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Transcriptome-wide  association  studies (TWAS) integrate  GWAS and  expression  quantitative 
trait locus (eQTL) datasets to  discover candidate  causal  gene-trait associations.  We  integrate 
multi-tissue  expression  panels and  summary GWAS for LDL  cholesterol  and  Crohn’s disease  to 
show that TWAS are  highly vulnerable  to  discovering  non-causal  genes, because  variants at a 
single  GWAS hit locus are  often  eQTLs for multiple  genes.  TWAS exhibit acute  instability when 
the  tissue  of the  expression  panel  is changed: candidate  causal  genes that are  TWAS hits in 
one  tissue  are  usually no  longer hits in  another, due  to  lack of expression  or strong  eQTLs, 
while  non-causal  genes at the  same  loci  remain.  While  TWAS is statistically valid  when  used  as 
a  weighted  burden  test to  identify trait-associated  loci, it is invalid  to  interpret TWAS 
associations as causal  genes because  the  false  discovery rate  for TWAS causal  gene  discovery 
is not only high, but unquantifiable.  More  broadly, our results showcase  limitations of using 
expression  variation  across individuals to  determine  causal  genes at GWAS loci. 
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Introduction 
 
Transcriptome-wide  association  studies (TWAS) are  a  recent family of methods that leverage 
expression  reference  panels (eQTL  cohorts with  expression  and  genotype  data) to  discover 
associations in  GWAS datasets1,2.  TWAS begin  by building  predictive  models of gene 
expression  from allele  counts (typically using  variants within  a  window of 500  kb  or 1  MB around 
the  gene), then  use  these  models to  predict expression  for each  individual  in  the  GWAS cohort 
and  associate  this predicted  expression  with  the  trait (Fig. 1). 
 
TWAS have  garnered  substantial  interest within  the  human  genetics community and  TWAS 
have  subsequently been  conducted  for a  wide  variety of traits and  tissues3.  A key reason  for 
the  appeal  of TWAS is the  promise  that gene-disease  associations represent likely causal 
genes, although  both  papers are  careful  not to  claim causality with  absolute  certainty. 
 
Alternatively, TWAS can  be  interpreted  as a  weighted  burden  test.  All  existing  TWAS methods 
use  a  linear expression  model, which  means that TWAS is equivalent to  testing  a  linear 
combination  of variants against the  phenotype, where  the  weights of the  linear combination 
have  been  chosen  based  on  how much  the  variant is predicted  to  contribute  to  expression 
variation  across individuals in  the  reference  panel.  The  goal  of a  weighted  burden  test is to 
increase  power relative  to  single-variant testing  (GWAS). 
 
Results 
 
TWAS loci  frequently contain  multiple  associated  genes 
 
It is well  known  that GWAS rarely identifies single  variant-trait associations, but instead 
identifies blocks of associated  variants in  linkage  disequilibrium (LD) with  each  other (Fig. 1a). 
Unexpectedly, TWAS also  frequently identifies multiple  hit genes per locus (Fig. 1b), a 
phenomenon  observed  previously4.  
 
To  explore  this phenomenon, we  performed  TWAS in  two  traits and  two  tissues with  Fusion, 
using  GWAS summary statistics for LDL  cholesterol 5 and  Crohn’s disease 6 and  the  522  liver 
and  447  whole  blood  expression  samples from the  STARNET cohort7 (Fig. S2, Online 
Methods).  We  grouped  hit genes within  2.5  MB and  found  that while  some  loci  contained  only a 
single  hit gene, many contained  two, three, four or even  up  to  eleven  (Fig. S3).   
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Figure 1:  TWAS, like GWAS, frequently has  multiple  hits per  locus.  (a), (b)  Manhattan  plots  of GWAS and 
TWAS for LDL  cholesterol  using  GWAS summary  statistics from the  Global  Lipids  Genetics  Consortium  and  liver 
expression from the  STARNET cohort  (see  Methods).   GWAS has  multiple  hits  per  locus  due  to linkage 
disequilibrium, and  TWAS due  to co-regulation,  as  we  explore  in  the  paper.   Clusters  of multiple adjacent  TWAS hit 
genes are  highlighted  in  red.   (c)  Three  scenarios  where  co-regulation  can  lead  to multiple  hits  per  locus,  and  the 
estimated  percent  of non-causal hit  genes  subject  to each  scenario; each  scenario is  presented  in  a  case  study  later 
in  the  paper (a  fourth  scenario  is  presented  in  Fig. 5d).   To estimate  the  percentages,  we  group  hits  into  2.5  MB 
clumps  and  make  the  approximation that genes  that are  not  the  top  hit  in  multi-hit  clumps  are  non-causal; we  then 
calculate the  percent  of these  genes with  total  or  predicted  expression  r 2 ≥ 0.2  or  ≥ 1  shared  variant  with  the  top  hit  in 
their  block,  aggregating genes  across  the  LDL/liver  and  Crohn’s/whole blood  TWAS.   The  full  distributions  of total  and 
predicted expression  correlations  and  number of shared  variants  are  shown in  Fig. S1, separated  by  study. 
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Correlated  expression  across individuals may lead  to  non-causal  TWAS hit genes 
 
We  wondered  whether co-regulation  could  be  responsible  for multi-hit loci.  The  conventional 
way co-regulation  is measured  is by correlating  the  expression  of a  pair of genes across 
individuals in  an  expression  cohort.  Do  genes that have  correlated  expression  with  a  strong 
TWAS hit also  tend  to  be  TWAS hits (Fig. 5a)?   We  analyzed  the  SORT1  locus in  LDL/Liver 
(TWAS p  < 1  × 10 -243; Fig. 2a) which  represents the  strongest hit locus across all  four TWAS. 
SORT1  has strong  evidence  of causality, though  not without some  controversy over the  precise 
mechanism: in  mouse  models, overexpression  of SORT1 in  liver reduced  plasma  LDL  levels 
and  siRNA knockdown  increased  plasma  LDL  levels8,9, though  in  other studies deletion  of 
SORT1  counter-intuitively reduced, rather than  increased, atherosclerosis in  mice  without 
affecting  plasma  LDL  levels10,11,12. 
 
The  SORT1  locus contains 8  other TWAS hit genes besides SORT1, and  their TWAS p -values 
are  highly related  to  their expression  correlation  with  SORT1 (Spearman  = 0.75; Fig. 2b).  Given 
that SORT1  has strong  evidence  of causality, and  that other genes at the  locus lack strong 
literature  evidence, the  most parsimonious explanation  is that most or all  of the  other genes are 
non-causal  and  are  only hits due  to  their correlation  with  SORT1. 
 
A         B 
 

 
 
Figure 2:  Co-regulation strongly predicts  TWAS hit strength at  the SORT1  locus.  a)  TWAS Manhattan  plot  of 
the  SORT1  locus.   b)  Expression  correlation  with  SORT1  versus  TWAS p -value,  for each  gene in  the  SORT1  locus.  
 
Correlated  predicted  expression  is sufficient for non-causal  hits even  without correlated  total 
expression 
 
However, expression  correlation  is not the  whole  story: after all, TWAS tests for association  with 
predicted  expression, not total  expression.  Total  expression  includes genetic,environmental 
and  technical  components, and  the  genetic component of expression  includes contributions 
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from common  cis eQTLs (the  only component reliably detectable  in  current TWAS methods), 
rare  cis eQTLs, and  trans eQTLs.  Predicted  expression  likely only represents a  small 
component of the  GWAS individuals’  total  expression: a  large-scale  twin  study13 found  that 
common  cis eQTLs explain  only about 10% of genetic variance  in  gene  expression. 
 
While  predicted  expression  correlations between  genes at the  same  locus are often  similar to 
total  expression  correlations, they are  generally slightly higher, and  sometimes substantially so 
(Fig. 3a, Fig. S4).  It is reasonable  to  expect nearby genes to  be  more  tightly co-regulated  at the 
level  of cis expression  than  at the  level  of total  expression, since  even  if distinct trans and 
environmental  effects act on  the  two  genes, they do  at least share  the  same  cis sequence 
context.  
 
Predicted  expression  correlation  may lead  to  non-causal  hits even  for genes with  low total 
expression  correlation  (Fig. 5b).  For instance, SARS is the  main  outlier in  Fig. 2b  because, 
despite  having  a  similar TWAS p-value  to  SORT1, it has an  unexpectedly low total  expression 
correlation  of approximately 0.2; yet it is still  a  strong  hit because  of its high  predicted 
expression  correlation  of approximately 0.9  (Fig. 3a). 
 
Another example  is the  IRF2BP2 locus in  LDL/liver (Fig. 3b), where  RP4-781K5.7 is a  likely 
non-causal  hit due  to  predicted  expression  correlation  with  IRF2BP2, a  gene  encoding  an 
inflammation-suppressing  regulatory factor with  strong  evidence  of causality from mouse 
models, at least at the  level  of atherosclerosis14.  While  there  is almost no  correlation  in  total 
expression  between  the  two  genes (Pearson  = -0.02), IRF2BP2’s expression  model  includes a 
GWAS hit variant, rs556107, with  a  negative  weight while  RP4-781K5.7’s includes the  same 
variant, as well  as two  other linked  variants, with  positive  weights (Fig. 3c), resulting  in  almost 
perfectly anti-correlated  predicted  expression  between  the  two  genes (Pearson  = -0.94).  
 
A 
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Figure 3:  Correlated  predicted expression  can  cause  non-causal hits even  in the absence  of correlated  total 
expression.   a)  For nearby  genes,  predicted expression  correlations  tend  to be  higher  than  total  expression 
correlations, e.g. at the  SORT1  locus.   b)  TWAS Manhattan  plot  of the  IRF2BP2  locus,  where  RP4-781K5.7  is  a  likely 
non-causal hit  due  to predicted  expression  correlation  with  IRF2BP2 .  c) Details  of the  two  genes’  expression  models: 
a  line  between  a  variant’s  rs  number  and  a  gene indicates  the  variant  is  included in  the  gene’s  expression  model  with 
either  a  positive weight  (blue)  or  negative  weight  (orange),  with  the  thickness  of the  line increasing  with  the 
magnitude of the  weight;  red  arcs  indicate LD.   Pink  rs  numbers  are  GWAS hits  (genome-wide-significant  or 
sub-significant) while  gray  rs  numbers  are  not. 
 
Shared  GWAS variants can  cause  non-causal  hits even  without correlated  predicted  expression 
 
More  generally, pairs of genes may share  GWAS variants in  their models even  if they have  low 
predicted  expression  correlation, since  other variants that are  distinct between  the  models may 
“dilute” the  correlation  (Fig. 5c).  For instance, at the  NOD2 locus for Crohn’s/whole  blood, 
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NOD2 is a  known  causal  gene 15,16, but 4  other genes are  also  TWAS hits (Fig. 4a), none  with 
strong  evidence  of causality (though  rare  variants in  one  gene, ADCY7, have  been  associated 
with  the  closely related  disease  ulcerative  colitis but not Crohn’s17).  The  TWAS model  for the 
strongest hit at the  locus, BRD7, puts most of its weight on  rs1872691, which  is also  the 
strongest GWAS variant in  NOD2’s model  (Fig. 4b).  However, the  NOD2 model  puts most of its 
weight on  two  other variants, rs7202124  and  rs1981760, which  are  slightly weaker GWAS hits. 
The  result is that even  though  BRD7 appears to  be  a  non-causal  hit because  of co-regulation 
with  NOD2, the  overall  predicted  expression  correlation  between  the  two  genes is very low 
(-0.03), as is the  total  expression  correlation  (0.05). 
  
A 

 
 
B 

 
 
Figure 4:  Sharing of GWAS variants  between expression  models can  contribute to non-causal hits even 
without correlated  predicted expression.   a)  TWAS Manhattan  plot  of the  NOD2  locus.   b)  Details  of the 
expression models  of NOD2  and  BRD7: as  in  Fig. 3, a  line  between  a  variant’s  rs  number  and  a  gene indicates  the 
variant  is  included in  the  gene’s  expression  model  with  either  a  positive weight  (blue)  or  negative  weight  (orange), 
with  the  thickness  of the  line increasing  with  the  magnitude  of the  weight;  red  arcs  indicate LD.  
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In  the  most general  case, models need  not even  share  the  same  GWAS variants for there  to  be 
non-causal  hits (Fig. 5d).  For instance, the  other two  variants in  NOD2’s model  are  neither 
shared  nor in  strong  LD with  of the  variants in  BRD7’s model  (Fig. 4b).  Under the  assumption 
that NOD2 is the  only causal  gene  at the  locus, this suggests that these  variants exert their 
GWAS effects via  NOD2  and  also  happen  to  co-regulate  BRD7, but the  NOD2  expression 
model  incorrectly fails to  include  them (a  false  negative).  This type  of scenario  might occur even 
without any false  negatives in  the  expression  modeling, e.g. if the  two  NOD2 variants (or 
variants in  LD) deleteriously affected  the  coding  sequence  of NOD2 as well  as regulating  BRD7. 
Co-regulation  is difficult to  quantify, let alone  correct for. 
 
A 
 

          
 
B 

 
 
C 
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D  

 
 
Figure 5:  Co-regulation scenarios  in TWAS that  may  lead to non-causal hits, from  least  to most  general.  a) 
Correlated expression  across  individuals:  the  causal  gene  has  correlated  total  expression  with  another  gene,  which 
may  become  a  non-causal  TWAS hit.  b)  Correlated  predicted  expression  across  individuals:  even  if  total  expression 
correlation is  low,  predicted  expression  correlation  may  be  high  if the  same  variants  (or  variants  in  LD)  regulate both 
genes and  are  included in  both  models.   c)  Sharing of GWAS hits: even  if the  two  genes’  models  include  largely 
distinct  variants  and  predicted expression  correlation  is  low,  only  a  single shared  GWAS hit  variant  (or  variant  in  LD) 
is  necessary for both  genes  to be  TWAS hits.  d)  Both  models  include  distinct  GWAS hits: in  the  most general  case, 
the  GWAS hits  driving  the  signal  at the  two  genes  may  not  be  in  LD  with  each  other,  for instance if the  non-causal 
gene’s GWAS hit  happens  to regulate  the  causal  gene  as  well  but  this  connection  is  missed  by  the  expression 
modeling (a  false  negative),  or  if the  causal  gene’s  GWAS hit  acts via  a  coding  mechanism  (not  shown). 
 
Using  expression  from less related  tissues substantially worsens the  effects of co-regulation 
 
So  far, our TWAS case  studies have  used  expression  from tissues with  a  clear mechanistic 
relationship  to  the  trait: liver for LDL  and  whole  blood  for Crohn’s.  What if we  swap  these 
tissues (liver for Crohn’s and  whole  blood  for LDL), so  that we  are  using  tissues without a  clear 
mechanistic relationship?   It is well-known  that the  architecture  of eQTLs differs substantially 
across tissues: even  among  strong  eQTLs in  GTEx (p  ~ 1  × 10 -10), one  quarter switch  which 
gene  they are  most significantly associated  with  across tissues18. 
 
We  manually curated  causal  genes from the  literature  at 9  LDL/liver and  4  Crohn’s/whole  blood 
multi-hit TWAS loci  and  looked  at how their hit strengths changed  when  swapping  tissues (Fig. 
6).  Strikingly, almost every candidate  causal  gene  (9  of 11  for LDL  and  5  of 6  for Crohn’s) was 
no  longer a  hit in  the  “opposite” tissue, either because  they were  not sufficiently expressed  (N = 
4: PPARG, LPA , LPIN3 , SLC22A4) or because  they did  not have  sufficiently heritable  cis 
expression, according  to  a  likelihood  ratio  test, to  be  tested  by Fusion  (N = 10: SORT1 , 
IRF2BP2, TNKS , FADS3 , ALDH2, KPNB1 , SLC22A5, IRF1 , CARD9, STAT3 ).  
 
Worse, 15  other genes at the  same  loci  were  still  hits (8  in  LDL/whole  blood  and  7  in 
Crohn’s/liver), and  5  were  even  strong  hits with  p  < 1  × 10 -20.  This suggests that the  strategy of 
conducting  TWAS in  a  tissue  that is sub-optimal  for the  trait being  examined  (e.g. whole  blood, 
lymphoblastoid  cell  lines), just because  that tissue  happens to  have  a  large  expression 
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reference  panel, is especially problematic because  many hit loci  may contain  only non-causal 
genes and  the  causal  gene  may not even  be  included  in  the  list of hits. 
 

 
Figure 6:  Most candidate causal  genes  drop out when switching  to a  tissue  with a  less  clear  mechanistic 
relationship  to the trait, due to lack  of sufficient expression  or sufficiently heritable expression.   TWAS 
p-values at 9  LDL/liver  and  4  Crohn’s/whole blood  multi-hit  loci,  when using  expression  from tissues  with  a  clear  (top 
row)  and  less  clear  or  absent  (bottom  row)  mechanistic relationship  to the  trait.  Candidate  causal  genes  are  labeled 
and  colored in  red. 
 
Discussion 
 
We  have  shown  that it is invalid  to  interpret TWAS associations as causal  genes, since  it is 
highly vulnerable  to  non-causal  gene-trait associations, intuitively because  GWAS hits may be 
eQTLs for multiple  genes.  However, the  ways in  which  co-regulation  may lead  to  non-causal 
hits in  TWAS are  multi-faceted; co-regulation  is hard  to  quantify, let alone  correct for.  The 
problem is particularly acute  when  using  expression  from tissues without a  clear mechanistic 
relationship  to  the  trait.  It is valid  to  use  TWAS as a  weighted  burden  test, where  the  goal  is not 
to  identify causal  genes but merely discover associated  loci.  While  we  appreciate  the  value  of 
TWAS as a  gene-based  prioritization  method, our analysis indicates that using  TWAS for causal 
gene  identification  has strong  interpretational  limitations. 
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Is it possible, despite  the  limitations of TWAS, to  somehow perform statistical  fine-mapping  and 
determine  the  causal  gene  or genes?   We  believe  that it is not, even  in  principle.  This is 
because  predicted  expression  only imperfectly captures cis expression, the  component of 
expression  driven  by variants near the  gene; there  are  sources of both  variance  and  bias in  the 
expression  modeling.  The  main  source  of variance  is the  finite  size  of the  reference  panel, 
although  this can  be  mitigated  with  resampling  methods.  More  problematically, the  choice  of 
tissue, cell  type  composition  and  quantification  of the  expression  panel  can  all  introduce  bias. 
We  have  shown  that using  a  tissue  with  a  less clear mechanistic relationship  to  the  trait hinders 
the  ability to  detect most candidate  causal  genes.  Yet diseases rarely act through  a  single 
tissue: different genes may be  causal  in  different tissues, so  even  using  a  tissue  where  most 
genes are  causal  may introduce  bias for the  remaining  genes that are  causal  in  a  different 
tissue.  Furthermore, most expression  panels are  gathered  for tissues, not cell  types, and  genes 
may only be  causal  for a  single  cell  type  within  a  tissue: for instance, a  study that identified  IRX3 
and  IRX5 as causal  genes at the  FTO locus found  genotype-expression  associations in  primary 
preadipocytes, a  minority of adipose  cells, but not in  whole  adipose  tissue 19.  There  may be 
substantial  cell  type  heterogeneity within  and  between  samples (e.g. due  to  the  presence  of 
blood  and  immune  cells, or genetically-driven  differences in  the  relative  proportions of cell  types 
within  a  tissue), which  can  also  introduce  bias.  It is impossible  to  quantify every source  of bias. 
On  the  other hand, fine-mapping  may provide  improved  prioritization  of causal  genes in 
practice, although  this should  be  evaluated  based  on  known  causal  genes rather than  merely 
the  degree  of reduction  of the  number of causal  candidate  genes at the  locus. 
 
In  our case  studies, we  have  generally assumed  that the  single  gene  with  substantial  evidence 
of causality is the  sole  causal  gene  at the  locus, with  some  exceptions where  there  are  multiple 
candidates and  the  causal  gene  or genes are  under debate  (FADS1-3, SLC22A4/5 /IRF1 ). 
While  this is the  most parsimonious explanation, it is possible  that some  loci  harbor multiple 
causal  genes.  Indeed, under an  omnigenic model  of complex traits20, every gene  may be 
causal  to  some  degree, though  it is still  problematic if TWAS identifies marginally causal  genes 
as strong  hits due  to  co-regulation.  Furthermore, the  expression  of other genes at the  locus 
may causally contribute  to  the  expression  of the  causal  gene, merely by being  actively 
transcribed, even  if the  gene  is non-coding  or its protein  product has no  causal  role 21.  
 
The  vulnerabilities we  have  identified  in  TWAS, co-regulation  and  tissue  bias, also  apply to 
other methods that integrate  GWAS and  expression  data.  Gene-trait association  testing  based 
on  Mendelian  Randomization  (MR)22,23,24 is vulnerable  to  non-causal  hits because  co-regulation, 
as a  form of pleiotropy, violates one  of the  core  assumptions of MR25.  While  the  HEIDI test22 is 
designed  to  correct MR in  the  case  where  the  two  genes have  distinct, but linked, causal 
variants, it does not control  for the  case  where  the  two  genes share  the  same  causal  variant. 
GWAS-eQTL  colocalization  methods such  as Sherlock26, coloc27,28, QTLMatch 29, eCaviar30, 
enloc31 and  RTC32 are  also  vulnerable  to  this phenomenon.  The  more  tightly a  pair of genes is 
co-regulated  in  cis, the  more  difficult it becomes to  distinguish  causality based  on  GWAS and 
expression  data  alone.  Our results underscore  the  need  for computational  and  experimental 
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methods that move  beyond  using  expression  variation  across individuals to  determine  the 
causal  genes at GWAS loci. 
 
Methods 
 
TWAS were  performed  with  the  Fusion  software 
(https://github.com/gusevlab/fusion_twas/tree/9142723485b38610695cea4e7ebb508945ec006c
), using  default settings and  also  including  polygenic risk score  as a  possible  model  during 
cross-validation  in  addition  to  BLUP, Lasso, and  ElasticNet.  Variants in  the  STARNET 
reference  panel  were  filtered  for quality control  using  PLINK33 with  the  options “--maf 1e-10 
--hwe  1e-6  midp  --geno”.  STARNET expression  was processed  as described  in  the  STARNET 
paper7, including  probabilistic estimation  of expression  residuals34 (PEER) covariate  correction. 
Because  Fusion, to  our knowledge, only supports training  on  PLINK version  1  hard-call 
genotype  files and  not genotype  dosages, we  trained  expression  models on  only the  variants 
both  genotyped  in  STARNET and  either genotyped  or imputed  in  the  GWAS, filtering  out 
variants without matching  strands between  the  GWAS and  STARNET.  Expression  models were 
trained  on  all  remaining  variants within  500  kb  of a  gene’s TSS, using  Ensembl  v87  TSS 
annotations for hg19 35.  Linkage  disequilibrium and  total  and  predicted  expression  correlations 
were  calculated  across individuals in  STARNET.  Code  to  replicate  the  post-TWAS analysis is 
available  at https://github.com/Wainberg/Vulnerabilities_of_TWAS.  
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Supplementary  Information 
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Figure S1:  Distributions  of co-regulation  across  putative non-causal genes  in multi-hit  TWAS loci.   Since 
many  multi-hit  loci  do  not  have  a  clear  causal gene  or  have  multiple plausible  candidates,  we  make  the  approximation 
that only  the  most significant  gene  at each  locus  is  causal.   We then  plot  the  cumulative distribution  functions  (CDFs) 
of (a, d)  expression  correlations,  (b, e)  predicted  expression  correlations  and  (c, f) number  of shared  variants 
between these  most significant  genes  and  all  the  other  genes at their  loci,  separately  for LDL/liver  (a-c)  and 
Crohn’s/whole blood  (d-f).  To collapse  these  CDFs  into  a  single estimate  of the  percent  of affected  non-causal  genes 
(Fig. 1c), we  combine  genes  across  the  two  studies  and  threshold to correlation  r 2 ≥ 0.2, a  threshold  commonly  used 
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for weak  LD  in  GWAS, or  ≥ 1  shared  variant.   Note  that counting  only  exact  sharing of variants  does  not  account  for 
LD,  for simplicity.  
 

 
Figure S2:  Manhattan plots of the 4  TWAS conducted in this study.  As in  Fig. 1, clusters  of multiple  adjacent 
TWAS hit  genes  are  highlighted  in  red. 
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Figure S3:  Number  of TWAS hit genes  per  locus after  2.5-MB  clumping. 
 

 
 
Figure S4:  Total versus  predicted expression  correlation versus  the top hit, for  all genes  in multi-hit  blocks 
that  are  not the top hits.  a)  Liver,  LDL.   b)  Crohn’s,  whole  blood.   Note  that predicted  expression  correlation  is 
generally higher  than  total  expression  correlation,  as  discussed  in  the  Results  section. 
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