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Background: Eukaryotes transcribe RNAs in nuclei and transport them to the 

cytoplasm through multiple steps of post-transcriptional regulation. Existing single-

cell sequencing technologies, however, are unable to analyse nuclear (nuc) and 

cytoplasmic (cyt) RNAs separately and simultaneously. Hence, there remain 

challenges to discern correlation, localisation, and translocation between them.  

 

Results: Here we report a microfluidic system that physically separates nucRNA and 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 20, 2017. ; https://doi.org/10.1101/206672doi: bioRxiv preprint 

https://doi.org/10.1101/206672
http://creativecommons.org/licenses/by-nc-nd/4.0/


 2 

cytRNA from a single cell and enables single-cell integrated nucRNA and cytRNA-

sequencing (SINC-seq). SINC-seq constructs two individual RNA-seq libraries, 

nucRNA and cytRNA per cell, quantifies gene expression in the subcellular 

compartments and combines them to create a novel single-cell RNA-seq data 

enabled by our system, which we here term in-silico single cell. 

  

Conclusions: Leveraging SINC-seq, we discovered three distinct natures of 

correlation among cytRNA and nucRNA that reflected the physiological state of 

single cells: The cell-cycle-related genes displayed highly correlated expression 

pattern with minor differences; RNA splicing genes showed lower nucRNA-to-

cytRNA correlation, suggesting a retained intron may be implicated in inhibited 

mRNA transport; A chemical perturbation, sodium butyrate treatment, transiently 

distorted the correlation along differentiating human leukemic cells to erythroid 

cells. These data uniquely provide insights into the regulatory network of mRNA 

from nucleus toward cytoplasm at the single cell level. 

 

Keywords: Single cell, RNA-seq, Microfluidics, RNA transport, Splicing, 

Isotachophoresis, Nucleus, Cytoplasm 

 

Background 

Single-cell sequencing is a powerful tool to explore epigenetic, genomic and 

transcriptional heterogeneities at unprecedented resolution[1-6]. RNA-seq with single 
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nuclei (nucRNA-seq) is an emerging alternative to profile gene expressions of cells in 

tissues that cannot be readily dissociated such as the adult brain and frozen samples. The 

method is further capable of coupling with sorting by fluorescence activated cell sorters 

[4, 7], Fluidigm C1[5], and Drop-seq[8], and demonstrated feasibilities of identifying cell 

types and cell cycles with nucRNA-seq data[9]. Although these works hypothesise that 

the nucRNA expression is representative of whole cells, to date, the direct evidence of 

the correlation in the cytRNA and nucRNA expression at single-cell resolution has not 

been provided. 

Recent technical advances have further enabled combined sequencing at multi-

omic levels within the same single cells[10-12] and helped to understand the links 

underlying the regulatory cascade. Several microfluidic[13-16] and non-microfluidic 

protocols[17, 18] offer parallel transcriptional and genomic analyses on the same single 

cell by fractionating cytRNAs and nuclei of single cells. However, we know of no work 

that has reported an integrated nucRNA-seq and cytRNA-seq with the same cell to study 

RNA transport and gene regulation and function through splicing of pre-mRNA[19, 20]. 

Here we develop a novel single-cell sequencing method, SINC-seq, which 

combines a microfluidic protocol that physically fractionates nuclear and cytoplasmic 

RNAs and a subcellular RNA-seq pipeline to dissect RNA expressions in the individual 

subcellular compartment. We utilise SINC-seq to explore both correlated and 

uncorrelated gene expression between the compartments with single K562 human 

leukemic cells. We further explore correlation dynamics that reflect the transient response 

of cells with differentiating K562 cells to erythroid cells under a perturbation of sodium 
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butyrate, a histone deacetylase inhibitor. These data reveal how eukaryotes manage 

subcellular RNA expressions via inter-compartment regulation. 

 

Results 

A Microfluidic platform for single-cell integrated nuclear and cytoplasmic RNA-

sequencing: SINC-seq 

To dissect transcriptional correlation in the subcellular compartments, we 

devised SINC-seq that combines an electrophoretic fractionation of cytRNA from the 

nucleus[14-16] with off-chip RNA sequencing (Fig. 1a, b). SINC-seq constructs 

individual RNA-seq libraries with cytRNA and nucRNA and integrates the sequencing 

data in a new form of sequencing data, which we term an in-silico single cell. SINC-seq 

starts with a microfluidic protocol that leverages a hydrodynamic trap that captures a 

single cell, concentrates an electrical field to lyse the cytoplasmic membrane selectively 

while leaving the nuclear membrane relatively intact, and retains the nucleus during 

electric-field-based extraction of cytRNA to fractionate them (Fig.1b, c, Supplementary 

Fig. 1, Supplementary Video 1, and Methods). The microfluidic system completes the 

entire process with a voltage control via three end-channel electrodes and outputs the 

cytRNA and nucleus to different wells in less than 5 min. We note that the hydrodynamic 

trap integrated in this work couples hydrodynamic flow and electric field concentration, 

and uniquely enables a highly automated workflow and about 20-fold reduction in the 

applied voltage compared to our previous protocol[14-16]. These key improvements 

allowed us to study RNA expressions in subcellular compartments of single cells 

systematically. 
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Library preparation and quality control with SINC-seq 

To critically evaluate SINC-seq, we performed experiments with 93 single cells 

of K562 human myeloid leukaemia cells and generated 186 RNA-seq libraries with off-

chip Smart-seq2 protocol[21]. Of the 93 single cells analysed in this experiment, all 

showed successful extraction with monitoring current during extraction (Supplementary 

Fig. 1c); 84 (QC) for both cytRNA-seq and nucRNA-seq. Of the 93 single cells analyzed 

in this experiment, 9 failed quality control (QC) for either cytRNA-seq or nucRNA-seq; 

in 7 of the samples that failed QC, we observed low yield in the amplification either with 

cytRNA or nucRNA; in two of the samples, we observed incomplete fractionation (see 

Supplementary Figs. 2-4 and Supplementary Data 1). After the QC, we achieved 168 data 

sets consisting of 84 pairs of cytRNA-seq and nucRNA-seq. Our protocol showed lower 

cDNA yield with a nucleus than with cytRNA and the total cDNA amount of the cDNA 

per single cell was 26±16% less than that with a conventional single-cell protocol on 

average (Supplementary Fig.2a), however this does not result in a significant decrease in 

the sensitivity and repeatability (see Supplementary Information and Supplementary 

Fig.3). 

SINC-seq dissects the difference in subcellular gene expression 

To assess the performance of SINC-seq, we computed gene expression with an 

in-silico single cell analysis.  We used this to benchmark the sensitivity and repeatability 

of our methods (Methods, see a comprehensive benchmark of SINC-seq in 

Supplementary Figs. 3 and 4 and the Supplementary Information). SINC-seq consistently 

detected 6,680±1,360 (mean±s.d.) and 5,970±1,400 genes per cytRNA and nucRNA, 
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respectively, and 8,640±1,150 genes per cell with transcripts per million (TPM) greater 

than 0 (Fig. 1d). SINC-seq also revealed that ~16% transcripts were in the nucleus and 

~84% in the cytoplasm (Fig. 1e) and enriched expression of 226 and 3,035 genes, 

respectively (Fig. 1f). On average, SINC-seq displayed about 6.3% smaller number of 

detected genes than the conventional single-cell RNA-seq (scRNA-seq) that detected 

9,230±1,220 genes (n=12). Notably, our in-silico single cell data showed a wider dynamic 

range in the detection of genes as compared to scRNA-seq (Supplementary Fig. 4k). To 

the scRNA-seq, the in-silico single-cell data showed the higher coefficient of correlation 

computed with log-transformed expression (log10(TPM+1)) than either cytRNA-seq or 

nucRNA-seq (Fig. 1g). Combined, average gene expression profile of 12 in-silico single-

cells (Supplementary Fig. 5) showed an excellent matching with that of 12 scRNA-seq 

(r = 0.949, Pearson correlation coefficient, Supplementary Fig. 3q). The total number of 

detected genes in the 12 in-silico single cells was 15,314, of which 13,286 genes were 

also detected in the average of the 12 scRNA-seq (Supplementary Fig. 3t). We again 

stress that the in-silico normalisation and resulting scRNA-seq is a novel method, which 

uniquely leverages the physical separation and minimal cross-contamination enabled by 

our electrophoretic fractionation.   

Cell cycle-related genes show correlated expression in cytoplasm and nucleus 

To view the landscape of the correlation between nucRNA and cytRNA, we 

computed cross-correlation of the individual gene as a measure of covariation in the two 

subcellular compartments and ranked the genes with the coefficient of correlation 

(Fig. 2a). Gene ontology analysis revealed that the highly correlated genes (top 10%) had 
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cell-cycle as an enriched function (Fig. 2b) and the bottom 10% including anti-correlation 

had RNA processing (Fig. 2c).  

To dissect the highly correlated gene expression, we first focused on cell cycle 

based on transcriptional oscillations[2] and phase-score analysis[3] (Supplementary 

Information). The in-silico single cell data showed the progression of the cell cycle with 

a correlated variation of in-phase genes and anti-correlation out-of-phase genes (G1 

versus G2) (Fig. 2d), consistent with scRNA-seq of K562[2], and also with the 

progression of the phase-score (Supplementary Fig. 6a). Similarly, both of cytRNA-seq 

and nucRNA-seq data revealed the cell cycle (Fig. 2e, f and Supplementary Fig. 6b, c). 

Notably, we found that the anti-correlation among out-of-phase genes was slightly higher 

in a nucRNA (U-test, p = 7.81×10-26, Supplementary Fig. 6d), suggesting that nucRNA-

seq more directly detected phase transition in the transcriptional oscillation of cell-cycle 

genes. On the other hand, the correlation among in-phase genes was higher in cytRNA 

may indicate further modulation in the cytoplasm. 

To elucidate how the transcriptional oscillations in nucRNA modulated the gene 

expression in the cytRNA, we extended the analyses to compute the cross-correlation 

between cytRNA and nucRNA with cell-cycle genes. The cell-cycle genes showed 

synchronised oscillation in the each of the two subcellular compartments (Fig. 2g), 

consistent with the observation that the subpopulations segregated into the G1 and G2 

groups showed corresponding up- and down-regulation of G1 and G2 genes 

(Supplementary Fig. 6e,f, Supplementary Information). Together, these results suggested 

that the cytRNA and nucRNA had similar expression patterns of cell-cycle genes and both 
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of them solely had a potency to detect the cell-cycle. 

Nuclear retained intron attenuates the transcriptional oscillation 

As an instance of the uncorrelated genes, we next studied the retained intron 

(RI) mediated regulation of mRNA transport[22-24] leveraging the intron-rich reads with 

nucRNA-seq of SINC-seq (see Supplementary Fig. 7 for comprehensive statistics on 

intron detection). After filtering RI (Methods), SINC-seq detected 2,000±740 RIs per cell, 

of which 1,480±698 and 814±330 were detected with nucRNA-seq and cytRNA-seq, 

respectively (Fig. 3a). We identified 223 nuclear-retained introns (NRI) in 202 genes 

(Methods). Gene ontology analysis[25] found that the 202 genes had enriched functions 

like RNA processing and RNA splicing (Fig. 3b), consistent with the previous studies[23, 

26, 27]. We examined the relationship between the probability of NRI and gene 

expression in an individual fraction. We observed a positive correlation between them in 

the nucRNA (r=0.436, p<0.01 Fig. 3c), while no correlation in the cytRNA (r=0.063, 

p=0.439, Fig. 3d). In contrast, we observed different enriched functions with cytoplasmic 

enriched RIs (CRI) and no correlation between probabilities of CRI and gene expressions 

(Supplementary Fig. 8a-c). For a better understanding of the function of NRI, we 

examined the expression patterns of top seven genes that were highly associated with NRI 

mediated regulation (Fig. 3e-g and Supplementary Figs. 8d-h). Notably, the seven genes 

contained three splicing-related genes[28] and two snoRNA host genes[29]. These data 

lead us to hypothesise the NRIs likely attenuates the transcriptional oscillation in the 

nucleus via fine-tuning RNA metabolism in order to maintain the gene expression and 

functional RNAs in the cytoplasm. 
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Sodium butyrate treatment on K562 drives diverging gene expression in subcellular 

compartments 

 To explore the correlation dynamics under perturbation, we further performed 

SINC-seq with differentiating K562 cells to erythroid cells by sodium butyrate 

(Methods), sampling 8-13 cells per day over five days. With 41 successful SINC-seq 

datasets (82 RNA-seq data in total), we detected differentially expressed genes (DEG), 

264 up- and 177 down-regulated genes were in cytRNA, and 64 up- and two down-

regulated genes were in nucRNA (Supplementary Fig. 9). We examined the dynamics of 

the cross-correlation of DEG expression between cytRNA and nucRNA along with the 

pseudo-time[30](Fig. 4a), which was obtained with in-silico single cell data 

(Supplementary Fig. 10a). The cross-correlation between cytRNA and nucRNA within 

the same single cell (along with the diagonal shown in Fig. 4a) exhibited gradual decrease 

with the pseudo-time, suggesting that the subcellular gene expression patterns behaved 

differently and diverged along the differentiation. Notably, the correlation between 

nucRNA fourth day and cytRNA first day (near the top right corner in Fig. 4a) displayed 

lower correlation as compared to that between nucRNA first day and cytRNA fourth day 

(near the bottom left corner), suggesting strongly that nucRNA was the driver of the 

diverging gene expression. We reinforced this observation with the control experiments 

(Supplementary Fig. 10b-d). 

 We hypothesised that the divergence of gene expressions in the two subcellular 

compartments might reflect the transient response of different regulatory pathways and 
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enable to resolve the on/off regulation of the transcription leveraging nucRNA-seq. To 

test this hypothesis, we introduced a localisation-embedded principal components 

analysis (L-PCA) that computed PCs with the subcellular gene expression of DEGs 

(Fig. 4b). As expected, L-PCA resolved the trajectory of the differentiation slightly 

clearer than a conventional PCA that computed PCs with in-silico single cell data 

(Fig. 4c). To further corroborate the L-PCA, we performed PCA on datasets of an 

individual fraction, showing this specific and unique transient in the nucRNA compared 

to that in the cytRNA— that is, in nucRNA, the third day cluster was furthest from the 

day 0th cluster. (Supplementary Fig. 10e, f). These results demonstrated that the SINC-

seq was able to detect important regulatory events. Such events are usually masked by 

abundant cytoplasmic transcripts in conventional single-cell sequencing.  

 

Discussion 

A fundamental question is how the transcriptional oscillation in the nucRNA, 

which is inherently stochastic, is transported to and correlated with gene expression in 

the cytRNA. SINC-seq enabled direct and quantitative comparison of gene expressions 

between a nucleus, a cytoplasm and a whole cell of a same single cell, revealing that the 

cells may conceivably fine-tune a portion of their expression upon transport to the 

cytoplasm (e.g. NRI genes), while preserving correlation of other portions of their 

expression upon transport (e.g. cell cycle-related genes). SINC-seq also revealed that the 

cells under the external perturbation dynamically alter the correlation and exhibit the 

unique trajectory of differentiation at subcellular resolution. These findings shed new 
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light on the characteristics of post-transcriptional regulations with a single cell and 

subcellular compartment resolution. 

 Our study also suggests a compelling caution to an approach that approximates 

the transcriptomic profile of the whole cell with that of a single compartment without 

validation. The SINC-seq platform will be broadly applicable to different types of cells 

as long as they are isolated as singles. The method thus will contribute to validate existing 

subcellular RNA-seq methods[4, 5, 7-9, 17, 18] and also define their limitations. 

 

Conclusion 

To dissect transcriptional correlation in the subcellular compartments, we devised SINC-

seq that enables integrated nuclear and cytoplasmic RNA-seq of single cells by coupling 

a physical fractionation of cytRNA from the nucleus of a single cell with a high-

throughput RNA-seq. Leveraging SINC-seq, we explored the landscape of the correlation 

between nucRNA and cytRNA with a total of 84 K562 cells, which corresponds to 168 

RNA-seq libraries. The SINC-seq data unveiled three distinct natures of correlation 

among cytRNA and nucRNA that reflected the physiological state of single cells: highly-

correlated expression in cell-cycle-related genes, the distorted correlation via nuclear-

retained intron, and the correlation dynamics along the differentiation of K562 cells to 

erythroid cells under sodium butyrate perturbation. These data uniquely provide insights 

into the regulatory network of mRNA from nucleus toward cytoplasm at the single cell 

level. 
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Methods 

Cell 

We purchased K562 cells (human lymphoblast, chronic myelogenous leukaemia) from 

RIKEN BioResource Center and JCRB cell bank. We cultured the K562 cells in RPMI-

1640 Medium (Life Technologies) with 10% fetal bovine serum and 1% penicillin-

streptomycin-glutamine at 37°C in 5% CO2. We washed the cells with phosphate buffered 

saline once and suspended in a sample buffer containing 50 mM imidazole, 25 mM 

HEPES, and 175 mM sucrose (pH 7.6) at the concentration of ∼5 cells/μL and stored on 

ice until the experiments were performed. To differentiate K562 cells, we incubated K562 

cells with 1 mM NaB (sodium butyrate, Sigma-Aldrich, B5887) and harvested after 96 h 

of induction. 

 

Buffers 

We designed buffers for isotachophoresis (ITP)-based selective extraction, separation 

(from the trapped nucleus), purification, and transport of cytRNA to the cytRNA output 

well of the chip (see more detail in Shintaku et al.13 and Kuriyama et al.14). The leading 

electrolytes (LE) were 50 mM Tris and 25 mM HCl containing 0.4% a 

poly(vinylpyrrolidone) (PVP) (calculated pH of 8.1). The trailing electrolytes (TE) were 

50 mM Imidazole and 25 mM HEPES containing (initial calculated pH of 8.3) 0.4% PVP. 

We included PVP to suppress electroosmotic flow. We purchased Tris, HEPES, 

Imidazole, and HCl from Sigma-Aldrich, and PVP (MW 1 MDa) from Polyscience. We 

prepared all solutions in UltraPure DNase-/RNase-free deionised (DI) water (Life 
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Technologies). 

 

Microfluidic system setup 

We fabricated polydimethylsiloxane (PDMS, Sylgard 184, Dow Corning) microchannel 

superstructures (Supplementary Fig. 1a,b) with a soft-lithography and bonded on a glass 

substrate. SU-8 (SU-8 2025, MicroChem) moulds were prepared on glass substrates with 

the microchannel-patterns made of chromium thin films, exposing the SU-8 to UV-light 

through the pattern. The nominal channel width and depth of the microchannels were 

50 μm and 35 μm, respectively. We designed 3 μm-wide and 5 μm-long hydrodynamic 

traps. 

Before each experiment, we preconditioned the microchannel by filling the inlet and 

outlet wells with washing solutions and applying vacuum at the waste well. Our washing 

process was as follows: 1 M NaOH for 1 min, 1 M HCl for 1 min, and deionised (DI) 

water for 1 min. All washing solutions contained 0.1% Triton X-100 to suppress bubble 

clogging in the hydrophobic microchannel. 

Following this, we loaded 9.5 μL of LE and TE to the outlet and inlet wells, 

respectively, and briefly applied vacuum to the waste well to exchange the solution in the 

microchannel with LE and TE. The hydrodynamic pressure induced by buffers in the inlet 

and outlet wells created a pressure driven laminar flow from both inlet and outlet wells 

toward the waste well and formed a stable LE-TE interface at the junction of three 

microchannels. We then loaded a 1 μL cell suspension containing a single cell into the 

inlet well and introduced it into the microchannel via the pressure driven flow.  Once we 
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visually confirmed the captured single cell at the hydrodynamic trap (Fig. 1b), we added 

9.5 μL of the TE to the waste well to reduce the pressure driven flow.  We placed 300 m 

diameter platinum wire electrodes into the wells and applied -150 V, -170 V and 0 V to 

the electrodes at the inlet, waste and outlet wells, respectively. The DC voltage created a 

concentrated electrical field at the hydrodynamic trap (Supplementary Fig. 1d) and lysed 

the cytoplasmic membrane within 1 s. Appropriate placement of ITP buffers with the DC 

electrical field enabled an immediate transition from the lysis to an ITP process that 

collects and focuses cytoplasmic RNA into an ITP-zone, TE-to-LE interface. At 40 s, we 

changed the voltages to -350 V and -510 V at the inlet and waste wells, respectively, to 

accelerate the migration of the ITP-zone. The ITP-zone transported the cytRNA to the 

output well in about 100 s while the nucleus retained at the hydrodynamic trap. We also 

monitored current during the extraction with a computer running a custom MATLAB 

(Mathworks, Inc.) script. The magnitude of the current conducting decreased as the ITP-

zone (containing the focused cytRNA) advanced in the channel and as the lower 

conductivity TE replaced the higher-conductivity LE (Supplementary Fig. 1c). The 

current signal plateaued near t =100 s, coincident with the time at which the focused 

cytRNA eluted into the outlet well. We deactivated the voltages at 200 s and used a 

standard pipette to transfer two aliquots from the chip: 9.5 L from the outlet well 

containing the cytRNA and 1 L containing the cell nucleus from the inlet well. Detailed 

descriptions of a similar protocol and chip, together with a narrated video description, 

were reported by Kuriyama et al.15 
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Library preparation and mapping analysis 

We synthesised respective cDNA libraries from the fractionated cytRNA and nuclear 

RNA separately using Smart-seq2 (SMART-seq v4 Ultra Low Input RNA Kit for 

Sequencing, Clontech) with 18 PCR cycles followed by purification with Agencourt 

AMPure XP (BeckmanCoulter). We examined the yield and quality of cDNA, 

respectively, with Qubit 2.0 Fluorometer (ThermoFisher Scientific) and qPCR targeting 

GAPDH (glyceraldehyde-3-phosphate dehydrogenase, Hs02758991_g1, ThermoFisher 

Scientific) and HBG (gamma-globin genes, Hs00361131_g1, ThermoFisher Scientific). 

We performed the tagmentation reaction with 200 pg cDNA using Nextera XT DNA 

sample prep kit (Illumina) and purified the cDNA library following the manufacturer's 

protocol, except we eluted the cDNA sample with 24 L instead of 50 L (see 

Supplementary Fig. 2a for yields of cDNA). We pooled 98-108 libraries and sequenced 

these on an Illumina HiSeq2500 with 100-base paired-end reads to an average depth of 

4.64 million reads (Supplementary Fig. 2b, c). We mapped the trimmed sequencing reads 

to the transcripts derived from the human reference genome (GRCh37.75) using a 

STAR(ver.2.5.1b) of mapping program[31] with ENCODE options, and calculated 

expression estimates with TPM using RNA-seq by expectation maximisation (RSEM 

ver.1.3.0)[32]. The average transcriptomic alignments were 94±1% (mean±s.d.) and 

93±1%, respectively, with cytRNA-seq and nucRNA-seq (Supplementary Fig. 2d). 
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Analysis of intron retention 

We computed intron expressions with fragments per kilobase of intron per million 

mapped reads (FPKM) using 347,041 unique introns (longer than 50 nt) on the genome 

annotation with 48 SINC-seq data of K562 cells under a standard culturing condition. On 

average, SINC-seq yielded 14.8% reads mapped to introns with nucRNA-seq, but only 

1.1% with cytRNA-seq. Further, SINC-seq detected 37,900±10,800 and 33,800±8,080 

unique introns in nucRNA-seq and cytRNA-seq, respectively, and 54,900±9,600 per cell 

with FPKM of more than 0. We identified an RI that had at least 10% expression level of 

the gene, 95% coverage in the intronic region, and non-zero expression in the adjacent 

exon. We discarded intron reads locating on a gene with less than 2 TPM. On the other 

hand, we identified a fully-spliced intron that had less than 1% expression of the gene and 

50% coverage in the adjacent exon. We discarded intron reads that failed the criteria 

above. We validated the RI identification with splice site scores[33], which showed lower 

values with RIs than fully-spliced introns (p-value < 2.2×10-16, U-test), using 9mer 

(exonic 3mer + intronic 6mer) around 5’ splice site, and 23mer (intronic 20mer + exonic 

3mer) around 3’ splice site. In total, we detected 17,335 RIs of which 12,950 and 2,177 

RIs had a higher probability of RI in nucRNA and cytRNA, respectively. The RI’s 

enrichment in the nucleus was consistent with the previous studies[22-24]. 

To identify the NRI, we calculated the probability of intron retention defined as 

the proportion of cells with the RI and identified NRI that had 0.25 higher probability in 

the nuclear fraction than in the cytoplasmic fraction. We then filtered unique NRIs 

discarding smaller NRIs that had an overlap with a long NRI. On the other hand, we 
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identified CRI that had 0.25 higher probability in the cytoplasmic fraction than in the 

nuclear fraction. 

 

Computing cyt- vs nuc-normalised data:  in-silico single-cell normalisation 

We computed in-silico single-cell RNA-seq data with cytRNA-seq and nucRNA-seq data, 

scaling the raw TPM values and combining the cyt and nucRNA-seq data as 

, (S1) 

, (S2) 

, (S3) 

where  and  are normalisation factors, which make the summation of the TPM values, 

TPMin-silico, of the in-silico single cell data to be one million. We here write raw TPM 

values with an asterisk and TPM values of an in-silico single cell data, cytRNA-seq, and 

nucRNA-seq, respectively, with their subscripts. We calculate  and  using Ct of qPCR 

data taken at the QC of cDNA (Supplementary Data 1) as 

, (S4) 

, (S5) 

where TPM*
cyt,geneA, TPM*

nuc, geneA, and Ct are, respectively, the raw TPM value of gene 

A with cytRNA-seq, the raw TPM value of gene A with nucRNA-seq, and Ct=Ctnuc, 

geneA-Ctcyt, geneA, which is Ct with respect to gene A. We calculated pairs of  and  with 

GAPDH and HBG genes (HBG1+HBG2) as gene As, and used the mean  and  to 

compute the TPM.  

TPM
in-silico

=TPM
cyt

+TPM
nuc

TPM
cyt

=aTPM *

TPM
nuc

= bTPM *

Ct

geneAnuc

geneAcyt

Ct

TPM

TPM 







2

2

,
*

,
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L-PCA 

The PCA for the conventional scRNA-seq that uses a (n×m) matrix of gene expressions 

(n: number of genes) with multiple samples (m: number of samples), however, our L-PCA 

uses a (2n×m) matrix of gene expressions, having a dimension by two-fold compared to 

the conventional, derived from cytRNA-seq and nucRNA-seq. The L-PCA was 

performed PCA with prcomp in R. 
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Figure 1 Single-cell integrated nuclear and cytoplasmic RNA-seq (SINC-seq). a, SINC-seq 

and conventional scRNA-seq. b, Workflow of SINC-seq. Single cell isolation at a hydrodynamic 

trap via pressure-driven flow (t=0 s); Lysis of cell membrane and cytRNA extraction with 

isotachophoresis (ITP)-aided nucleic acids extraction (t>0 s); ITP acceleration by changing 

voltages (t=40 s); Voltage deactivation and sample collection from the wells of the microchannel 

(t>200 s). c, Fluorescence microscopy images of the trapped single-cell, nucleus after cytRNA 

extraction (stained with Hoechst) and extracted cytRNA stained with SYBR Green II. The bars are 

20 m. d, Venn diagram of mean numbers of detected genes in cytRNA-seq and nucRNA-seq. e, 

Proportion of abundance of transcripts in the cytoplasm. f, Differential expression between 
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cytRNA and nucRNA. Blue, genes with p values less than 0.001 and absolute log2 fold changes 

greater than unity. g, Correlation coefficients of gene expression pattern computed with respect to 

the conventional scRNA-seq, showing our novel in-silico single cell normalisation showed the 

best correlation with the scRNA-seq. 
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Figure 2 Landscape of cross-correlation between cytRNA and nucRNA unveiled 

transcriptional oscillation of cell-cycle genes in nucRNA highly correlated with expression in 

cytRNA. a, Quantile plot of genes with coefficients of cross-correlation, b Gene ontology analysis 

with top 10% genes in the quantile plot and c, bottom 10% genes. d-f, Cell-cycle genes in in-silico 

single cell data, cytRNA, and nucRNA show correlation with in-phase genes (G1 vs. G1 or G2 vs. 

G2) and anti-correlation with out-of-phase genes (G1 vs. G2). g, The transcriptional oscillation of 

cell-cycle genes in nucRNA cross-correlated with the gene expression in cytRNA.  
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Figure 3 NRI mediated attenuation of transcriptional oscillation in nucRNA. a, Heatmap of 

RI with the probability of RI in cytRNA and nucRNA fractions. NRI was identified in the upper 

right region indicated with the broken white line. b, Gene ontology analysis with NRI. c, d, 

Correlation analysis between the probability of NRI and the fold change of gene expression among 

cells with NRI and without NRI (Spl: spliced) in nucRNA and cytRNA, respectively. e, Expression 

of top seven genes that were highly regulated by NRI in nucRNA (p <0.001, Mann-Whitney U 

test), comparing with NRI versus without NRI (Spl) in an individual fraction. f, Coverage of 

SRSF2 and g, SRSF5 genes showing higher intron reads in the nuclear fraction. Coverages of 

HNRNPDL, SNHG15, GAS5 (SNHG2), FBXO9, and VAMP2 genes are provided in Supplementary 

Fig. 8. 
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Figure 4  Differentiation of K562 cells to erythroid cells shows a dynamical change of cross-

correlation between cytRNA and nucRNA. a, The cross-correlation of DEG expression between 

cytRNA and nucRNA along with the pseudo-time. b, L-PCA analysis of differentiating K562 cells 

to erythroid cells by sodium butyrate treatment. c, Conventional PCA analysis. 
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Supplementary Figure 1 Microfluidic system for SINC-seq protocol. a, Geometry of 

microfluidic channel with a hydrodynamic trap. b, Photograph of the microfluidic chip consisting 

of three channels filled with food colouring.  c, DC voltage (upper panel) and electrical current 

behaviour (lower panel) during the extraction protocol. The shade shows 95% confidence interval 

computed with 48 experiments. d, Magnitude of electrical field around the hydrodynamic trap (top 

panel) simulated with COMSOL, electrical field lines concentrating at the trapping site (middle 

panel), and 15-fold electric field amplification at the trap (bottom panel). 
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Supplementary Figure 2 Quality control data of SINC-seq. a, Yields of synthesised cDNA with 

cytRNA and nucRNA. The total amount of cDNA was calculated by summing cDNA amounts of 

cytRNA and nucRNA to compare with conventional single-cell protocol. b, c, Input reads of 

cytRNA-seq and nucRNA-seq. d, Proportion of reads of unmapped, multi-mapped, and uniquely 

mapped to the GRCh37.75 reference genome.  
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Supplementary Figure 3 Benchmark of SINC-seq with detection of genes. a-c, Numbers of 

detected genes with cytRNA, nucRNA and in-silico single cell data, respectively. d, Numbers of 

genes overlapped in cytRNA and nucRNA. e, Coefficient of correlation between cytRNA and 

nucRNA. f, g, Numbers of repeatedly detected genes in a pair of cytRNA and in a pair of nucRNA, 

respectively. h, i, Coefficients of correlation with a pair of cytRNAs and with a pair of nucRNAs. 

j, k, Numbers of detected genes overlapped between cytRNA-seq and bulk cytRNA-seq, and 

between nucRNA-seq and bulk nucRNA-seq, respectively. l, m, Coefficients of correlation 

between cytRNA-seq and bulk cytRNA-seq, and between nucRNA-seq and bulk nucRNA-seq, 

respectively. n, Correlation of gene expression between in-silico single-cell data and scRNA-seq; 

o, cytRNA-seq and bulk cytRNA-seq; p, nucRNA-seq and bulk nucRNA-seq. q, Correlation of 

gene expression between 12 in-silico single-cell data and 12 scRNA-seq; r, 48 cytRNA-seq and 

bulk cytRNA-seq; s, 48 nucRNA-seq and bulk nucRNA-seq. t, Venn diagrams of detected genes 

with in-silico normalised data for 12 single cells and conventional 12 scRNA-seq; u, with 48 

cytRNA-seq and bulk cyt RNA-seq; v, with 48 nucRNA-seq and bulk nucRNA-seq. 
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Supplementary Figure 4 Scaling cytRNA-seq and nucRNA-seq for generating in-silico 

single-cell data. a-c, ERCC expression comparing cytRNA-seq versus nucRNA-seq with raw 

TPM, TPM and estimated counts, respectively. d-f, CV2 versus mean plots with raw TPM, TPM 

and estimated counts, respectively. g, h, Fractionation stringency assessed with top 20 genes 

enriched in cytRNA and nucRNA, respectively. i, Comparison of expression patterns of the top 20 

genes enriched in cytRNA and nucRNA between in-silico single-cell data and scRNA-seq. j, 

Statistics of the slope comparing in-silico single cell data versus scRNA-seq with the expression 

level of the top 20 enriched genes. k, In-silico single cell data shows a wider dynamic range of 

detected genes integrating cytRNA-seq and nucRNA-seq. 
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Supplementary Figure 5 Overview of RNA-seq samples. a, SINC-seq constructs cytRNA-seq 

and nucRNA-seq per cell with cytoplasmic RNA and a nucleus, respectively. 48 cytRNA-seq and 

48 nucRNA-seq data were, respectively, created by randomly sampling reads from 48 of cytRNA-

seq and 48 of nucRNA-seq. In-silico single cell data were created by scaling and integrating 

cytRNA-seq and nucRNA-seq from the same single cell. The 12 in-silico single cell data was 

created by averaging 12 of randomly sampled in-silico single cell data sets. b, Conventional 

scRNA-seq. 12 single cell RNA-seq was created with averaging the 12 of scRNA-seq. c, 

Population controls of bulk cytRNA-seq and bulk nucRNA-seq were prepared with PARIS Kit, 

which fractionates cytoplasmic RNA and nuclear RNA with a population of cells, followed by 

Smart-seq2 protocol with 200 pg RNA and 15 PCR cycles. 
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Supplementary Figure 6 Cell-cycle phase of K562 cells analysed by SINC-seq. a-c, 

Normalized phase scores of in-silico single cell data, cytRNA-seq, and nucRNA-seq, respectively. 

d, Pearson correlations shown in Fig. 2 d-f. e, tSNE with normalised phase scores (Supplementary 

Fig. 6a) segregates cells into G1 and G2 groups. f, Z-score calculated with individual fraction 

indicates relative expression of each gene among G1 and G2 groups. 
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Supplementary Figure 7 Benchmark of SINC-seq with detection of introns. a-c, Numbers of 

detected introns with cytRNA, nucRNA and in-silico single cell data, respectively. d, Number of 

detected introns overlapped in cytRNA and nucRNA. e, Coefficient of correlation with intron 

abundance between cytRNA and nucRNA. f, g, Numbers of detected introns in a pair of cytRNAs 

and in a pair of nucRNAs, respectively. h, i, Coefficients of correlation with a pair of cytRNAs 

and a pair of nucRNAs, respectively. j, k, Numbers of detected introns overlapped cytRNA-seq 

and bulk cytRNA-seq, and nucRNA-seq and bulk nucRNA-seq, respectively. l, m, Coefficients of 

correlation between cytRNA-seq and bulk cytRNA-seq, and between nucRNA-seq and bulk 

nucRNA-seq, respectively. n, Correlation of intron abundance between cytRNA-seq and nucRNA-

seq; o, cytRNA-seq and bulk cytRNA-seq; p, nucRNA-seq and bulk nucRNA-seq. q, Correlation 

of intron abundance between 48 cytRNA-seq and 48 nucRNA-seq; r, 48 cytRNA-seq and bulk 

cytRNA-seq; s, 48 nucRNA-seq and bulk nucRNA-seq. t, Venn diagrams of detected introns with 

12 cytRNA-seq and 12 nucRNA-seq; u, with 48 cytRNA-seq and bulk cytRNA-seq; v, with 48 

nucRNA-seq and bulk nucRNA-seq. 
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Supplementary Figure 8 NRI and CRI have different enriched functions. a, Gene ontology 

analysis with CRI. b, c, Correlation analysis between the probability of CRI and the fold change 

of gene expression among cells with CRI and without CRI (Spl: spliced) in nucRNA and cytRNA, 

respectively. Coverages of d, HNRNPDL, e, SNHG15, f, GAS5 (SNHG2), g, FBXO9, and h, 

VAMP2 genes. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 20, 2017. ; https://doi.org/10.1101/206672doi: bioRxiv preprint 

https://doi.org/10.1101/206672
http://creativecommons.org/licenses/by-nc-nd/4.0/


 39 

 

Supplementary Figure 9 Differentially expressed genes along sodium butyrate-induced K562 

differentiation. a-d, Differential expression with cytRNA of day 0 vs. day 1, day 0 vs. day 2, day 

0 vs. day 3, and day 0 vs. day 4, respectively. e-h, Differential expression with nucRNA of day 0 

vs. day 1, day 0 vs. day 2, day 0 vs. day 3, and day 0 vs. day4, respectively. We identified DEG 

using “nbintest” and “mafdr” of MATLAB functions. Blue, genes with p values less than 0.001 

and absolute log2 fold changes greater than unity. Pink, GATA1, HBG1, HBG2, GYPA and TFRC 
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genes. i, Heatmap showing up- and down-regulations of DEG in cytRNA and nucRNA.
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Supplementary Figure 10 Correlation dynamics under sodium butyrate differentiation of 

K562 cells. a, Pseudo-time computed with Monocle227 using DEG expression of in-silico single-

cell data. b, Cross-correlation between cytRNA and nucRNA computed with non-DEG of 

differentiating K562 cells. c, Cross-correlation of cytRNA and nucRNA computed with DEG of 

non-differentiating K562 cells along pseudo-time. d, Cross-correlation of bulk cytRNA-seq and 

bulk nucRNA-seq computed with DEG of differentiating K562 cells. e, f, PCA on cytRNA-seq 

and nucRNA-seq data of differentiating K562 cells, respectively. Cross-points in these panels 

indicate the centre of mass of each cluster. 
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