
component is absent from a sample or otherwise only present at a quantity below the detection limit ([14]).
For NGS abundance data, the difference between a zero and a one might be stochastic. How best to handle
zeros remains a topic of ongoing research. However, it is common to replace zeros with a number less than
the detection limit ([14]). Other replacement strategies would include adding a fixed value to all components,
replacing zeros with the value one, or omitting zero-laden components altogether. A more principled (yet
computationally expensive) way of replacing zeros is the Dirichlet sampling procedure implemented in ALDEx2
(as described above). Note that the simple addition of a pseudo-count to all components does not preserve the
ratios between them, which can be amended by modifying the non-zero components in a multiplicative way
([46]).

Moreover, while count compositional data carry relative information, they differ from true compositional
data in that they contain integer values only. Restricting the data to integer space can introduce problems
with an analysis because the sampling variation becomes more noticeable as the measurements approach zero
([53]). In other words, the difference between 1 and 2 counts is not exactly the same as the difference between
1,000 and 2,0000 counts ([53]). While it is not mathematically necessary to remove low counts, analysts should
proceed carefully in their presence.

6.2 Challenges unique to sequencing data
In the second section, we discussed how between-sample biases render NGS abundances incomparable between
samples, thus necessitating normalization or transformation. However, we did not address two important sources
of within-sample biases for sequencing data. The first is read length bias, in which more reads map to longer
transcripts ([63]). The second is GC content bias, in which more reads map to high GC regions ([19]). Such
biases distort the ratios between features and are thus relevant to compositional analysis as well. Yet, because
within-sample biases are usually assumed to have the same proportional impact across all samples, they are
usually ignored ([63]). For the same reason, one might also ignore these biases when interpreting NGS abundance
data as compositions (as long as we are only interested in between-sample effects). However, if a sample were to
contain, for example, a polymorphic or epigenetic change which alters the size or GC content of a transcript, the
compositional nature of sequencing data could cause a skew in the observed abundances for all other transcripts
(for reasons suggested by Figure 1). More work is needed to understand the extent to which within-sample
biases impacts compositional data analysis in practice.

6.3 Limitations of transformation-based analysis
Formal transformation-based approaches often suffer from a lack of interpretability or otherwise get interpreted
erroneously. For example, when using the centered log-ratio (clr) transformation, one may be tempted to
interpret the transformed data as if they referred to single features (e.g., transcripts); however, the transformed
data actually refer to the ratios of the transcripts to their geometric mean. As such, an analyst must interpret
results with regard to their dependence on this mean. Moreover, because the geometric mean can change with
the removal of features, the transformed data are incoherent with respect to sub-compositions.

When log-ratio transformations are used for scaled measures of association (i.e., proportionality), the re-
sulting covariations depend on the implicitly chosen reference. Therefore, they will not give the same results
for absolute and relative data (unless both data were transformed). The formal relationship of results when
applying ρp with and without transformation is investigated elsewhere ([22]). Although lacking a natural scale,
the log-ratio variance (VLR) has an advantage in that it provides identical results for both absolute and relative
data, without requiring normalization or transformation.
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6.4 The merits of ratio-based analysis
Aitchison’s preferred summary of the covariance structure of a compositional data set was a matrix containing
the log-ratio variances for all feature pairs (i.e., the variation matrix) ([2]). Although this matrix formally
contains a lot of redundant information, an analyst who is familiar with the features might still find this kind of
representation useful. Recently, the focus on ratios has been called the “pragmatic” approach to compositional
data analysis ([32]), and offers some benefits. For one, transformation (i.e., the restriction to ratios with the same
denominator) is not needed. Instead, the ratios can be dealt with directly as if they were unconstrained (i.e.,
absolute) data ([66]). Moreover, ratios may carry a clear meaning to the analyst interpreting them. Recently,
Greenacre proposed a formal procedure to select a non-redundant subset of feature pairs that contains the entire
variability of the data ([32]).

Such ratio-based analyses are also applicable to NGS abundance data. For example, Erb et al. proposed
a method to identify the differential expression of gene ratios, a technique comprising part of what is termed
differential proportionality analysis ([23]). When comparing gene ratios across two groups, this method selects
ratios in which only a small portion of the total log-ratio variance (i.e., VLR) is explained by the sum of the
within-group log-ratio variances ([23]). These selected gene ratios tend to show differences in the group means
of those ratios, analogous to how genes selected by differential expression analysis show differences between
their means ([23]). Reinforcing the analogy further, Erb et al. have shown how it is possible to use the limma
package to apply an empirical Bayes model with underlying count-based precision weights ([62]; [39]) to gene
ratios, thus quantifying “second order” expression effects while still avoiding normalization ([23]).

In addition to measuring differences in the means of gene ratios between groups, ratio-based methods (such
as those used in differential proportionality analysis) can also help identify differences in the coordination
of gene pairs. Such “differential coordination analysis” would otherwise depend on correlation ([76]), and
therefore fall susceptible to spurious results. Instead, we can harness the advantages of the VLR to define
a sub-compositionally coherent measure that tests for changes in the magnitude (i.e., slope of association) or
strength (i.e., coefficient of association) of co-regulated gene pairs. Moreover, ratio-based analyses could work as
normalization-free feature selection methods for data science applications (such as clustering and classification).
Such techniques would especially suit large data sets aggregated from multiple sequencing centers, platforms,
or modalities, where heterogeneity and batch effects are not easily normalized.

7 Summary
All NGS abundance data are compositional because sequencers sample only a portion of the total input material.
However, RNA-Seq data might have compositional properties regardless owing to constraints on the cellular
capacity for mRNA production. Whatever the reason, compositional data cannot undergo conventional analysis
directly, at least without prior normalization or transformation. Otherwise, measures of differential expression,
correlation, distance, and principal components become unreliable.

In the analysis of RNA-Seq data, effective library size normalization is used to recast the data in absolute
terms prior to analysis. However, successful normalization requires meeting certain (often untestable) assump-
tions. Alternatively, log-ratio transformations provide a way to interrogate the data using familiar methods, but
analysts must interpret their results with respect to the chosen reference. Sometimes, log-ratio transformations
can be used to normalize the data, but this requires an approximation of an unchanged reference. Instead, shift-
ing focus to the analysis of ratios yields methods that avoid normalization and transformation entirely. These
ratio-based methods may represent an important future direction in the compositional analysis of relative NGS
abundance data.
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