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Vulnerabilities of transcriptome-wide association studies
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Transcriptome-wide association studies (TWAS) integrate GWAS and expression quantitative
trait locus (eQTL) datasets to discover candidate causal gene-trait associations. We integrate
multi-tissue expression panels and summary GWAS for LDL cholesterol and Crohn’s disease to
show that TWAS are highly vulnerable to discovering non-causal genes, because variants at a
single GWAS hit locus are often eQTLs for multiple genes. TWAS exhibit acute instability when
the tissue of the expression panel is changed: candidate causal genes that are TWAS hits in
one tissue are usually no longer hits in another, due to lack of expression or strong eQTLs, even
though non-causal genes at the same loci remain. Because of these vulnerabilities, it is invalid
to use TWAS as a method for finding causal genes, though it can be used as a weighted burden
test to identify trait-associated loci. More broadly, our results showcase limitations of using
expression variation across individuals to determine causal genes at GWAS loci.
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Introduction

Transcriptome-wide association studies (TWAS) are a recent family of methods that leverage
expression reference panels (eQTL cohorts with expression and genotype data) to discover
associations in GWAS datasets'?. TWAS begin by building predictive models of gene
expression from allele counts (typically using variants within a window of 500 kb or 1 MB around
the gene), then use these models to predict expression for each individual in the GWAS cohort
and associate this predicted expression with the trait (Fig. 1).

TWAS have garnered substantial interest within the human genetics community and TWAS
have subsequently been conducted for a wide variety of traits and tissues®. A key reason for
the appeal of TWAS is the promise that gene-disease associations represent likely causal
genes, although both papers are careful not to claim causality with absolute certainty.

Alternatively, TWAS can be interpreted as a weighted burden test. All existing TWAS methods
use a linear expression model, which means that TWAS is equivalent to testing a linear
combination of variants against the phenotype, where the weights of the linear combination
have been chosen based on how much the variant is predicted to contribute to expression
variation across individuals in the reference panel. The goal of a weighted burden test is to
increase power relative to single-variant testing (GWAS).

Results

TWAS loci frequently contain multiple hit genes

It is well known that GWAS rarely identifies single variant-trait associations, but instead
identifies blocks of associated variants in linkage disequilibrium (LD) with each other (Fig. 1a).
Unexpectedly, TWAS also frequently identifies multiple hit genes per locus (Fig. 1b). We call
this phenomenon co-regulation.

What is the cause of this phenomenon? To answer this question, we performed TWAS in two
traits and two tissues with Fusion, using GWAS summary statistics for LDL cholesterol* and
Crohn’s disease® and the 522 liver and 447 whole blood expression samples from the
STARNET cohort® (Fig. S2, Online Methods). We clumped hit genes within 2.5 MB and found
that while some loci contained only a single hit gene, many contained two, three, four or even
up to eleven (Fig. S3).
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Figure 1: TWAS, like GWAS, frequently has multiple hits per locus. (a), (b) Manhattan plots of GWAS and
TWAS for LDL cholesterol using GWAS summary statistics from the Global Lipids Genetics Consortium and liver
expression from the STARNET cohort (see Methods). GWAS has multiple hits per locus due to linkage
disequilibrium, and TWAS due to a phenomenon we call co-regulation, which we explore in this paper. Clusters of
multiple adjacent TWAS hit genes are highlighted in red. (c) Three scenarios where co-regulation can lead to
multiple hits per locus, and the estimated percent of non-causal hit genes subject to each scenario; each scenario is
presented in a case study later in the paper (a fourth scenario is presented in Fig. 5d). To estimate the percentages,
we group hits into 2.5 MB clumps and make the approximation that genes that are not the top hit in multi-hit clumps
are non-causal; we then calculate the percent of these genes with total or predicted expression r> = 0.2 or = 1 shared
variant with the top hit in their block, aggregating genes across the LDL/liver and Crohn’s/whole blood TWAS. The
full distributions of total and predicted expression correlations and number of shared variants are shown in Fig. S1,
separated by study.
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Correlated expression across individuals may lead to non-causal TWAS hit genes

The conventional way co-regulation is measured is by correlating the expression of a pair of
genes across individuals in an expression cohort. Do genes that have correlated expression
with a strong TWAS hit also tend to be TWAS hits (Fig. 5a)? We analyzed the locus containing
the strongest hit gene across all four TWAS, SORT1 in LDL/Liver (TWAS p < 1 x 10?*; Fig. 2a).
SORT1 has strong evidence of causality, though not without some controversy over the precise
mechanism: in mouse models, overexpression of SORTT1 in liver reduced plasma LDL levels
and siRNA knockdown increased plasma LDL levels”®, though in other studies deletion of
SORT1 counter-intuitively reduced, rather than increased, atherosclerosis in mice without
affecting plasma LDL levels®'",

The SORT1 locus contains 8 other TWAS hit genes besides SORT1, and their TWAS p values
are highly related to their expression correlation with SORT1 (Spearman = 0.75; Fig. 2b). Given
that SORT1 has strong evidence of causality, and that other genes at the locus lack strong
literature evidence, the most parsimonious explanation is that most or all of the other genes are
non-causal and are only hits due to their correlation with SORTT.
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Figure 2: Co-regulation strongly predicts TWAS hit strength at the SORT7 locus. a) TWAS Manhattan plot of
the SORT1 locus. b) Expression correlation with SORT1 versus TWAS p value, for each gene in the SORT1 locus.

Correlated predicted expression is sufficient for non-causal hits even without correlated total
expression

However, expression correlation is not the whole story: after all, TWAS tests for association with
predicted expression, not total expression. Total expression includes both genetic and
environmental components, and the genetic component of expression includes contributions
from common cis eQTLs (the only component reliably detectable in current TWAS methods),
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rare cis eQTLs, and trans eQTLs. Predicted expression likely only represents a small
component of the GWAS individuals’ total expression: a large-scale twin study'? found that
common cis eQTLs explain only about 10% of genetic variation in gene expression.

While predicted expression correlations between genes at the same locus are often similar to
total expression correlations, they are generally slightly higher, and sometimes substantially
(Fig. 3a, Fig. S4). ltis sensible for nearby genes to be more tightly co-regulated at the level of
cis expression than at the level of total expression, since even if distinct trans and
environmental effects act on the two genes, they do at least share the same cis sequence
context.

Predicted expression correlation may lead to non-causal hits even for genes with low total
expression correlation (Fig. 5b). For instance, SARS is the main outlier in Fig. 2b because,
despite having a similar TWAS p value to SORTT1, it has an unexpectedly low expression
correlation of approximately 0.2; yet it is still a strong hit because of its high predicted
expression correlation of approximately 0.9 (Fig. 3a).

Another example is the IRF2BP2 locus in LDL/liver (Fig. 3b), where RP4-781K5.7 is a likely
non-causal hit due to predicted expression correlation with IRF2BP2, a gene encoding an
inflammation-suppressing regulatory factor with strong evidence of causality from mouse
models, at least at the level of atherosclerosis'. While there is almost no correlation in total
expression between the two genes (Pearson = -0.02), IRF2BP2’s expression model includes a
GWAS hit variant, rs556107, with a negative weight while RP4-781K5.7’s includes the same
variant, as well as two other linked variants, with positive weights (Fig. 3c), resulting in almost
perfectly anti-correlated predicted expression between the two genes (Pearson = -0.94).
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Figure 3: Correlated predicted expression can cause non-causal hits even in the absence of correlated total
expression. a) Predicted expression correlations tend to be higher than total expression correlations, e.g. at the
SORT1 locus. b) TWAS Manhattan plot of the IRF2BP2 locus, where RP4-781K5.7 is a likely non-causal hit due to
predicted expression correlation with IRF2BP2. c) Details of the two genes’ expression models: a line between a
variant’'s rs number and a gene indicates the variant is included in the gene’s expression model with either a positive
weight (blue) or negative weight (orange), with the thickness of the line increasing with the magnitude of the weight;

red arcs indicate LD. Pink rs numbers are GWAS hits (genome-wide-significant or sub-significant) while gray rs
numbers are not.

Shared GWAS variants can cause non-causal hits even without correlated predicted expression

More generally, pairs of genes may share GWAS variants in their models even if they have low
predicted expression correlation, since other variants that are distinct between the models may
“dilute” the correlation (Fig. 5¢c). For instance, at the NOD2 locus for Crohn’s/whole blood,
NOD2 is a known causal gene''®, but 4 other genes are also TWAS hits (Fig. 4a), none with
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strong evidence of causality (though rare variants in one gene, ADCY7, have been associated
with ulcerative colitis but not Crohn’s'®). The model for the strongest hit at the locus, BRD?7,
puts most of its weight on rs1872691, which is also the strongest GWAS variant in NOD2's
model (Fig. 4b). However, the NOD2 model puts most of its weight on two other variants,
rs7202124 and rs1981760, which are slightly weaker GWAS hits. The result is that even though
there is information sharing between the models, and BRD7 appears to be a non-causal hit
because its model uses a variant that likely derives its GWAS signal from NOD?2, the overall
predicted expression correlation between the two genes is very low (-0.03), as is the total
expression correlation (0.05).
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Figure 4: Sharing of GWAS variants between expression models can contribute to non-causal hits even
without correlated predicted expression. a) TWAS Manhattan plot of the NOD2 locus. b) Details of the
expression models of NOD2 and BRD?7: as in Fig. 3, a line between a variant’s rs number and a gene indicates the
variant is included in the gene’s expression model with either a positive weight (blue) or negative weight (orange),
with the thickness of the line increasing with the magnitude of the weight; red arcs indicate LD.
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In the most general case, models need not even share the same GWAS variants for there to be
non-causal hits (Fig. 5d). For instance, the other two variants in NOD2's model are neither
shared nor in strong LD with of the variants in BRD7’s model (Fig. 4b). Under the assumption
that NOD?2 is the only causal gene at the locus, this suggests that these variants are GWAS hits
because they (or variants in LD) regulate NOD2 as well as BRD?7, but that this connection is
missed by NOD2's model, i.e. the expression modeling has a false negative. This type of
scenario might occur even without any false negatives in the expression modeling, e.qg. if the
two NOD?2 variants (or variants in LD) deleteriously affected the coding sequence of NOD2 as
well as regulating BRD?7.
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Figure 5: Co-regulation scenarios in TWAS that may lead to non-causal hits, from least to most general. a)
Correlated expression across individuals: the causal gene has correlated expression with another gene, which may
become a non-causal TWAS hit. b) Correlated predicted expression across individuals: even if total expression
correlation is low, predicted expression correlation may be high if the same variants (or variants in LD) regulate both
genes and are included in both models. c) Sharing of GWAS hits: even if the two genes’ models include largely
distinct variants and predicted expression correlation is low, only a single shared GWAS hit variant (or variant in LD)
is necessary for both genes to be TWAS hits. d) Both models include distinct GWAS hits: in the most general case,
the GWAS hits driving the signal at the two genes may not be in LD with each other, for instance if the non-causal
gene’s GWAS hit happens to regulate the causal gene as well but this connection is missed by the expression
modeling (a false negative), or if the causal gene’s GWAS hit acts via a coding mechanism (not shown).

Using expression from less related tissues substantially worsens the effects of co-requlation

So far, all our TWAS case studies have used expression from tissues with a clear mechanistic
relationship to the trait: liver for LDL and whole blood for Crohn’s. What if we swap these
tissues (liver for Crohn’s and whole blood for LDL), so that we are using tissues without a clear
mechanistic relationship? It is well-known that the architecture of eQTLs differs substantially
across tissues: even among strong eQTLs in GTEx (p ~ 1 x 107°), one quarter switch which
gene they are most significantly associated with across tissues'’.

We manually curated causal genes from the literature at 9 LDL/liver and 4 Crohn’s/whole blood
multi-hit TWAS loci and looked at how their hit strengths changed when swapping tissues (Fig.
6). Strikingly, almost every candidate causal gene (9 of 11 for LDL and 5 of 6 for Crohn’s) was
no longer a hit in the “opposite” tissue, either because they were not sufficiently expressed (N =
4: PPARG, LPA, LPIN3, SLC22A4) or because they did not have sufficiently heritable cis
expression, according to a likelihood ratio test, to be tested by Fusion (N = 10: SORT1,
IRF2BP2, TNKS, FADS3, ALDH2, KPNB1, SLC22A5, IRF1, CARD9, STATS3).

Worse, 15 other genes at the same loci were still hits (8 in LDL/whole blood and 7 in
Crohn’s/liver), and 5 were even strong hits with p < 1 x 10, This suggests that the strategy of
conducting TWAS in a tissue that is sub-optimal for the trait being examined (e.g. whole blood,
lymphoblastoid cell lines), just because that tissue happens to have a large expression
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reference panel, is especially problematic because many hit loci may contain only non-causal
genes and the causal gene may not even be included in the list of hits.
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Figure 6: Most candidate causal genes drop out when switching to a tissue with a less clear mechanistic
relationship to the trait, due to lack of sufficient expression or sufficiently heritable expression. TWAS p
values at 9 LDL/liver and 4 Crohn’s/whole blood multi-hit loci, when using expression from tissues with a clear (top
row) and less clear or absent (bottom row) mechanistic relationship to the trait. Candidate causal genes are labeled
and colored in red.

Discussion

We have shown that it is invalid to use TWAS as a method for finding causal genes, since it is
highly vulnerable to non-causal gene-trait associations, intuitively because GWAS hits may be
eQTLs for multiple genes. However, the ways in which co-regulation may lead to non-causal
hits in TWAS are multi-faceted; co-regulation is hard to quantify, let alone correct for. The
problem is particularly acute when using expression from tissues without a clear mechanistic
relationship to the trait. It is still valid to use TWAS as a weighted burden test, where the goal is
not to identify causal genes but merely discover associated loci.

Is it possible, despite the limitations of TWAS, to somehow perform statistical fine-mapping and
determine the causal gene or genes? We believe that it is not, even in principle. This is
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because predicted expression only imperfectly captures cis expression, the component of
expression driven by variants near the gene; there are sources of both variance and bias in the
expression modeling. The main source of variance is the finite size of the reference panel,
although this can be mitigated with resampling methods. More problematically, the choice of
tissue, cell type composition and quantification of the expression panel can all introduce bias.
We have shown that using a tissue with a less clear mechanistic relationship to the trait hinders
the ability to detect most candidate causal genes. Yet diseases rarely act through a single
tissue: different genes may be causal in different tissues, so even using a tissue where most
genes are causal may introduce bias for the remaining genes that are causal in a different
tissue. Furthermore, most expression panels are gathered for tissues, not cell types, and genes
may only be causal for a single cell type within a tissue. There may be substantial cell type
heterogeneity within and between samples (e.g. due to the presence of blood and immune
cells), which can also introduce bias. It is impossible to quantify every source of bias.

In our case studies, we have generally assumed that the single gene with substantial evidence
of causality is the sole causal gene at the locus, with some exceptions where there are multiple
candidates and the causal gene or genes are under debate (FADS71-3, SLC22A4/5/IRF1).
While this is the most parsimonious explanation, it is possible that some loci harbor multiple
causal genes. Indeed, under an omnigenic model of complex traits'®, every gene may be
causal to some degree. Furthermore, the expression of other genes at the locus may causally
contribute to the expression of the causal gene, merely by being actively transcribed, even if the
gene is non-coding or its protein product has no causal role™.

The vulnerabilities we have identified in TWAS, co-regulation and tissue bias, also apply to
other methods that integrate GWAS and expression data. Gene-trait association testing based
on Mendelian Randomization (MR)*#"* is vulnerable to non-causal hits because co-regulation,
as a form of pleiotropy, violates one of the core assumptions of MR?®, While the HEIDI test® is
designed to correct MR in the case where the two genes have distinct, but linked, causal
variants, it does not control for the case where the two genes share the same causal variant.
GWAS-eQTL colocalization methods such as Sherlock®, coloc®*?®, QTLMatch?’, eCaviar®,
enloc® and RTC® are also vulnerable to this phenomenon. The more tightly a pair of genes is
co-regulated in cis, the more difficult it becomes to distinguish causality based on GWAS and
expression data alone. Our results underscore the need for computational and experimental
methods that move beyond using expression variation across individuals to determine the
causal genes at GWAS loci.

Methods

TWAS were performed with the Fusion software
(https://qithub.com/gusevlab/fusion_twas/tree/9142723485b38610695cead4e7ebb508945ec006¢c
), using default settings and also including polygenic risk score as a possible model during
cross-validation in addition to BLUP, Lasso, and ElasticNet. Variants in the STARNET
reference panel were filtered for quality control using PLINK®' with the options “--maf 1e-10
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--hwe 1e-6 midp --geno”. STARNET expression was processed as described in the STARNET
paper®, including probabilistic estimation of expression residuals® (PEER) covariate correction.
Because Fusion, to our knowledge, only supports training on PLINK version 1 hard-call
genotype files and not genotype dosages, we trained expression models on only the variants
both genotyped in STARNET and either genotyped or imputed in the GWAS, filtering out
variants without matching strands between the GWAS and STARNET. Expression models were
trained on all remaining variants within 500 kb of a gene’s TSS, using Ensembl v87 TSS
annotations for hg19%. Linkage disequilibrium and total and predicted expression correlations
were calculated across individuals in STARNET. Code to replicate the post-TWAS analysis is
available at https://github.com/Wainberg/Vulnerabilities_of TWAS.
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Figure S1: Distributions of co-regulation across putative non-causal genes in multi-hit TWAS loci. Since
many multi-hit loci do not have a clear causal gene or have multiple plausible candidates, we make the approximation
that only the most significant gene at each locus is causal. We then plot the cumulative distribution functions (CDFs)
of (a, d) expression correlations, (b, e) predicted expression correlations and (c, f) number of shared variants
between these most significant genes and all the other genes at their loci, separately for LDL/liver (a-c) and
Crohn’s/whole blood (d-f). To collapse these CDFs into a single estimate of the percent of affected non-causal genes
(Fig. 1c¢), we combine genes across the two studies and threshold to correlation r? = 0.2, a threshold commonly used
for weak LD in GWAS, or = 1 shared variant. Note that counting only exact sharing of variants does not account for
LD, for simplicity.
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Figure S2: Manhattan plots of the 4 TWAS conducted in this study. As in Fig. 1, clusters of multiple adjacent
TWAS hit genes are highlighted in red.
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Figure S3: Number of TWAS hit genes per locus after 2.5-MB clumping.
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Figure S4: Total versus predicted expression correlation versus the top hit, for all genes in multi-hit blocks
that are not the top hits. a) Liver, LDL. b) Crohn’s, whole blood. Note that predicted expression correlation is
generally higher than total expression correlation, as discussed in the Results section.
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