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Abstract 

As single-cell RNA-sequencing (scRNA-seq) datasets have become more widespread the 

number of tools designed to analyse these data has dramatically increased. Navigating 

the vast sea of tools now available is becoming increasingly challenging for researchers. 

In order to better facilitate selection of appropriate analysis tools we have been 

cataloguing and curating new analysis tools, as they become available, in the scRNA-

tools database (www.scRNA-tools.org). Our database collects a range of information on 

each scRNA-seq analysis tool and categorises them according to the analysis tasks they 

perform. Exploration of this database gives insights into the areas of rapid development 

of analysis methods for scRNA-seq data. We see that many tools are developed to 

perform tasks specific to scRNA-seq analysis, particularly clustering and ordering of 

cells. We also find that the scRNA-seq community embraces an open-source approach, 

with most tools available under open-source licenses and preprints being extensively 

used as a means to describe methods. The scRNA-tools database provides a valuable 

resource for researchers embarking on scRNA-seq analysis and as a record of the growth 

of the field over time. 
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Keywords 

Introduction 

Single-cell RNA-sequencing (scRNA-seq) has rapidly gained traction as an effective tool 

for interrogating the transcriptome at the resolution of individual cells. Since the first 

protocols were published in 20091 the number of cells profiled in individual scRNA-seq 

experiments has increased exponentially, outstripping Moore’s Law2. This new kind of 

transcriptomic data brings a demand for new analysis methods. Not only does the scale 

of scRNA-seq datasets vastly outstrip bulk experiments but there are also a variety of 

challenges unique to the single-cell context3. Specifically, scRNA-seq data is extremely 

sparse (there is no expression measured for many genes in most cells), it can technical 

artefacts such as low-quality cells or differences between sequencing batches and the 

scientific questions of interest are often different to those asked of bulk RNA-seq 

datasets. For example many bulk RNA-seq datasets are generated to detect differentially 

expressed genes through a designed experiment while many scRNA-seq experiments aim 
to identify or classify cell types. 

The bioinformatics community has embraced this new type of data, designing a plethora 

of methods for the analysis of scRNA-seq data. As such, keeping up with the current state 

of scRNA-seq analysis is now a significant challenge as the field is presented with a huge 

number of choices for approaching an analysis. Since September 2016 we have collated 

and categorised scRNA-seq analysis tools as they have become available. This database is 

being continually updated and is publicly available at www.scRNA-tools.org. In order to 

help researchers navigate the analysis jungle we discuss the stages of scRNA-seq analysis 

and their relationship to tools and categories in the scRNA-tools database. Through the 

analysis of this database we show trends in not only the analysis applications these 

methods address but how they are published, licensed and the platforms they use. Based 

on this database we gain insight into the state of analysis tools in this rapidly developing 
field. 

Overview of the scRNA-tools database 

The scRNA-tools database contains information on software tools specifically designed 

for the analysis of scRNA-seq data. For a tool to be eligible to be included in the database 
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it must be available for download and public use. This can be from a software package 

repository (such as Bioconductor4, CRAN or PyPI), a code sharing website such as 

GitHub or directly from a private website. Various details of the tools are recorded such 

as the programming language or platform they use, details of any related publication, 

links to the source code and the associated software license. Tools are also categorised 

according to the analysis tasks they are able to perform. Most tools are added after a 

preprint or publication becomes available but some have been added after being 

mentioned on social media or in similar collections such as Sean Davis' awesome-single-
cell page (https://github.com/seandavi/awesome-single-cell). 

Information about tools is displayed on a publicly available website at www.scRNA-

tools.org. This website provides a profile for each tool, with links to publications and 

code repositories, as well as an index by analysis category. We also provide an interactive 

table that allows users to filter and sort tools to find those most relevant to their needs. A 

final page shows live and up-to-date version of some of the analysis presented below. 

Anyone wishing to contribute to the database can do so by submitting an issue to the 
project GitHub page (https://github.com/Oshlack/scRNA-tools). 

When the database was first constructed there were 70 scRNA-seq analysis tools 

available, representing work in the field during the three years from the first published 

tool in November 2013 (SAMstrt5) up to September 2016. In the year since then over 70 

new tools have been added (Figure 1A). The doubling of the number of available tools in 

such a short time demonstrates the booming interest in scRNA-seq and its maturation 

from a technique requiring custom-built equipment with specialised protocols to a 

commercially available product. 
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Figure 1 (A) Number of tools in the scRNA-tools database over time. Since the scRNA-
seq tools database was started in September 2016 more than 70 new tools have been 
released. (B) Publication status of tools in the scRNA-tools database. Over half of the 
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tools in the full database have been published in peer-revewied journals while another 
third are available as preprints. (C) When stratified by the date tools were added to the 
database we see that the majority of tools added before October 2016 are published, 
while the majority of newer tools are available as preprints. The number of 
unpublished tools has stayed consistent at around 10 percent. (D) The majority of tools 
are available using either the R or Python programming languages. (E) Most tools are 
released under a standard open-source software license, with variants of the GNU 
Public License (GPL) being the most common. However licenses could not be found for 
a large proportion of tools. 

Publication status 

Most tools have been added to the scRNA-tools database after coming to our attention in 

a paper describing their method and use. Of all the tools in the database about half have 

been published in peer-reviewed journals and another third are described in preprint 

articles, typically on the bioRxiv preprint server (Figure 1B). Tools can be split into those 

that were available when the database was created and those that have been added since. 

We can see that the majority of older tools have been published while more recent tools 

are more likely to only be available as preprints (Figure 1C). This is a good 

demonstration of the delay imposed by the traditional publication process. By publishing 

preprints and releasing software via repositories such as GitHub scRNA-seq tool 

developers make their methods available to the community much earlier, allowing them 
to be used for analysis and their methods improved prior to formal publication. 

Platforms and licensing 

Developers of scRNA-seq analysis tools have choices to make about what platforms they 

use to create their tools, how they make them available to the community and whether 

they share the source code. We find that the most commonly used platform for creating 

scRNA-seq analysis tools is the R statistical programming language, with many tools 

made available through the Bioconductor or CRAN repositories (Figure 1D). Python is 

the second most popular language, followed by MATLAB, a commercially available 

product, and the lower-level C++. The use of R and Python is consistent with their 

popularity across a range of data science fields. In particular the popularity of R reflects 

its history as the language of choice for the analysis of bulk RNA-seq datasets and a 
range of other biological data types. 

The majority of tools in the scRNA-tools database have chosen to take an open-source 

approach, making their code available under permissive licenses (Figure 1E). We feel this 

reflects the general underlying sentiment and willingness of the bioinformatics 
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community to share and build upon the work of others. Variations of the GNU Public 

License (GPL) are the most common, covering almost half of tools. This license allows 

free use, modification and distribution of source code, but also has a "copyleft" nature 

which requires any derivatives to disclose their source code and use the same license. 

The MIT license is the second most popular which also allows use of code for any 

purpose but without any restrictions on distribution or licensing. The appropriate license 

could not be identified for almost a fifth of tools. This is problematic as fellow developers 

must assume that source code cannot be reused, potentially limiting the usefulness of the 

methods in those tools. Tool owners are strongly encouraged to clearly display their 

license in source code and documentation to provide certainty to the community as to 
how their work can be reused. 

Categories of scRNA-seq analysis 

As has been described in previous reviews a standard scRNA-seq analysis consists of 

several tasks which can be completed using various tools6. In the scRNA-tools database 

we categorise tools based on the analysis tasks they perform. Here we group these tasks 

into four broad phases of analysis: data acquisition, data cleaning, cell assignment and 

gene identification (Figure 2). The data acquisition phase (Phase 1) takes the raw 

nucleotide sequences from the sequencing experiment and returns a matrix describing 

the expression of each gene (rows) in each cell (columns). This phase consists of tasks 

common to bulk RNA-seq experiments, such as alignment to a reference genome or 

transcriptome and quantification of expression, but is often extended to handle Unique 

Molecular Identifiers (UMIs). Once an expression matrix has been obtained it is vital to 

make sure the resulting data is of high enough quality. In the data cleaning phase (Phase 

2) quality control of cells is performed as well as filtering of uninformative genes. 

Additional tasks may be performed to normalise the data or impute missing values. 

Exploratory data analysis tasks are often performed in this phase, such as viewing the 
datasets in reduced dimensions to look for underlying structure. 

The high-quality expression matrix is the focus of the next phases of analysis. In Phase 3 

cells are assigned, either to discrete groups via clustering or along a continuous 

trajectory from one cell type to another. As high-quality reference datasets become 

available it will also become feasible to classify cell directly into different cell types. Once 

cells have been assigned attention turns to interpreting what those assignments mean. 
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Identifying interesting genes (Phase 4), such as those that are differentially expressed 

across groups, marker genes expressed in a single group or genes that change expression 

along a trajectory, is the typical way to do this. The biological significance of those genes 

can then be interpreted to give meaning to the experiment, either by investigating the 

genes themselves or by getting a higher level view through techniques such as gene set 

testing. 
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Figure 2 Phases of the scRNA-seq analysis process. In Phase 1 (data acquisition) raw 
sequencing reads are converted into a gene by cell expression matrix. For many 
protocols this requires the alignment of genes to a reference genome and the 
assignment and de-duplication of Unique Molecular Identifiers (UMIs). The data is 
then cleaned (Phase 2) to remove low-quality cells and uninformative genes, resulting 
in a high-quality dataset for further analysis. The data can also be normalised and 
missing values imputed during this phase. Phase 3 assigns cells, either in a discrete 
manner to known (classification) or unknown (clustering) groups or to a position on a 
continuous trajectory. Interesting genes (eg. differentially expressed, markers, specific 
patterns of expression) are then identified to explain these groups or trajectories (Phase 
4). 

While there are other approaches that could be taken to analyse scRNA-seq data these 

phases represent the most common path from raw sequencing reads to biological insight. 

Descriptions of the categories in the scRNA-tools database are given in Table 1, along 
with the associated analysis phases. 

Table 1 Descriptions of categories for tools in the scRNA-tools database 

Phase Category Description 

Phase 1 Alignment Alignment of sequencing reads to a reference 

Phase 1 Assembly Tools that perform assembly of scRNA-seq reads 

Phase 1 UMIs Processing of Unique Molecular Identifiers 

Phase 1 Quantification Quantification of expression from reads, including 
handling unique molecular identifiers 

Phase 2 Quality Control Removal of low-quality cells 

Phase 2 Gene Filtering Removal of lowly expressed or otherwise uninformative 

genes 

Phase 2 Imputation Estimation of expression where zeros have been 

observed 

Phase 2 Normalisation Removal of unwanted variation that may affect results 

Phase 2 Cell Cycle Assignment or correction of stages of the cell cycle, or 

other uses of cell cycle genes, or genes associated with 

similar processes 

Phase 3 Classification Assignment of cell types based on a reference dataset 

Phase 3 Clustering Unsupervised grouping of cells based on expression 

profiles 
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Phase 3 Ordering Ordering of cells along a trajectory 

Phase 3 Rare Cells Identification of rare cell populations 

Phase 3 Stem Cells Identification of cells with stem-like characteristics 

Phase 4 Differential 

Expression 

Testing of differential expression across groups of cells 

Phase 4 Expression 
Patterns 

Detection of genes that change expression across a 
trajectory 

Phase 4 Gene Networks Identification of co-regulated gene networks 

Phase 4 Gene Sets Testing for over representation or other uses of 

annotated gene sets 

Phase 4 Marker Genes Identification or use of genes that mark cell populations 

Multiple Dimensionality 

Reduction 

Projection of cells into a lower dimensional space 

Multiple Interactive Tools with an interactive component or a graphical user 
interface 

Multiple Variable Genes Identifcation or use of highly (or lowly) variable genes 

Multiple Visualisation Functions for visualising some aspect of scRNA-seq 
data or analysis 

Other Allele Specific Detection of allele-specific expression 

Other Alternative 

Splicing 

Detection of alternative splicing 

Other Haplotypes Use or assignment of haplotypes 

Other Immune Assignment of receptor sequences and immune cell 
clonality 

Other Integration Combining of scRNA-seq datasets or integration with 
other single-cell data types 

Other Modality Identification or use of modality in gene expression 

Other Simulation Generation of synthetic scRNA-seq datasets 

Other Transformation Transformation between expression levels and some 

other measure 
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Other Variants Detection or use of nucleotide variants 

Trends in scRNA-seq analysis tasks 

Each of the tools in the database is assigned to one or more analysis categories. We 

investigated these categories in further detail to give insight into the trends in scRNA-seq 

analysis. Figure 3A shows the frequency of tools performing each of the analysis tasks. 

Visualisation is the most commonly included task and is important across all stages of 

analysis for exploring and displaying data and results. Tasks for assigning cells (ordering 

and clustering) are the next most common. This has been the biggest area of 

development in single-cell analysis with clustering tools such as Seurat11, SC312 and 

BackSPIN13 being used to identify cell types in a sample and trajectory analysis tools (for 

example Monocle14, Wishbone15 and DPT16) being used to investigate how genes change 

across developmental processes. These areas reflect the new opportunities for analysis 
provided by single-cell data that are not possible with bulk RNA-seq experiments. 
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Figure 3 (A) Categories of tools in the scRNA-tools database. Each tool can be assigned 
to multiple categories based on the tasks it can complete. Categories associated with 
multiple analysis phases (visualisation, dimensionality reduction) are among the most 
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common, as are categories associated with the cell assignment phase (ordering, 
clustering). (B) Changes in analysis categories over time, comparing tools added before 
and after October 2016. There have been significant increases in the percentage of tools 
associated with visualisation, dimensionality reduction, quantification and simulation. 
Categories including expression patterns, pseudotime and interactivity have seen 
relative decreases. (C) Changes in the percentage of tools associated with analysis 
phases over time. The percentage of tools involved in the data acquisition and data 
cleaning phases have increased, as have tools designed for alternative analysis tasks. 
The gene identification phase has seen a relative decrease in the number of tools. (D) 
The number of categories associated with each tools in the scRNA-tools database. The 
majority of tools perform few tasks. (E) Most tools that complete many tasks are 
relatively recent. 

Dimensionality reduction is also a common task and has applications in visualisation 

(via techniques such as t-SNE17), quality control and as a starting point for analysis. 

Testing for differential expression (DE) is perhaps the most common analysis performed 

on bulk RNA-seq datasets and it is also commonly applied by many scRNA-seq analysis 

tools, typically to identify genes that are different in one cluster of cells compared to the 

rest. However it should be noted that the DE testing applied by scRNA-seq tools is often 

not as sophisticated as the rigorous statistical frameworks of tools developed for bulk 

RNA-seq such as edgeR18, DESeq220 and limma21, often using simple statistical tests such 

as the likelihood ratio test. While methods designed to test DE specifically in single-cell 

datasets do exist (such as SCDE22, and scDD23) it is still unclear whether they improve on 

methods that have been established for bulk data24. 

To investigate how the focus of scRNA-seq tool development has changed over time we 

again divided the scRNA-tools database into tools added before and after October 2016. 

This allowed us to see which analysis tasks are more common in recently published tools. 

We looked at the percentage of tools in each time period that performed tasks in the 

different analysis categories (Figure 3B). Some categories show little change in the 

proportion of tools that perform while other areas have changed significantly. 

Specifically, both visualisation and dimensionality reduction are more commonly 

addressed by recent tools. The UMIs category has also seen a big increase recently as 

UMI based protocols have become commonly used and tools designed to handle the 

extra processing steps required have been developed (UMI-tools28, umis29, zUMIs30). 

Simulation is a valuable technique for developing, testing and validating scRNA-seq 

tools. More packages are now including their simulation functions and some tools have 

been developed for the specific purpose of generating realistic synthetic scRNA-seq 

datasets (powsimR31, Splatter32). Classification of cells into known groups has also 
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increased as reference datasets become available and more tools are identifying or 
making use of co-regulated gene networks. 

Some categories have seen a decrease in the proportion of tools they represent, most 

strikingly testing for changes expression patterns along a trajectory. This is likely related 

to the change in cell ordering analysis which is the focus of a lower percentage of tools 

added after October 2016. The ordering of cells along a trajectory was one of the first 

developments in scRNA-seq analysis and a decrease in the development of these tools 

could indicate that researchers have moved on to other techniques or that use has 
converged on a set of mature tools. 

By grouping categories based on their associated analysis phases we see similar trends 

over time (Figure 3C). We see increases in the percentage of tools performing tasks in 

Phase 1 (quantification), Phase 2 (quality control and filtering), across multiple phases 

(visualisation and dimensionality reduction) and alternative analysis tasks. In contrast 

the percentage of tools that perform gene identification tasks (Phase 2) has decreased 

and the percentage assigning cells (Phase 3) has remained steady. This too may indicate 

a maturation of the analysis space as existing tools for performing standard scRNA-seq 

analyses are deemed sufficient while there is still room for development in handling data 
from new protocols and performing alternative analysis tasks. 

Pipelines and toolboxes 

While there are a considerable number of scRNA-seq tools that only perform a single 

analysis task, many perform at least two (Figure 3D). Some tools (dropEst33, DrSeq234, 

scPipe35) are preprocessing pipelines, taking raw sequencing reads and producing an 

expression matrix. Others, such as Scanpy36, SCell37, Seurat, Monocle and scater38 can be 

thought of as analysis toolboxes, able to complete a range of complex analyses starting 

with a gene expression matrix. Most of the tools that complete many tasks are more 

recent (Figure 3E). Being able to complete multiple tasks using a single tool can simplify 

analysis as problems with converting between different data formats can be avoided, 

however it is important to remember that it is difficult for a tool with many 

functionalities to continue to represent the state of the art in all of them. Support for 

common data formats, such as the recently released SingleCellExperiment object in R39, 

provides another way for developers to allow easy use of their tools and users to build 
custom workflows from specialised tools. 
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Alternative analyses 

Some tools perform analyses that lie outside the common tasks performed on scRNA-seq 

data described above. Simulation is one alternative task that has already been mentioned 

but there is also a group of tools designed to detect biological signals in scRNA-seq data 

apart from changes in expression. For example alternative splicing (BRIE40, Outrigger41, 

SingleSplice42), single nucleotide variants (SSrGE43) and allele-specific expression 

(SCALE44). Reconstruction of immune cell receptors is another area that has received 

considerable attention from tools such as BASIC45, TraCeR46 and TRAPeS47. While tools 

that complete these tasks are unlikely to ever dominate scRNA-seq analysis it is likely 

that we will see an increase in methods for tackling specialised analyses as researchers 
continue to push the boundaries of what can be observed using scRNA-seq data. 

Discussion and conclusions 

Over the last year we have seen the number of number of software tools for analysing 

single-cell RNA-seq data double, with more than 130 analysis tools now available. As 

new tools have become available we have curated and catalogued them in the scRNA-

tools database where we record the analysis tasks that they can complete, along with 

additional information such as any associated publications. By analysing this database 

we have found that tool developers have focused much of their efforts on methods for 

handling new problems specific to scRNA-seq data, in particular clustering cells into 

groups or ordering them along a trajectory. We have also seen that the scRNA-seq 

community is generally open and willing to share their methods which are often 

described in preprints prior to peer-reviewed publication and released under permissive 
open-source licenses for other researchers to re-use. 

The next few years promise to continue to produce significant new developments in 

scRNA-seq analysis. New tools will continue to be produced, becoming increasingly 

sophisticated and aiming to address more of the questions made possible by scRNA-seq 

data. We anticipate that some existing tools will continue to improve and expand their 

functionality while others will cease to be updated and maintained. Detailed 

benchmarking and comparisons will show how tools perform in different situations and 

those that perform well, continue to be developed and provide a good user experience 

will become preferred for standard analyses. As single-cell capture and sequencing 
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technology continues to improve analysis tools will have to adapt to significantly larger 

datasets (in the millions of cells) which may require specialised data structures and 

algorithms. Methods for combining multiple scRNA-seq datasets as well as integration of 

scRNA-seq data with other single-cell data types, such as DNA-seq, ATAC-seq or 

methylation, with be another area of growth and projects such as the Human Cell Atlas48 

will provide comprehensive cell type references which will open up new avenues for 
analysis. 

As the field expands the scRNA-tools database will continue to be updated. We hope that 

it provides a resource for researchers to explore when approaching scRNA-seq analyses 

as well as providing a record of the analysis landscape and how it changes over time. 

Methods 

Database 

When new tools come to our attention they are added to the scRNA-tools database. DOIs 

and publication dates are recorded for any associated publications. As preprints may be 

frequently updated they are marked as a preprint instead of recording a date. The 

platform used to build the tool, links to code repositories, associated licenses and a short 

description are also recorded. Each tool is categorised according to the analysis tasks it 

can perform, receiving a true or false for each category based on what is described in the 

accompanying paper or documentation. We also record the date that each entry was 
added to the database and the date that it was last updated. 

Website 

To build the website we start with the table described above as a CSV file which is 

processed using an R script. The lists of packages available in the CRAN, Bioconductor 

and PyPI software repositories are downloaded and matched with tools in the database. 

For tools with peer-reviewed publications the number of citations they have received is 

retrieved from the Crossref database (www.crossref.org) using the rcrossref package 

(v0.7.0)49. JSON files describing the complete table, tools and categories are outputted 

and used to populate the website. 

The website consists of three main pages. The home page shows an interactive table with 

the ability to sort, filter and download the database. The second page shows an entry for 
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each tool, giving the description, details of publications, details of the software code and 

license and the associated software categories. Badges are added to tools to provide 

clearly visible details of any associated software or GitHub repositories. The final page 
describes the categories, providing easy access to the tools associated with them. 

Analysis 

The most recent version of the scRNA-tools database was used for the analysis presented 

in this paper. Data was manipulated in R using the dplyr package (v0.7.3)50 and plots 
produced using the ggplot2 (v2.2.1)51 and cowplot (v0.8.0)52 packages. 
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