
 

 

 
Explainable machine learning predictions to help anesthesiologists prevent 

hypoxemia during surgery 
 
Authors:  Scott M. Lundberg1, Bala Nair2,6, Monica S. Vavilala2,6, Mayumi Horibe4, Michael J. 
Eisses2,3, Trevor Adams2,3, David E. Liston2,3, Daniel King-Wai Low2,3, Shu-Fang Newman2, Jerry 
Kim2,3, Su-In Lee1,5* 

 
Affiliations: 
1Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, 
USA. 
2Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA. 
3Seattle Children’s Hospital, Seattle, WA, USA. 
4Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA. 
5Department of Genome Sciences University of Washington, Seattle, WA, USA. 
6Harborview Injury Prevention and Research Center, Seattle, WA, USA 
*To whom correspondence should be addressed:  suinlee@cs.washington.edu 

 
One Sentence Summary: We present a new machine learning based system called Prescience that 
provides interpretable real-time predictions to help anesthesiologists prevent hypoxemia during surgery.  
 
Abstract: Hypoxemia causes serious patient harm, and while anesthesiologists strive to avoid 
hypoxemia during surgery, anesthesiologists are not reliably able to predict which patients will have 
intraoperative hypoxemia. Using minute by minute EMR data from fifty thousand surgeries we 
developed and tested a machine learning based system called Prescience that predicts real-time 
hypoxemia risk and presents an explanation of factors contributing to that risk during general 
anesthesia. Prescience improved anesthesiologists’ performance when providing interpretable 
hypoxemia risks with contributing factors. The results suggest that if anesthesiologists currently 
anticipate 15% of events, then with Prescience assistance they could anticipate 30% of events or an 
estimated additional 2.4 million annually in the US, a large portion of which may be preventable 
because they are attributable to modifiable factors. The prediction explanations are broadly consistent 
with the literature and anesthesiologists’ prior knowledge.  Prescience can also improve clinical 
understanding of hypoxemia risk during anesthesia by providing general insights into the exact changes 
in risk induced by certain patient or procedure characteristics. Making predictions of complex medical 
machine learning models (such as Prescience) interpretable has broad applicability to other data-driven 
prediction tasks in medicine. 
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Introduction 
Over 200 million surgeries are performed worldwide every year, with 30 million in the United States 
alone (1). Though an integral part of healthcare, surgery and anesthesia pose considerable risk of 
complications and death. Studies have shown a perioperative mortality rate of 0.4 to 0.8% and a 
complication rate of 3 to 17%, just in industrialized countries (2, 3). Fortunately, half of these 
complications are preventable (2, 3). With increasing adoption of electronic medical record systems, 
high fidelity heterogeneous data are being captured during surgery and anesthesia care, yet the 
utilization of these data to improve patient safety and quality of care remains poor (4). There is untapped 
potential for data science to utilize perioperative data to positively impact surgical and anesthesia care 
(5). Recognizing this unmet need and leveraging recent advances in perioperative informatics, we 
present new data science methods to predict harmful physiological events and so inform 
anesthesiologists.   

Hypoxemia or low arterial blood oxygen tension is an unwanted physiological condition and can cause 
serious patient harm during general anesthesia and surgery (6). Hypoxemia is associated with cardiac 
arrest, cardiac arrhythmias, postoperative infections and wound healing impairments, decreased 
cognitive function and delirium, and cerebral ischemia through a number of metabolic pathways (7). 
Despite the advent and use of pulse oximetry to continuously monitor blood oxygen saturation (SpO2) 
during general and regional anesthesia, hypoxemia can neither be reliably predicted nor prevented (8). 
Real-time blood oxygen monitoring through pulse oximetry only allows anesthesiologists to take 
reactive actions to minimize the duration of hypoxemic episodes after occurrence. If hypoxemia can be 
predicted or anticipated before it occurs, then actions can be taken by anesthesiologists to proactively 
prevent hypoxemia and minimize patient harm. 

Machine learning (ML) techniques use statistical methods to infer relationships between patient features 
and outcomes in large datasets, and have been successfully applied to predict adverse events in health 
care settings, such as sepsis, or patient deterioration in the intensive care unit (9–12).  Yet ML 
techniques to predict adverse events such as hypoxemia in a considerably more critical and complex 
setting such as the operating room are currently lacking.  Moreover, though previous complex ML 
approaches provide good prediction accuracy, their application in an actual clinical setting is limited 
because their predictions are difficult to interpret, and hence not actionable. Interpretable methods 
explain why a certain prediction was made for a patient, i.e., specific patient characteristics that led to 
the prediction. This lack of interpretability has thus far limited the use of powerful methods such as deep 
learning and ensemble models in medical decision support. 

We present an ensemble model based machine learning method, Prescience, that predicts the near-term 
risk of hypoxemia during surgery and explains the patient and surgery specific factors that led to that 
risk (Figure 1). We believe this is an important step forward for machine learning in medicine because 
while machine learning models have significantly improved the ability to predict a patient’s future 
condition (13), the inability to explain the predictions from accurate, complex models is a serious 
limitation. Understanding what drives a prediction is important for determining targeted interventions in 
a clinical setting. For this reason, machine learning methods employed in clinical applications avoid 
using complex, yet more accurate models and retreat to simpler interpretable (e.g., linear) models at the 
expense of poorer accuracy. We demonstrate how to retain interpretability, even when complex models 
such as nonparametric methods or deep learning are used, by developing a method to provide 
theoretically justified explanations of model predictions building on recent advances in model-agnostic 
prediction explanation methods (14–16). This allows these accurate, but traditionally hard to interpret, 
models to be used while still providing intuitive explanations of what led to a patient’s predicted risk. 
Our ability to provide simple explanations of predictions from arbitrarily complex models eliminates the 
typical accuracy vs. interpretability tradeoff, thus allowing broader applicability of machine learning to 
medicine. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 21, 2017. ; https://doi.org/10.1101/206540doi: bioRxiv preprint 

https://doi.org/10.1101/206540


Prescience was trained to use standard operating room sensors to predict hypoxemic events in the near 
future and explain why an event is, or is not, likely to occur.  It departs from the relatively few previous 
approaches to this problem in two important ways: First, unlike ElMoaqet et al. who used a linear 
autoregressive support vector machine on arterial oxygen saturation times series (9), and Tarassenko et 
al. who used Parzen windows to find outliers from five input patient measurement types (17), Prescience 
integrates a comprehensive dataset from a hospital’s Anesthesia Information Management System 
(AIMS) (see Methods for details). The AIMS data consists of high fidelity real-time data – such as time 
series data from patient monitors and anesthesia machines, bolus and infusion medications, input and 
output fluid totals, laboratory results, templated and free text descriptions of anesthesia techniques and 
management, and static data – such as American Society for Anesthesiology (ASA) physical status, 
surgical procedure and diagnoses codes (18), as well as patient demographic information such as age, 
sex, smoking status, height and weight. By continuously integrating a broad set of patient and procedure 
features extracted from the AIMS data, Prescience surpasses human-level accuracy while maintaining 
consistent performance during every minute of a surgery. 

Second, Prescience explains why a prediction was made, regardless of the complexity of the machine 
learning model used to make the prediction. Significant progress has been made recently integrating 
predictive machine learning solutions into medical care (9–12). However, accurately and intuitively 
conveying to doctors why a prediction was made remains a key challenge. For example, a numeric 
representation of risk (e.g., 2.4 odds ratio in Figure 1) is useful. However, a more detailed presentation 
that shows the risk is due to the patient’s BMI, current tidal volume, and pulse rate is more clinically 
meaningful since some factors may be modifiable and result in clinical changes mitigating that risk.  

 
Fig 1.  Prescience integrates many data sources into a single risk, which is explained through a 
succinct visual summary. A wide variety of data sources were used to build a predictive model of 
hypoxemia events. An explanation (shown above) is then built for each prediction. Purple features have 
values that increased risk, while green features decreased hypoxemia risk. The combination of impacts of 
all features is the predicted Prescience risk; in this case the odds are 2.4 times higher than normal. 
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Results  
To demonstrate the value of Prescience’s explained predictions and gain insight into factors affecting 
intraoperative hypoxemia, we present the following results: 1) a comparison of Prescience hypoxemia 
predictions against anesthesiologists’ predictions with and without the aid of Prescience, 2) an example 
of how Prescience explains hypoxemia risk at a specific time-point during a surgical procedure, 3) a 
comparative summary of relevant AIMS data features for hypoxemia prediction chosen by Prescience 
and by anesthesiologists, and 4) a detailed presentation of key risk factors for hypoxemia identified by 
Prescience.  

 
Prescience overview – data preparation, model learning and feature importance estimation 

Based on World Health Organization recommendations and for the purposes of prediction, we defined 
hypoxemia as the drop in SpO2, i.e., arterial blood oxygen saturation as measured by pulse oximetry, to 
92% or lower (see Methods; Supplementary Figure 1). From the AIMS data, we extracted 3,797 static 
features for each patient and an expanded set of 3,905 real-time and static features for each time point 
during surgery (see Methods; Supplementary Table 1). We excluded cases (heart transplant, lung 
transplant, tracheostomy, and coronary artery bypass surgeries) in which SpO2 and other hemodynamic 
parameters can be significantly affected by non-physiological measurements such as during 
cardiopulmonary bypass. All the experiments were performed after appropriate Institutional Review 
Board (IRB) approval (see Methods), with clinical data summarized in Table 1. 

 
Table 1. Patient and procedure characteristics. Histograms summarizing basic 
properties of the anesthesia procedures used for training (ASA stands for American 
Society of Anesthesiologists, and BMI means Body Mass Index). Prescience was trained 
and evaluated using data from 53,126 procedures recorded at two hospitals over two years. 

 
We trained a gradient boosting machine model (19) to solve the following two types of prediction 
problems: A) initial prediction: predicting at the start of a procedure the risk of hypoxemia anytime 
during a procedure based on the static features, and B) real-time prediction: predicting in the next 5 
minutes at various points of the operative period based on real-time and static features collected up to 
that time point. For task A) we used 42,420 procedures as training samples to train the gradient boosting 
machine, 5,649 procedures as validation samples to choose the tuning parameters for the gradient 
boosting machine (and other prediction models for comparison), and 5,057 as test samples for 
comparing across different prediction models (Supplementary Figure 4).  For task B), we used 8,087,476 
time points as training samples, 1,053,629 as validation samples, and 963,674 as test samples, where all 
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time points from the same procedure were included in the same sample set (Supplementary Figure 3).  
To ensure that there was no bias towards the final test set, the test data was initially compressed and left 
compressed until method development was completed. 
As shown in Supplementary Figures 3 and 4, the gradient boosting machine outperforms alternative 
prediction models previously used for similar problems.  
For tasks A) and B), we use 198 and 523 test samples respectively for evaluating anesthesiologists’ 
performance for initial and real-time prediction tasks, respectively (see below).  Prescience outputs the 
risk prediction and its explanations (Figure 1; Figure 3A) which show a set of features that increased 
(purple-colored) and decreased (green-colored) the risk.  
We developed an efficient, theoretically justified machine learning technique to estimate the importance 
of each feature on a prediction made for a single patient, which drives real-time explanations (Figure 3) 
for the Prescience model. We verified the quality of the explanations given to the anesthesiologists (in 
the experiments described below) by comparing the explanations with the change in model output when 
a feature is perturbed (Supplementary Figure 5).  We also developed effective visualizations of these 
explanations that encodes them in a compact visual form for anesthesiologists (Figure 1; Supplementary 
Figures 6-8), and a more detailed visualization which highlights the relevant contributing features 
(Figure 3) (see Methods for details).  
 

Prescience improves anesthesiologist’s ability to predict hypoxemia 
To test the potential of Prescience to aid hypoxemia prediction we replayed prerecorded surgery data 
from test sample procedures in a web-based visualization to five practicing anesthesiologists 
(Supplementary Figures 6-8). Each anesthesiologist was given two types of prediction tasks: A) initial 
prediction (198 tasks), and B) real-time prediction (523 tasks). For each prediction task, 
anesthesiologists were asked to provide a relative risk of hypoxemia as compared to a normal acceptable 
risk, for example, 0.01 for 1/100th the normal risk or 3.4 for 3.4 times the normal risk. These relative 
risks were then used to calculate standard receiver operating curves averaged over five anesthesiologists 
as shown in Figure 2 which plots the true positive rate (i.e., % of desaturations correctly predicted) in 
the y-axis against the false positive rate (i.e., % of non-desaturations incorrectly predicted) in the x-axis. 

Figure 2A-B shows that for both types of prediction tasks, predictions made by Prescience (purple) are 
considerably more accurate than anesthesiologists’ predictions (green). The prediction accuracy of 
anesthesiologists (green) markedly improved when the anesthesiologists were given Prescience’s risk 
prediction and its explanations in addition to the original procedure data (blue) (Supplementary Figures 
6-8). A clear separation between the performance of anesthesiologists with (blue) and without (green) 
the aid of Prescience is observed for both initial prediction (Figure 2A, P-value < 0.0001) and real-time 
prediction (Figure 2B, P-value < 0.0001). This suggests that Prescience can enhance anesthesiologists’ 
assessment of future risk and their ability to proactively anticipate hypoxemia events.  Interestingly, the 
prediction performance of anesthesiologists with Prescience explanations (blue) was slightly lower than 
direct predictions from Prescience (purple). This means that when the anesthesiologists adjust their risk 
estimate for a patient away from what Prescience originally predicted they are more likely to be wrong 
than right.  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 21, 2017. ; https://doi.org/10.1101/206540doi: bioRxiv preprint 

https://doi.org/10.1101/206540


 
Fig 2. Pooled comparison of five anesthesiologists’ prediction performance with and 
without assistance by Prescience. Receiver Operating Characteristic (ROC) plots comparing 
five anesthesiologists’ predictions from recorded data with and without Prescience assistance. 
Light colored lines represent individual anesthesiologist’s performances; dark lines represent 
their average performance.  (A) For initial risk prediction, anesthesiologists (green, AUC = 0.60) 
performed significantly better with Prescience assistance (blue, AUC = 0.76; P-value < 0.0001) 
than without Prescience assistance, and Prescience performed better in a direct comparison with 
anesthesiologists (purple AUC = 0.83); P-value = 0.0003). (B) For intraoperative real-time (next 
5 minute) risk prediction anesthesiologists (green, AUC = 0.66) again performed better with 
Prescience assistance (blue, AUC = 0.78; P-value < 0.0001), and Prescience alone outperformed 
anesthesiologists predictions (purple, AUC = 0.81); P-value = 0.0068). Note that The False 
Positive Rate (FPR) (x-axis) measures how many points without upcoming hypoxemia were 
incorrectly predicted to have upcoming hypoxemia. The True Positive Rate (TPR) (y-axis) 
measures what percentage of hypoxemic events was correctly predicted. P-values were 
computed using bootstrap resampling over the tested time points. 

 
To avoid the scenario in which an anesthesiologist is tested on the same prediction task twice – one with 
and the other without Prescience, we created replicate test sets by dividing the prediction tasks into two 
groups of similar size: (100, 98) tasks for initial prediction and (260, 263) tasks for real-time prediction. 
Each of the five recruited anesthesiologists was assigned to receive Prescience’s assistance in one of 
these two replicate test sets (Methods). The procedures shown to anesthesiologists were chosen such that 
~50% showed at least one incident of hypoxemia (for preoperative prediction), and time points were 
chosen such that ~33% had hypoxemia in the next 5 minutes (for intraoperative prediction). 

If we extrapolate the real-time results to the 30 million annual surgeries in the US under the assumption 
that doctors anticipate 15% of hypoxemic events while SpO2 is still ≥ 95, then with Prescience assistance 
they may be able to anticipate 30% of these events, or approximately 2.4 million additional episodes of 
hypoxemia annually (defined here as SpO2 ≤ 92). Since 20% percent of the Prescience risk prediction is 
based on drugs and settings under the control of the anesthesiologist (Supplementary Table 5; 
Supp_RealtimeFeatureTable_5.csv), a large portion of these predicted events may be preventable. 
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Explained risks reveal both procedure and time specific effects 

An explanation from Prescience represents the effects of interpretable groups of patient features (see 
Figure 1 and Figure 3A). These effects explain why the model predicted a specific risk, and thus allow 
an anesthesiologist to plan appropriate interventions. In Figure 1 only the most significant features 
contributing to hypoxemia risk are shown for quick reference, however in Figure 3 the relative 
contributions of all patient and case features (i.e. attributes) towards hypoxemia risk can be seen at every 
sample time point during a procedure (Figure 3B). Without a meaningful explanation, the sudden 
increase in risk shown at the time point marked ‘Now’ might be hard to interpret; however, by 
representing the predicted risk as a cumulative effect of contributing patient and procedure features, the 
reason for the increase becomes clear (Figure 3A).  
The increase in the risk of hypoxemia in the next 5 minutes shown in Figure 3 is driven by a set of 
features capturing both static attributes, such as patient height and weight, and dynamic parametric 
values, such as tidal volume (i.e., volume of gas exhaled per breath) and administration of drugs. The 
risk explanation bar in Figure 3A has purple-colored features that push the risk higher (to the right) and 
green-colored features that push the risk lower (to the left). Each group of features is sorted by the 
magnitude of their impact, and the largest impact features are labeled. Through this representation we 
can see that many of the 3,905 real-time features have only a small impact, and the risk for this time 
point is predominantly driven by a few features. Figure 3B shows the trend in the Prescience risk 
predictions over the course of the procedure. The plot in Figure 3B is equivalent to rotating the feature 
explanation in Figure 3A by 90 degrees and then stacking the explanations for each time point 
horizontally. We can see from the risk trend in Figure 3B that the large increase in risk at the current 
time was driven by ‘Tidal volume’, meaning a drop in the patient’s tidal volume. The future SpO2 
(blood oxygen concentration) measurements confirm that the patient did indeed progress to hypoxemia 
(i.e., SpO2 ≤ 92). Not only does Prescience alert anesthesiologists when a patient’s risk for hypoxemia is 
high, but also provides information on the factors and their relative contributions driving the risk. This 
informed risk prediction enables anesthesiologists to plan an appropriate course of action to avoid 
hypoxemia. 
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Fig 3. Sample real-time prediction during a procedure. One hour of data is shown from a 
procedure. (A) Explained risk of hypoxemia in the next five minutes. (B) Plot of the explained 
risks evolving over time. This plot is equivalent to rotating (A) 90 degrees and stacking the risk 
explanations for every time point horizontally. (C) A subset of the patient data for this procedure, 
plotted both before and after the current time point. 
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Averaged feature importance estimates broadly align with a survey of prior expectations 
To gain an understanding of the general impact of features across all procedures we computed the 
average importance of each feature in the Prescience model. In contrast to the explanations shown in 
Figure 1 and Figure 3A which are specific to a single prediction at a particular time point, these average 
feature importance estimates are over many procedures and time points (20). These averaged feature 
importance estimates are shown for both initial prediction (Figure 4A) and real-time prediction (Figure 
4B). 
To estimate which clinical features anesthesiologists use to estimate hypoxemia risk, we first performed 
a survey before using Prescience, which asked four anesthesiologists to list the most important factors 
they consider when assessing the risk of hypoxemia, both before (for initial prediction) and during a 
procedure (for real-time prediction). Their responses were then aggregated into a single ranked list of 
features (Supplementary Tables 2 and 3). Figure 4 shows the rankings chosen by anesthesiologists next 
to the feature importance estimates derived by Prescience for (A) initial and (B) real-time predictions. 
The ranking of features by anesthesiologists appears to correspond well with the ranking by Prescience. 

As another way to measure which features anesthesiologists’ think contribute to hypoxemia, we learned 
from anesthesiologists’ behavior by training a separate gradient boosting machine model based on their 
predictions. This allows a direct comparison between the anesthesiologists and Prescience on the same 
set of features. We fit this model to all the anesthesiologist relative risk predictions using 10-fold cross 
validation. We then computed the feature importance estimates for this model that was trained to mimic 
the behavior of anesthesiologists. Given the relatively smaller set of training examples used to train the 
model (198 initial predictions, and 523 real-time predictions), we used bootstrapping to estimate the 
variability of the feature importance estimates (Figure 4 right). 

In general, there is reasonable agreement between the Prescience feature importance estimates and those 
identified by the anesthesiologists. However, there are important differences that may stem from the 
comprehensive nature of the Prescience analysis, while anesthesiologists necessarily focus on what they 
consider the most likely causes for hypoxemia concern. One striking difference is the reduced role of 
current SpO2 levels in anesthesiologists’ predictions. While anesthesiologists are clearly influenced by 
the recent patterns of patient SpO2 levels, Prescience strongly depends on these patterns, while 
anesthesiologists appear to be equally influenced by other factors, such as end tidal CO2 and peak 
ventilation pressure. 

Our study used data from two hospitals and initial hypoxemia predictions were driven by a bias between 
the two hospitals. This is perhaps unsurprising since one hospital is a level 1 trauma center and a 
significant proportion of its surgical cases involve trauma patients who are more susceptible to 
hypoxemia.  However, it is interesting to note that the importance of hospital as a risk factor became 
insignificant for the intraoperative real-time predictions, presumably because the risk differences in each 
hospital were captured by the real-time features.  

Among the static features, BMI (body mass index) and age were significant risk factors. These features 
are well understood in the medical literature as risk factors that can increase the chances of hypoxemia 
(21, 22).  The American Society of Anesthesiology (ASA) physical status feature represents the severity 
of a patient’s medical condition and a higher ASA number indicates a higher comorbidity.  Prescience 
determined that higher ASA physical status values predisposes a patient to higher hypoxemia risk. 
While this finding may be clinically intuitive, anesthesiologists can now use this information in their 
preoperative evaluation as a pre-specified risk factor for intraoperative hypoxemia. Eye procedures were 
informative to the model and carried a reduced risk of hypoxemia, while surgeries for fractures had a 
slightly higher risk. These patterns may reflect the composite risk of hypoxemia to patients undergoing 
these particular procedures. In the case of eye surgeries, the risk was lower even though many are 
elderly and have accompanying co-morbid conditions. The low risk of eye procedures is in contrast to 
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fractures which carry an increased risk for hypoxemia. Together these findings provide new data on the 
relative “risk” of these procedures which has implications for anesthesia staffing, need for equipment, 
and preparation for the ability to rescue patients from hypoxemia. Eye procedures and surgeries for 
fractures are two examples of text based features extracted from diagnosis and preoperative procedure 
notes. They demonstrate that unstructured text notes can be combined with structured patient data to 
improve patient risk prediction. Although many of the risk factors identified by Prescience reconfirmed 
those expected by the anesthesiologists, it is informative that Prescience independently identified these 
features with no prior knowledge.  

Among real-time (intraoperative) features SpO2 (arterial oxygen saturation) is, as expected, the strongest 
predictor of future potential drops in SpO2. End tidal CO2 (amount of carbon dioxide exhaled by the 
patient) was also a significant intraoperative feature identified by Prescience as predictive of hypoxemia. 
Lower values may indicate inadequate ventilation or airway obstruction which can turn increase the risk 
of hypoxemia. Prescience also determined that hypotension (systolic blood pressure below 80) increases 
the risk of hypoxemia. On the other hand, increased FiO2 (inspired O2 concentration) and adequate 
positive pressure ventilation can reduce the risk of hypoxemia, as expected by the anesthesiologists.  
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Fig 4. Comparison of averaged feature importance estimates between Prescience and 
anesthesiologists for both initial and real-time prediction. Importance estimates assigned by 
the Prescience model and anesthesiologists to the top features in both (A) initial and (B) real-time 
prediction. The importance of features is measured as the estimated percent of the model’s 
prediction accuracy that is due to that feature. The numbers presented to the left of the imputed 
anesthesiologist importance estimates are feature rankings from a consensus of anesthesiologist 
responses about which features they believed would be important. The quantitative 
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anesthesiologist feature importance estimates were estimated using 20 bootstrapped models 
trained to mimic the anesthesiologist’s predictions when unassisted by Prescience.1 

 

Prescience’s estimated importance of individual features on hypoxemia risk highlight important clinical 
relationships 

Three important features each for beginning of surgery (initial) and during surgery (real-time) 
predictions were chosen to illustrate how the Prescience model modifies hypoxemia risk based on 
changes to feature characteristics (Figure 4). While many such relationships are present for the various 
features, Figure 5 shows a representative selection demonstrating informative risk relationships that are 
captured in the Prescience model. 
Among static features we find that patient BMI has a clear effect on the risk of hypoxemia. When the 
BMI is over 26, the risk of hypoxemia increases linearly until it has more than doubled when BMI is 
over 50. Though a qualitative association between hypoxemia and body weight is well established in the 
field of anesthesia (21, 22), Prescience quantifies this relative risk. 
Prescience shows that patients with higher ASA physical status codes have higher risk of intraoperative 
hypoxemia. This is not surprising since higher ASA codes represent increased severity of a patent’s 
physical condition such as preexisting pulmonary and cardiac conditions that can predispose a patient to 
develop hypoxemia. Prescience data support clinical observations that the risk of hypoxemia more than 
doubles when the ASA code increases from I to V.  Advancing age also predicted intraoperative 
hypoxemia, likely representing the presence of comorbidities (21). These data show that BMI > 30, 
which meets the clinical definition of obesity (23), is associated with intraoperative hypoxemia, 
suggesting impaired pulmonary mechanics.  While we agree that these findings confirm clinical 
observations and suspicions of the relationship between these patient factors and adverse anesthesiology 
outcomes, Prescience quantifies this association and the risks, giving a more clinically useful 
interpretation to anesthesiologists.  

For real-time prediction, measurements from each time series are represented by a set of multiple 
features. For simplicity, we focus here only on the effect of the shortest time lag exponentially weighted 
moving average, which essentially represents the most recent reported value in the time series (see 
Methods for details). 

Tidal volume represents the amount of gas exhaled per breath when the patient is either breathing 
spontaneously or mechanically ventilated during general anesthesia. As the tidal volume drops below 
0.6 liters (keeping all other features the same), Prescience risk for hypoxemia increases. This increase 
could be due to hypoventilation, in which case anesthesiologists take preventative steps to avoid 
inadequate ventilation. 
End tidal CO2 represents the amount of carbon dioxide exhaled gas. Figure 5 shows the relationship 
between end tidal CO2 and risk of hypoxemia under general anesthesia. End tidal CO2 below 35 mmHg 
is associated with an increasing risk of intraoperative hypoxemia. While we cannot definitively attribute 
hypocapnia with intraoperative hypoxemia, these associations may represent underlying patient 
conditions such as chronic obstructive pulmonary disease that affect both physiological conditions. 
Alternately, the low end tidal CO2 and may result from either intentional or unwanted hyperventilation 
during anesthesia care.   

                                                
1 In Figure 4A the 2nd and 4th features chosen by anesthesiologists (lung disease and asthma, respectively) were not well 
captured in the AIMS data, and did not show up as important in the Prescience model. 
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Examining FiO2 is important because anesthesiologists can control the amount of oxygen delivered to 
patients. Current practice is to not provide all patients with 100% FiO2 since not all patients need it, 
prolonged ventilation with 100% FiO2 is associated with pulmonary atelectasis, and because oxygen if 
delivered when not needed is costly and wasteful. These data show that FiO2 below 40% is 
independently associated with intraoperative hypoxemia irrespective of other features. These findings 
provide important information regarding safe practice of FiO2 in patients during general anesthesia.  It is 
possible that the routine practice of maintaining FiO2 30% or close to room air may be harmful to 
patients and not desirable. While these effects are adjusted for all other available features, it is important 
to note that as with any observational study some residual confounding with patient risk may still exist. 
This could explain the increase in hypoxemia risk we observed for high O2 levels.  

These representative features illustrate the power of our machine learning-based prediction method, 
Prescience, to not only provide explained risk predictions, but also quantitative insights into the exact 
change in risk induced by certain patient or procedure characteristics. 
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Fig 5. Effect of varying individual feature values for both initial features (left) and real-time 
features (right). These partial dependence plots show the change in hypoxemia risk for all values 
of a given feature. The gray histograms on each plot show the distribution of values for that 
feature in the validation dataset. Light colored lines represent model variability from bootstrap 
resampling of the training data. 
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Discussion  

To the best of our knowledge, Prescience is the first method designed to comprehensively integrate high 
fidelity operating room data to predict intraoperative hypoxemia events before they occur. Based on a 
comparison against practicing anesthesiologists and existing computational methods applied to other 
clinical problems, Prescience achieves superior performance when predicting hypoxemia risk from 
electronically recorded data. 
To our knowledge, Prescience is also the first method to combine high accuracy complex models with 
interpretable explanations. This combination of accuracy and interpretability allows physicians to 
receive the best possible predictions while also gaining insight into why those predictions were made. 
To test how Prescience predictions with explanations would impact an anesthesiologist’s ability to 
estimate hypoxemia risk we compared anesthesiologist predictions with and without Prescience 
assistance. We observed a clear increase in prediction accuracy when doctors were assisted by 
Prescience, demonstrating that anesthesiologists may make more accurate hypoxemia risk assessments 
in the operating room if they had access to Prescience. 
It should be clarified that our exercise at developing machine learning methods to predict intraoperative 
hypoxemia, though promising, should still be considered an initial attempt. In this first attempt, we did 
not categorize procedures to assess hypoxemia predictions in specific types of procedures. For this 
reason, clinical interpretation of the results had to be somewhat generic. For enhanced interpretation of 
risks, future attempts need to focus on specific categories of cases and phases of anesthesia. Another 
future enhancement would be integrating additional preoperative data such as patient’s detailed medical 
history into the prediction models. Higher fidelity intraoperative data such as patient monitor waveform 
data could enrich machine learning thus potentially leading to more accurate predictions. Prospective 
trials of Prescience during live procedures are also needed to verify the improvements in 
anesthesiologist’s performance we retrospectively observed in prerecorded procedures.  
This paper focuses on hypoxemia risk during intraoperative anesthesia care. However, the importance of 
coupling accurate predictions from complex models with interpretable explanations of why a prediction 
was made, has broad applicability throughout medicine. Extending the approach taken by Prescience 
and providing these model explanation tools to the community is a clear next step. Because Prescience 
effectively decouples the interpretable explanation from the prediction model, we are also free to 
continue to refine the core prediction model without changing the user experience for anesthesiologists. 
The global risk profiles learned by Prescience (Figures 4-5) are clinically relevant for a number of 
reasons.  First, they show that in the health system examined, trauma hospital patients may be more 
critically ill as they have more intraoperative hypoxemia. In current times when harmonization of care 
and standardization are considered to reduce unwanted clinical variation, these data suggest that 
resources may need to be differentially deployed to address differential rates of adverse events.  Second, 
anesthesiologists can now quantify risks of intraoperative hypoxemia adjusted for other factors to the 
very elderly, those who are overweight, and those with more comorbid conditions.  The exact 
relationships described in Figure 5 clearly show the patterns and threshold points for the risk.  Whereas 
low tidal volume is often suggested for patients with acute lung injury (24), these data suggest that 
overall, low lung tidal volumes are, in-fact, associated with intraoperative hypoxemia. The relationship 
between low end-tidal CO2 levels and intraoperative hypoxemia may reflect underlying critical illness. 
Despite our inability to fully exclude residual confounding, these data shed new light on physiological 
relationships as well as provide a mechanism to facilitate provision of anesthesia care that can mitigate 
intraoperative hypoxemia. 
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The field of medicine is full of many exciting data science challenges that have the potential to 
fundamentally impact the way medicine is practiced. More and more data driven predictions of patient 
outcomes are being proposed and used. However, black-box prediction models which provide simply 
predictions, without explanation, are difficult for physicians to trust and provide little insight about how 
they should respond. The interpretable explanations used by Prescience represent a powerful technique 
that can transform any current prediction method from one that provides what the prediction is, into one 
that also explains why. 
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Materials and Methods 
 

IRB statement  
The electronic data for this study was retrieved from institutional electronic medical record and data 
warehouse systems after receiving approval from the Institutional Review Board (University of 
Washington Human Subjects Division, Approval #46889). Protected health information was excluded 
from the data set that was used for machine learning methods. 
 

Data sources  
Our hospital system has installed an Anesthesia Information Management System (AIMS) (Merge AIM, 
Merge Inc, Hartland, WI) that automatically captures minute by minute hemodynamic and ventilation 
parameters from the patient monitor and the anesthesia machine. The system also integrates with other 
hospital electronic medical record (EMR) systems to automatically acquire laboratory and patient 
registration information. The automatic capture of data is supplemented by manual documentation of 
medications and anesthesia interventions to complete the anesthesia record during a surgical episode. 
For the current project, we extracted the high-fidelity anesthesia data from the AIMS database for the 
period May 2012 through June 2014. Additionally, for each patient, medical history data were extracted 
from our EMR data warehouse (Caradigm, Bellevue, WA). The high-fidelity anesthesia record data and 
the corresponding medical history data from the hospital EMR formed the underlying data for machine 
learning. The various data elements used for machine learning are outlined in Supplementary Table 1. 

 
Element	 Description	
Patient		 	
Age	 Age	of	patient		
Sex	 Sex	
ASA	Physical	Status	 ASA	physical	status	
Height	(cm)	 Height	of	patient		
Weight	(kg)	 Weight	of	patient		
Patient	class	 Inpatient	or	outpatient	
Procedure		 	

Procedure	 Procedure	description	
Procedure	code	 Surgical	procedure	
Billing	codes	 Anesthesia	Crosswalk/	procedure	codes	
Diagnosis	 Diagnosis	description	
Diagnosis	codes	 ICD-9/10	codes	
Location	 Operating	room	location	
Facility	 Hospital	facility		
Emergency	status	 Whether	case	is	an	emergency	or	not	–	Y/N	
Anesthesia	type	 Type	of	anesthesia		
Case	Events	 	

Anesthesia	Start	 Time	of	Anesthesia	Start	
In	Room	 Time	of	patient	in	room	
Induction	 Time	of	Induction	start	
Anesthesia	Ready	 Time	of	Induction	end	or	Anesthesia	ready	
Procedure	Start	 Time	of	Procedure	start	(incision)	
Closing	 Time	of	Closing		
Procedure	End	 Time	of	Procedure	End	
Emergence	 Time	of	start	of	emergence	
Leave	OR	 Time	of	leave	OR/	Transport	to	recovery	
Anesthesia	End	 Time	of	Anesthesia	End	
Patient	monitor/Ventilator	Data	 (Value,	Time	&	Unit	of	measurement)	

Heart	Rate	 Heart	rate	from	ECG	signal	(Patient	monitor)	
O2	Sat	 O2	saturation	from	pulse	oximetry	(Patient	Monitor)	
Pulse	rate	 Pulse	rate	from	pulse	oximetry	(Patient	Monitor)	
NIBP	–	Sys	 Cuff	BP	–	systolic	(Patient	monitor)	
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NIBP	–	Dia	 Cuff	BP	–	diastolic	(Patient	monitor)	
NIBP	-	Mean	 Cuff	BP	–	mean	(Patient	monitor)	
Art	BP	-	Sys	 Arterial	BP	–	systolic	(Patient	monitor)	
Art	BP	-	Dia	 Arterial	BP	–	diastolic	(Patient	monitor)	
Art	BP	-	Mean	 Arterial	BP	–	mean	(Patient	monitor)	
PA	-	Sys	 Pulmonary	artery	pressure	–	systolic	(Patient	monitor)	
PA	-	Dia	 Pulmonary	artery	pressure	–	diastolic	(Patient	monitor)	
CVP	 Central	venous	line	pressure	–	mean	(Patient	monitor)	
EtCO2	 End	tidal	CO2	(Capnography)	(Patient	monitor)	
Resp	Rate	 Measured	respiration	rate	–	capnography	(Patient	monitor)	
FiO2	 Inspired	O2	(Patient	monitor)	
ET	Sevo	 End	tidal	Sevoflurane	anesthetic	agent	(Patient	monitor)	
ET	Des	 End	tidal	Desflurane	anesthetic	agent	(Patient	monitor)	
ET	ISO	 End	tidal	Isoflurane	anesthetic	agent	(Patient	monitor)	
ET	N20	 End	tidal	Nitrous	oxide	(Patient	monitor)	
BIS	 Bispectral	Index	(Patient/BIS	monitor)	
SQI	 Signal	quality	index	of	BIS	(Patient/BIS	monitor)	
TEMP	 Temperature	(Patient	monitor)	
SvO2	 Mixed	venous	oxygenation	(Patient	monitor)	
CCO	 Continuous	cardiac	output	(Patient	monitor)	
TV	 Tidal	volume	(Patient	monitor)	
RATE	 Ventilator	rate	setting	(Ventilator)	
PIP	 Peak	Inspiratory	pressure	(Ventilator)	
PEEP	 Positive	End	Expiration	Pressure	(Ventilator)	
O2	FLOW	 O2	flow	rate	(Ventilator)	
Air	FLOW	 Air	flow	rate	(Ventilator)	
N2O	FLOW	 N2O	Flow	rate	(Ventilator)	
Cardiac	Rhythm	 Type	of	cardiac	rhythm		
Medications	 Delivery	information	of	medications	

Time	 Delivery	time	(start	/	end	for	infusion	medications)	
Drug	Name	 Drug	Name	
Dose	 Drug	dose	
Dose	Unit	 Drug	dose	unit	
Route	 Drug	route	
Fluid	totals	 Fluid	totals	

Time	 Time	of	fluid	input	or	output	
Fluid	Name	 Fluid	name	
Volume	 Fluid	volume	recorded	
Laboratory	results	 Intraoperative	laboratory	results		

Time	 Time	of	taking	sample	or	Lab	result	time	
Lab	results	 Lab	result	description	
Sample	type	 Sample	type	–	arterial/venous	
Lab	result	 Result	value	
Unit		 Unit	of	measurement	
Notes	 Attestations,	AIMS	Clinical	notes,	Note	option	selections	

Time	 Time	associated	with	the	note	
Context	code	 Context	code	associated	with	a	note	or	its	selections	
Note	content	 Note	description	

 
Supplementary Table 1.  Raw data sources used for machine learning. A wide 
variety of data sources were used that included text values, time series, discrete values, 
and quantitative values. 

 
SpO2 desaturation labels 

We considered SpO2 ≤ 92% as hypoxemia, which falls between the World Health Organization’s 
recommended intervention level (< 94%) and emergency level (< 90%) (25).  Predictions of hypoxemia 
were made for a window 5 minutes into the future. If the SpO2 was ≤ 92% at any point during those 5 
minutes then it was considered a positive label, otherwise it was negative. The machine learning 
algorithm was trained using these training labels on all time points where SpO2 was not already ≤ 92% 
at that time point.  
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When evaluating the machine learning algorithm’s performance by comparing with anesthesiologists we 
chose to use a much more stringent definition of hypoxemia. This more stringent definition excludes 
some of the time points, and leads to a smaller set of testing labels. Testing labels were positive only if 
SpO2 was ≥ 95% for the past 10 minutes and then fell below 92% in the next five minutes 
(Supplementary Figure 1; left). Testing labels were negative only if SpO2 remained ≥ 95% for the past 
ten minutes and the next ten minutes (Supplementary Figure 1; right). All the other cases do not have 
testing labels.  This more restrictive labeling scheme ensures that positive testing labels are clear drops 
in SpO2 levels, while negative testing labels are clearly not drops in SpO2 (Supplementary Figure 1). 

 

Supplementary Fig 1. Criteria for defining testing labels. When comparing the 
performance with anesthesiologists, only time points that clearly either desaturate 
or not are used. Hypoxemia involves dropping from ≥ 95% to ≤ 92% in the next 5 
minutes. Not desaturating means remaining ≥ 95% for both the past 10 minutes 
and the next 10 minutes. 

 

An important point to consider when building labels for health outcome prediction is that 
anesthesiologist interventions can affect outcomes. It was recently noted by Dyagilev et al. that models 
can learn when an anesthesiologist is likely to intervene and hence lower the risk of an otherwise high-
risk patient (26). This means that patients with low risk (from the model) may still need treatment. To 
address this, they proposed removing examples from the training set where anesthesiologists have 
intervened. This allows one to learn a model which predicts patient outcome without intervention. In our 
case, it is not possible to fully identify when or how an anesthesiologist is intervening (and if that 
intervention prevented hypoxemia), so we sought to address this issue in two ways: 

1. It must be recognized that the model predicts hypoxemia when following standard procedures, 
not the occurrence of hypoxemia if the anesthesiologist takes no action to influence hypoxemia. 
This is a natural assumption in the operating room where interventions that may affect SpO2 
levels are performed frequently. 

2. By focusing on clear explanations of why a certain risk was predicted we enable 
anesthesiologists to identify when the algorithm may be basing its risk on their actions vs. when 
the risk is based on other factors. 

 
Extracting time series features 

To make a prediction at an arbitrary point in time, a consistent set of features should be computed that 
capture the information present in all previous time points. All the data provided about a procedure is 
associated with a specific date and time. Text data has the time it was provided, minute-by-minute data 
from the patient monitor has the time at which each measurement was taken, and single point 
measurements have the times they were recorded. 
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We summarized these unevenly sampled time registered data into a fixed length feature vector at any 
point in time using several complementary methods:  

• Patient data, procedure information, and pre-operative notes are represented by a “last value” 
feature, which is zero before any data is recorded and the data’s value afterwards. 

• Time series data is captured using exponentially decaying weighted average and variance 
estimates using multiple decay rates. These decay rates specify how much impact each past time 
point has on the computed mean or variance for the time series. We used 6 second, 1 minute, and 
5-minute half-life times to capture both high and low frequency components of the signal in each 
time series (Supplementary Figure 2).  

• Drug dose data is captured using both an exponentially decaying sum, and a time since the last 
measurement. Decay rates with half-lives of 5 minutes and 60 minutes were used to capture both 
near term and longer average drug dosing effects.  

To ensure that there was enough training data for each feature we removed features that had less than 
100 recorded data values for the real-time model, and less than 50 for the initial model. For a full list of 
the 3,797 features used by Prescience for initial predictions see Supplementary Table 4 
(Supp_InitialFeatureTable_4.csv). For the 3,905 features used in intraoperative predictions see 
Supplementary Table 5 (Supp_RealtimeFeatureTable_5.csv). 
 

 

Supplementary Fig 2. Responses of the eight different time series features 
used in Prescience to a sample set of unevenly reported data values. The blue 
dots represent the original unevenly sampled data, while curves represent the 
value of a feature over time. ‘EMA’ stands for exponential moving average and 
‘EMV’ for exponential moving variance. Both EMA and EMV features are computed 
over weighted samples, where the weights decay with a specific half-life (6 seconds, 1 
minute, or 5 minutes). 

 
Gradient boosting machines for prediction 

The features we compute from real-time operating room data have a variety of complex nonlinear 
interactions. Capturing these requires a model with significant flexibility, and we chose a non-
parametric approach called gradient boosting machines (19).  
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We compared the performance of gradient boosting against three baseline methods: Lasso penalized 
linear logistic regression; a linear SVM autoregressive model previously proposed for predicting 
hypoxemia based only on the SpO2 data stream (9); and an unsupervised Parzen window method used 
previously to predict patient deterioration (17). Gradient boosting machines significantly outperformed 
all baseline methods for our primary endpoint, real-time hypoxemia prediction (Supplementary Figure 
3). For our secondary task of initial prediction gradient boosting machines were only slightly superior 
(Supplementary Figure 4). The large performance gain of gradient boosting for intraoperative prediction 
(Supplementary Figure 3) is likely because there are 8 million training samples, while for preoperative 
predictions (Supplementary Figure 4) there are only 42,000 samples and no time series data. Note that 
for initial prediction the autoregressive SVM and Parzen window methods were not applicable and 
hence not evaluated. 
Gradient boosting machines are non-parametric models that draw a parallel between boosting and 
gradient descent in function space. They additively build up simpler models, like boosting, and these 
models are fit to the gradient of the loss at every data point. The most common type of basic model used 
is a regression tree because it is both robust to outliers and flexible. Taking some small fraction, 𝜂, of 
many trees fit to the gradient results in many small gradient descent steps in function space. 

Fitting the trees is computationally challenging on large datasets so we used XGBoost, a recent high 
performance implementation of gradient boosting machines (20). For the real-time model we used 𝜂 =
0.2 and 1,242 trees, while for the initial model we chose 𝜂 = 0.1 and 4,000 trees. Using a smaller 𝜂 value 
means more trees are required for fitting, which requires more time to run, but results in a smoother (and 
generally better) model. For both initial and real-time models we used bagging, where trees were trained 
on a random 50% subsample of the training data. For the preoperative model the max tree depth was 4 
and the minimum child weight of any branch in the trees was 1. For the real-time model the max tree 
depth was 6 and the minimum child weight of any branch in the trees was 10. 

All method parameters were tuned (and methods were chosen) using a validation set of operating room 
procedures separate from the final test set used for all final performance results. To ensure that there was 
no bias towards the final test set, the test data was initially compressed and left compressed until after 
method development was completed. 
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Supplementary Fig 3. Real-time performance of gradient boosting machines 
vs a linear lasso model, a SVM based on ElMoaqet et al. (9), and an 
unsupervised Parzen window method used by Tarassenko et al. (17). There 
are ~8 million training samples and the increased flexibility of gradient boosting 
trees clearly outperforms the more restrictive linear models. 

 

 

Supplementary Fig 4. Preoperative performance of gradient boosting 
machines vs a linear lasso model. Given a much smaller preoperative dataset 
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with ~42,000 training examples the difference between the complex gradient 
boosting trees model and a linear model becomes small. 

 

 
Computing feature importance estimates 

Understanding why a statistical model has made a specific prediction is a key challenge in machine 
learning. It engenders appropriate trust in predictions and provides insight into how a model may be 
improved. However, many complex models with excellent accuracy, such as gradient boosting, make 
predictions even experts struggle to interpret. This forces a tradeoff between accuracy and 
interpretability.  In response to this we chose to use a model agnostic representation of feature 
importance, where the impact of each feature on the model is represented using Shapley values (27), 
theoretically proven unique feature attribution values that have four important properties below. We 
developed an efficient method to compute the Shapely values (i.e., estimated importance of features to a 
particular prediction) in a real-time manner. 
Shapley values are from the game theory literature and provide a theoretically justified method for 
allocation of credit among a group (see Eq (1)). In Prescience the group is a set of interpretable model 
input feature values, and the credit is the value of the prediction made by the model when given those 
input feature values. Feature impact is defined as the change in prediction probability when a feature is 
observed vs. unknown. Some feature values have a large impact on the prediction, while others have 
little impact. The Shapley values 𝜙)(𝑓, 𝑥), explaining a prediction 𝑓(𝑥), are an allocation of credit among 
the various features (such as age, weight, time series features, etc.), and are the only such allocation that 
obeys a set of desirable properties (14, 16). Given a prediction function 𝑓(𝑥) we can define 𝑓/(𝑆) =
𝑓(𝑥1), where 𝑥1 is an input vector equal to 𝑥 for features in the set 𝑆 but equal to the missing data value 
otherwise.  
Using this notation, we use the following set of properties:  

 
Efficiency. 

𝑓(𝑥) = 𝜙)(𝑓, 𝑥)
2

)34

, 

where 𝑀 is the number of ‘interpretable’ inputs, which each correspond to a group of original 
inputfeatures. For Prescience these groups are the sets of features associated with each time series. For 
instance, the 6 second, 1 minute, and 5 minute moving average features, and the 5-minute moving 
variance feature from the SpO2 time series are all considered as a single group. The efficiency 
assumption forces the model to correctly capture the original predicted value. 

 
Symmetry. If for all subsets 𝑆 that don’t contain 𝑖 or 𝑗 

𝑓/(𝑆 ∪ {𝑖}) = 𝑓/(𝑆 ∪ {𝑗}), 
then 𝜙)(𝑓, 𝑥) = 𝜙;(𝑓, 𝑥). This states that if two features have an identical effect when observed in any 
situation then the Shapley values for the features must be the same. 

 

Null effects.  If for all subsets 𝑆 that don’t contain 𝑖 
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𝑓/(𝑆 ∪ {𝑖}) = 𝑓/(𝑆), 
then 𝜙)(𝑓, 𝑥) = 0. This states that if a feature has no effect when observed in any situation then its 
Shapley value must be 0. 

 
Linearity.  For any two model prediction functions 𝑓 and 𝑓′ 

𝜙)(𝑓 + 𝑓′, 𝑥) = 𝜙)(𝑓, 𝑥) + 𝜙)(𝑓′, 𝑥). 
This states that the effect a feature has on the sum of two functions is the effect it has on one function 
plus the effect it has on the other. 
 

Shapley showed that only one allocation of credit satisfies these properties and that allocation is the one 
given by the Shapley values. 

Given a specific prediction 𝑓(𝑥) we can compute the Shapley values using a weighted sum: 

𝜙)(𝑓, 𝑥) =
|𝑆|! (𝑀 −	 |𝑆| 	− 	1)!

𝑀!
[𝑓/(𝑆 ∪ {𝑖}) 	− 𝑓/(𝑆)]

1⊆1EFF\{)}

 

= H
(2	IJKKLM	|1|)(2N|1|)

[𝑓/(𝑆 ∪ {𝑖}) 	− 𝑓/(𝑆)]1⊆1EFF\{)} .                              Eq (1) 

 
In practice, there are far too many terms to evaluate this sum completely, so we instead calculate it by 
only selecting the highest weight terms. This selection can be done greedily, stopping once the variance 
of the estimate becomes small enough. 

To compute the Shapley values of each prediction we need to estimate the predictions of the model 
when specific input features are missing. Since the model was not trained to support missing values we 
approximate what the model would predict (if retrained on that subset of input features) by sampling 
from the training data set and replacing the missing features with the values they would have had in that 
sample. By averaging many such samples, we can estimate the expected value of 𝑓/(𝑆) only using 
evaluations of 𝑓/(𝑆OPP) where no features are missing. 

The approach above requires nested sampling, once to estimate the Shapley value and then from each 
sample we again sample to estimate 𝑓/(𝑆) and 𝑓/(𝑆 ∪ {𝑖}). To reduce the number of samples in the inner 
step, we used k-medians to generate 20 medians of the entire dataset, and then performed a weighted 
evaluation for only these 20 summary inputs as an approximation for the entire dataset. This removes 
the need for nested sampling. 
One final extension of Shapley value estimation we found to be helpful in Prescience was a non-linear 
link function ℎ such that: 

ℎ(𝑓(𝑥)) = 𝜙)(𝑓, 𝑥)2
)34 . 

Since Prescience uses logistic regression the use of a ℎ = 𝑙𝑜𝑔𝑖𝑡 link function transforms the output space 
from probabilities to log odds. Assuming the importance of features is additive in the log odds space is 
much more natural than assuming they are additive in the space of probabilities (which must fall 
between 0 and 1). The same reasoning also drives the use of the logit link function during standard 
logistic regression. 

We were able to get stable feature importance estimates for thousands of features in less than 5 seconds 
on our server. We compared these theoretically grounded explanations with a simple estimate of feature 
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importance to verify they showed reasonable consistency. The simple method we chose was to replace a 
single feature group with random values from other samples in the data set, and determine the average 
model output over different possible samplings. We then subtracted this mean value from the original 
model prediction to get a difference from a prediction with a typical value of that feature vs. the current 
value. This simple method is not very scalable and does not account for interactions with other features, 
but is useful to compare with the Prescience explanations to ensure the Prescience estimates of feature 
effects are consistent with an intuition of how much a feature’s change from its typical value effects the 
current risk of hypoxemia (Supplementary Figure 5). 

 

 

Supplementary Fig 5. Consistency of Prescience explanation effects. Comparing the 
Prescience explanation effects with the difference between the current model output and 
the outputs when a specific feature is replaced with its typical value. The effects are from 
the cases shown to anesthesiologists during testing in Figure 2. The strong correlation (R2 
= 0.92 for ETCO2 and R2 = 0.81 for FIO2) demonstrates the consistency of Prescience 
explanation effect sizes with the intuitive notion of the change in model out from 
replacing a feature’s value with a typical value. Note that both values are shown 
explaining the additive portion of the classification model (inside the logistic function). 

 
Physician evaluation 

The potential benefit Prescience provides to physicians was evaluated using previously recorded 
procedures. Both before a procedure begins, and at several time points during the operation all the 
available electronically recorded data was shown to the anesthesiologist and they were asked to predict 
if a desaturation (as defined above) will occur in the next 5 minutes (Supplementary Figures 6, 7, and 8). 
For half of the procedures anesthesiologists are given Prescience explained risks, and for the other half 
they are given the same data, but without any Prescience assistance. In both cases anesthesiologists are 
asked to provide a fold change in the risk that desaturation will occur. 
The test procedures were divided into two equal sized groups, replicate 1 and replicate 2. 
Anesthesiologists were also divided into two groups, A and B. Group A was given Prescience assistance 
on replicate 1 but not on replicate 2, while group B was given Prescience assistance on replicate 2 but 
not replicate 1. After randomly assigning anesthesiologists to groups, three anesthesiologists from group 
A completed the evaluation and two anesthesiologists from group B. We pooled the results within each 
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group and between groups, and the results of this evaluation are shown in Figure 2. The order in which 
anesthesiologists were presented with cases was random across both replicate sets. 

 

Supplementary Fig 6. Sample of a physician’s test interface for preoperative 
prediction of risk. Prescience assistance is given for this preoperative prediction. 
Anesthesiologists choose an estimated relative risk by moving the given slider, 
then recording the score. 
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Supplementary Fig 7.  Sample of a physician’s test interface for real-time 
prediction of risk. Prescience assistance is given for this intraoperative 
prediction. Anesthesiologists choose an estimated relative risk by moving the 
given slider. The preoperative data is also shown lower down in the interface just 
as illustrated in Supplementary Figure 6. 
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Supplementary Fig 8. Sample of a physician’s test interface for real-time 
prediction of risk without Prescience assistance. This is similar to 
Supplementary Figure 7 but this time the anesthesiologist must choose a risk on 
their own using only the original data without help from Prescience. 
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Initial predictions 

 
Anesthesiolog

ist 1 
Anesthesiolo

gist 2 
Anesthesiologi

st 3 Anesthesiologist 4 Doctor composite 
1 surgical 

procedure 
BMI BMI (and by 

default height 
and weight) 

Baseline saturation 
(patient on home 
O2/room air) 

BMI 

2 BMI Weight History of OSA Pulmonary disease 
(Fibrosis, asthma, 
COPD - Chronic 
Obstructive 
Pulmonary Disease) 

Lung disease 

3 age Smoker Type of surgery Obesity or high BMI 
(Body mass index) 

ASA code 

4 pre-existing 
heart or lung 
disease 

Presence of 
lung disease 

History of 
Asthma 

Certain planned 
procedures (Thoracic 
surgery) 

Asthma 

5 ASA status History of 
difficult 
airway 

Functional 
Status 

Anesthesia method 
(sedation) 

Age 

6    Children Anesthesia type 
7    Pregnancy CPT code 
8    High metabolic status 

(sepsis) 
 

 
Supplementary Table 2.  Physician’s responses listing the most important factors 
when assessing the risk for hypoxemia at any point during an upcoming procedure. 
Four anesthesiologists were asked to list the most important factors to consider for 
hypoxemia. The responses of all 4 anesthesiologists were then compiled into a single 
composite list. For a comparison with features chosen by Prescience, see Figure 4 in the 
main text. 
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Real-time predictions 

 
Anesthesiolo
gist 1 

Anesthesiologist 
2 

Anesthesiologis
t 3 

Anesthesiologist 
4 

Anesthesiologis
t composite 

1 surgical 
procedure 

Trend of SPO2 if 
downward trend 
more likely 

Tidal Volume Trends in SpO2 SpO2 

2 BMI Tidal volume - if 
trending down 
suggests a 
problem. 

Respiratory 
Rate 

Surgical 
interventions (1-
lung ventilation, 
insufflation of the 
abdomen, pushing 
the lung) 

Tidal Volume 
(TV) 

3 FiO2 Increasing Peak 
inspiratory 
pressure 

SpO2 High airway 
pressure 

Peak 
Inspiratory 
Pressure (PIP) 

4 minute 
ventilation/tid
al volume 

Increasing Co2 End Tidal CO2 Surgical and 
Anesthesia events 
(bronchospasm, 
pneumothorax, 
pulmonary 
embolism, mucus 
plug, airway 
trapping, fighting 
against vent etc.) 

End tidal CO2 

5 recent 
anesthetic 
drug 
administration 

Increasing heart 
rate 

Peak Inspiratory 
Pressure (PIP) 

Patient position 
(head down) 

BMI 

6   Tachycardia Anesthesia 
machine 
malfunction (tube 
kinking) 

Resp rate 

7   BMI (and by 
default height 
and weight) 

 FiO2 

8   History of OSA  Heart rate 
9   Type of surgery   

10   History of 
Asthma 

  

 
Supplementary Table 3.  Physician’s responses listing the most important factors 
when assessing the risk for hypoxemia in the next 5 minutes. Four anesthesiologists 
were asked to list the most important factors to consider for hypoxemia. The responses of 
all 4 anesthesiologists were then compiled into a single composite list. For a comparison 
with features chosen by Prescience, see Figure 4 in the main text. 
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Supplementary Materials 
Supplementary Fig 1. Criteria for defining testing labels. When comparing the performance with 
anesthesiologists, only time points that clearly either desaturate or not are used. Hypoxemia involves 
dropping from ≥ 95% to ≤ 92% in the next 5 minutes. Not desaturating means remaining ≥ 95% for both 
the past 10 minutes and the next 10 minutes. 

Supplementary Fig 2. Responses of the eight different time series features used in Prescience to a 
sample set of unevenly reported data values. The blue dots represent the original unevenly sampled 
data, while curves represent the value of a feature over time. ‘EMA’ stands for exponential moving average 
and ‘EMV’ for exponential moving variance. Both EMA and EMV features are computed over weighted samples, 
where the weights decay with a specific half-life (6 seconds, 1 minute, or 5 minutes). 

Supplementary Fig 3. Real-time performance of gradient boosting machines vs a linear lasso 
model, a SVM based on ElMoaqet et al. (9), and an unsupervised Parzen window method used by 
Tarassenko et al. (17). There are ~8 million training samples and the increased flexibility of gradient 
boosting trees clearly outperforms the more restrictive linear models. 

Supplementary Fig 4. Initial performance of gradient boosting machines vs a linear lasso model. 
Given a much smaller preoperative dataset with ~42,000 training examples the difference between the 
complex gradient boosting trees model and a linear model becomes small. 

Supplementary Fig 5. Consistency of Prescience explanation effects. Comparing the Prescience 
explanation effects with the difference between the current model output and the outputs when a specific 
feature is replaced with its typical value. The effects are from the cases shown to anesthesiologists 
during testing in Figure 2. The strong correlation (R2 = 0.92 for ETCO2 and R2 = 0.81 for FIO2) 
demonstrates the consistency of Prescience explanation effect sizes with the intuitive notion of the 
change in model out from replacing a feature’s value with a typical value. Note that both values are 
shown explaining the additive portion of the classification model (inside the logistic function). 
Supplementary Fig 6. Sample of a physician’s test interface for initial prediction of risk. Prescience 
assistance is given for this preoperative prediction. Anesthesiologists choose an estimated relative risk 
by moving the given slider, then recording the score. 

Supplementary Fig 7.  Sample of a physician’s test interface for real-time prediction of risk. 
Prescience assistance is given for this intraoperative prediction. Anesthesiologists choose an estimated 
relative risk by moving the given slider. The preoperative data is also shown lower down in the interface 
just as illustrated in Supplementary Figure 5. 

Supplementary Fig 8. Sample of a physician’s test interface for real-time prediction of risk 
without Prescience assistance. This is similar to Supplementary Figure 6 but this time the 
anesthesiologist must choose a risk on their own using only the original data without help from 
Prescience. 

Supplementary Table 1.  Raw data sources used for machine learning. A wide variety of data 
sources were used that included text values, time series, discrete values, and quantitative values. 

Supplementary Table 2.  Physician’s responses listing the most important factors when assessing 
the risk for hypoxemia at any point during an upcoming procedure. Four anesthesiologists were 
asked to list the most important factors to consider for hypoxemia. The responses of all 4 
anesthesiologists were then compiled into a single composite list. For a comparison with features chosen 
by Prescience, see Figure 4 in the main text. 
Supplementary Table 3.  Physician’s responses listing the most important factors when assessing 
the risk for hypoxemia in the next 5 minutes. Four anesthesiologists were asked to list the most 
important factors to consider for hypoxemia. The responses of all 4 anesthesiologists were then 
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compiled into a single composite list. For a comparison with features chosen by Prescience, see Figure 4 
in the main text. 

Supplementary Table 4.  Preoperative features used by Prescience. An enumeration of all the 3,797 
features used for preoperative predictions (Supp_InitialFeatureTable_4.csv). 

Supplementary Table 5.  Intraoperative features used by Prescience. An enumeration of all the 
3,905 features used for intraoperative predictions (Supp_RealtimeFeatureTable_5.csv). 

Code availability 
All modeling and processing code is available from the authors upon request. However, note that patient 
privacy prevents training data from accompanying the code.  
Data availability 

The operating room datasets from participating hospitals are not publically available due to patient 
privacy concerns. For more information on obtaining additional summaries of the data please contact the 
corresponding author. 
Funding 

This work was supported by a National Science Foundation (NSF) DBI-135589, NSF Graduate 
Research Fellowship, and a UW eScience/ITHS seed grant Machine Learning in Operating Rooms (06-
1019). 

 
References and Notes: 

1. A. B. Haynes, T. G. Weiser, W. R. Berry, S. R. Lipsitz, A.-H. S. Breizat, E. P. Dellinger, T. Herbosa, 
S. Joseph, P. L. Kibatala, M. C. M. Lapitan, A. F. Merry, K. Moorthy, R. K. Reznick, B. Taylor, A. A. 
Gawande, Safe Surgery Saves Lives Study Group, A Surgical Safety Checklist to Reduce Morbidity and 
Mortality in a Global Population, N. Engl. J. Med. 360, 491–499 (2009). 

2. A. A. Gawande, E. J. Thomas, M. J. Zinner, T. A. Brennan, The incidence and nature of surgical 
adverse events in Colorado and Utah in 1992, Surgery 126, 66–75 (1999). 

3. A. K. Kable, R. W. Gibberd, A. D. Spigelman, Adverse events in surgical patients in Australia., Int. J. 
Qual. Heal. care  J. Int. Soc. Qual. Heal. Care 14, 269–76 (2002). 

4. B. G. Nair, E. Gabel, I. Hofer, H. A. Schwid, M. Cannesson, Intraoperative Clinical Decision Support 
for Anesthesia, Anesth. Analg. 124, 603–617 (2017). 

5. G. D. H. & P. J. Lena Maier-Hein, Swaroop S. Vedula, Stefanie Speidel, Nassir Navab, Ron Kikinis, 
Adrian Park, Matthias Eisenmann, Hubertus Feussner, Germain Forestier, Stamatia Giannarou, Makoto 
Hashizume, Darko Katic, Hannes Kenngott, Michael Kranzfelder, Anand Malpani, Surgical data science 
for next-generation interventions, Nat. Biomed. Eng. 1, 691–696 (2017). 

6. C. M. Dunham, B. M. Hileman, A. E. Hutchinson, E. A. Chance, G. S. Huang, Perioperative 
hypoxemia is common with horizontal positioning during general anesthesia and is associated with 
major adverse outcomes: a retrospective study of consecutive patients, BMC Anesthesiol. 14, 43 (2014). 
7. L. Strachan, D. W. Noble, Hypoxia and surgical patients--prevention and treatment of an unnecessary 
cause of morbidity and mortality., J. R. Coll. Surg. Edinb. 46, 297–302 (2001). 
8. J. M. Ehrenfeld, L. M. Funk, J. Van Schalkwyk, A. F. Merry, W. S. Sandberg, A. Gawande, The 
incidence of hypoxemia during surgery: evidence from two institutions, Can. J. Anesth. Can. 
d’anesthésie 57, 888–897 (2010). 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 21, 2017. ; https://doi.org/10.1101/206540doi: bioRxiv preprint 

https://doi.org/10.1101/206540


9. H. ElMoaqet, D. M. Tilbury, S. K. Ramachandran, Multi-Step Ahead Predictions for Critical Levels 
in Physiological Time Series, IEEE Trans. Cybern. 46, 1704–1714 (2016). 

10. Z. C. Lipton, D. C. Kale, R. C. Wetzell, Phenotyping of Clinical Time Series with LSTM Recurrent 
Neural Networks, (2015) (available at http://arxiv.org/abs/1510.07641). 

11. K. E. Henry, D. N. Hager, P. J. Pronovost, S. Saria, A targeted real-time early warning score 
(TREWScore) for septic shock, Sci. Transl. Med. 7 (2015). 

12. S. Saria, A. K. Rajani, J. Gould, D. Koller, A. A. Penn, Integration of Early Physiological Responses 
Predicts Later Illness Severity in Preterm Infants, Sci. Transl. Med. 2, 48ra65-48ra65 (2010). 

13. R. C. Deo, Machine Learning in Medicine, Circulation 132 (2015). 
14. E. Štrumbelj, I. Kononenko, Explaining prediction models and individual predictions with feature 
contributions, Knowl. Inf. Syst. 41, 647–665 (2014). 
15. M. T. Ribeiro, S. Singh, C. Guestrin, Why Should I Trust You? Explaining the Predictions of Any 
Classifier, , doi:10.1145/2939672.2939778. 
16. S. Lundberg, S.-I. Lee, An unexpected unity among methods for interpreting model predictions, 
(2016) (available at https://arxiv.org/abs/1611.07478). 
17. L. Tarassenko, A. Hann, D. Young, Integrated monitoring and analysis for early warning of patient 
deterioration, Br. J. Anaesth. 97, 64–68 (2006). 
18. American Medical Association, Current procedural terminology: CPT (2007). 

19. J. H. Friedman, Greedy function approximation: A gradient boosting machine., Ann. Stat. 29, 1189–
1232 (2001). 

20. T. Chen, C. Guestrin, XGBoost: A Scalable Tree Boosting System, , doi:10.1145/2939672.2939785. 
21. F. Lumachi, B. Marzano, G. Fanti, S. M. M. Basso, F. Mazza, G. B. Chiara, Relationship between 
body mass index, age and hypoxemia in patients with extremely severe obesity undergoing bariatric 
surgery., In Vivo 24, 775–7. 

22. S. M. Kendale, J. D. Blitz, Increasing body mass index and the incidence of intraoperative 
hypoxemia, J. Clin. Anesth. 33, 97–104 (2016). 

23.  Defining Adult Overweight and Obesity | Overweight &amp; Obesity | CDC (available at 
https://www.cdc.gov/obesity/adult/defining.html). 

24. J. Guay, E. A. Ochroch, in Cochrane Database of Systematic Reviews, J. Guay, Ed. (John Wiley & 
Sons, Ltd, Chichester, UK, 2015), p. CD011151. 

25. World Health Organization, Pulse Oximetry Training Manual (2011). 
26. K. Dyagilev, S. Saria, Learning (predictive) risk scores in the presence of censoring due to 
interventions, Mach. Learn. 102, 323–348 (2016). 
27. A. E. Roth, The Shapley Value - Cambridge University PressCambridge Univ. Press (1988) 
(available at http://www.cambridge.org/catalogue/catalogue.asp?isbn=0511829728). 
28. W. S. Cleveland, R. Mcgill, Graphical Perception: Theory, Experimentation, and Application to the 
Development of Graphical Methods, Source J. Am. Stat. Assoc. 79, 531–554 (1984). 
 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 21, 2017. ; https://doi.org/10.1101/206540doi: bioRxiv preprint 

https://doi.org/10.1101/206540

