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Transcriptome-wide association studies (TWAS) integrate GWAS and gene expression datasets 
to find gene-trait associations.  In this Perspective, we explore properties of TWAS as a 
potential approach to prioritize causal genes, using simulations and case studies of 
literature-curated candidate causal genes for schizophrenia, LDL cholesterol and Crohn’s 
disease. We explore risk loci where TWAS accurately prioritizes the likely causal gene, as well 
as loci where TWAS prioritizes multiple genes, some of which are unlikely to be causal, because 
they share the same variants as eQTLs.  We illustrate that TWAS is especially prone to spurious 
prioritization when using expression data from tissues or cell types that are less related to the 
trait, due to substantial variation in both expression levels and eQTL strengths across cell types. 
Nonetheless, TWAS prioritizes candidate causal genes at GWAS loci more accurately than 
simple baselines based on proximity to lead GWAS variant and expression in trait-related 
tissue.  We discuss current strategies and future opportunities for improving the performance of 
TWAS for causal gene prioritization.  Our results showcase the strengths and limitations of 
using expression variation across individuals to determine causal genes at GWAS loci and 
provide guidelines and best practices when using TWAS to prioritize candidate causal genes. 
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Over the past 13 years, genome-wide association studies (GWAS) have robustly associated 
thousands of genomic loci with a variety of complex traits.  Despite this success, GWAS loci are 
often difficult to interpret: linkage disequilibrium (LD) often obscures the causal variant(s) driving 
the association, and the causal genes mediating these variants’ effects on the trait can rarely be 
ascertained from GWAS data alone 1.  This interpretational challenge has motivated the 
development of methods to prioritize causal genes at GWAS loci.  
 
One such family of methods are transcriptome-wide association studies (TWAS).  TWAS 
leverage expression reference panels (eQTL cohorts with expression and genotype data) to 
discover gene-trait associations from GWAS datasets2,3,4.  First, the expression reference panel 
is used to learn predictive models of expression variation for each gene using allele counts of 
genetic variants in the vicinity of the gene (typically 500 kb or 1 MB around the gene). Next, 
these models are used to predict gene expression for each individual in the GWAS cohort. 
Finally, statistical associations are estimated between predicted gene expression and the status 
of the trait (Fig. 1).  The expression prediction and association may be performed explicitly using 
individual-level GWAS data, as in PrediXcan 2, or combined into a single step using 
summary-level GWAS data, as in Fusion 3 and S-PrediXcan 4.  Closely related methods to TWAS 
include SMR/HEIDI5,6,7, which performs Mendelian Randomization (MR) from gene expression 
to trait, and GWAS-eQTL colocalization methods such as Sherlock8, coloc9,10, QTLMatch 11, 
eCaviar12, enloc13 and RTC14, which discover genes whose expression is regulated by the same 
causal variant(s) that underlie a GWAS hit. 
 

 
 
Fig. 1: An overview of TWAS.  Briefly, TWAS involves: 1) training a predictive model of expression from genotype 
on a reference panel such as GTEx; 2) using this model to predict expression for individuals in the GWAS cohort; and 
3) associating this predicted expression with the trait. 
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TWAS have garnered substantial interest within the human genetics community and have 
subsequently been conducted for a wide variety of traits and tissues15,16.  Although TWAS has 
been proposed as a statistical test for finding associations between the genetic component of 
expression and disease risk (with no causality guarantees), a key reason for the appeal of 
TWAS methods is the promise that they may prioritize candidate causal genes (defined here as 
genes that mediate the phenotypic effects of causal genetic variants) at known GWAS risk 
regions.  Unfortunately, there is a prevalent misconception within the community that TWAS is a 
causal gene test and that TWAS associations represent bona fide causal genes; in the following 
sections, we provide guidelines for interpreting TWAS results, highlighting situations when 
TWAS can accurately prioritize candidate causal genes as well as scenarios when the genes 
prioritized by TWAS are likely non-causal. 
 
As a motivating example illustrating both the success and interpretational challenges of TWAS, 
consider C4A, a causal gene for schizophrenia.  Variants at the C4A locus contribute to 
schizophrenia risk by increasing expression of C4A in the brain 17.  TWAS detects a strong 
association between C4A and schizophrenia risk using brain expression data from GTEx18. 
Strikingly, C4A is by far the most significantly associated gene within the 100 kb locus in brain 
tissues. C4A is also the the most significantly associated gene in any tissue (Table 1), even 
compared to other closely-related genes in the complement system (C4B, CFB , C2 ).  However, 
8 of the 12 other genes within 100 kb are also at least marginally significant (p < 0.05) in some 
brain tissue, and 11 of 12 are highly significant (p < 5e-5) in at least one tissue. 
 

Gene Lowest TWAS p-value in any 
brain tissue 

Lowest TWAS p-value in any 
tissue 

C4A 4e-18 (Hypothalamus) 2e-20 (Pancreas) 

ATF6B 3e-9 (Anterior cingulate cortex) 3e-9 (Anterior cingulate cortex) 

CYP21A2 5e-7 (Cortex) 9e-19 (Aorta) 

NELFE 7e-7 (Cerebellum) 7e-7 (Cerebellum) 

STK19 1e-5 (Frontal Cortex, BA9) 4e-12 (Adrenal gland) 

SKIV2L 5e-5 (Cerebellum) 5e-5 (Cerebellum) 

C4B 6e-5 (Nucleus accumbens, basal 
ganglia) 

1e-21 (Testis) 

C2 0.008 (Cortex) 1e-18 (Whole blood) 

DXO 0.03 (Putamen, basal ganglia) 0.02 (Thyroid) 

CFB Not significant 2e-13 (Whole blood) 

EHMT2 Not significant 3e-10 (Skin, sun-exposed lower leg) 
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TNXB Not significant 3e-6 (Adrenal gland) 

ZBTB12 Not significant 7e-5 (Ovary) 

 
Table 1: The C4A locus, a success story where TWAS p-values accurately prioritize the causal gene.  Lowest 
schizophrenia p-value in any GTEx brain tissue, and in any GTEx tissue, for each gene within 100 kb of C4A with 
available S-PrediXcan TWAS results (http://metabeta.gene2pheno.org).  The TWAS used schizophrenia summary 
GWAS data from the Psychiatric Genomics Consortium19 and expression data from GTEx18.  
 
TWAS loci frequently contain multiple associated genes 
 
It is well known that GWAS rarely identifies single variant-trait associations, but instead 
identifies blocks of associated variants in linkage disequilibrium with each other (Fig. 1a). 
Analogously, TWAS frequently identifies multiple hit genes per locus (Fig. 1b)16.  
 
To explore this phenomenon, we performed TWAS in two traits and two tissues with both Fusion 
and S-PrediXcan, using GWAS summary statistics for LDL cholesterol 20 and Crohn’s disease 21 
and the 522 liver and 447 whole blood expression samples from the STARNET cohort22 (Fig. 
S2, Online Methods).  We grouped hit genes within 2.5 MB and found that while some loci 
contained only a single hit gene, many contained two, three, four or even up to eleven (Fig. S3).  
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Figure 1: TWAS, like GWAS, frequently has multiple significant associations per risk region.  (a), (b) 
Manhattan plots of GWAS and Fusion TWAS for LDL cholesterol using GWAS summary statistics from the Global 
Lipids Genetics Consortium and liver expression from the STARNET cohort (see Methods).  GWAS has multiple hits 
per locus due to linkage disequilibrium, and TWAS due to co-regulation (which can also be driven in part by LD; see 
below), as we explore in the paper.  Clusters of multiple adjacent TWAS hit genes are highlighted in red.  (c) Three 
scenarios where co-regulation can lead to multiple hits per locus, and the estimated percent of non-causal hit genes 
subject to each scenario; each scenario is presented in a case study later in the paper (a fourth scenario is presented 
in Fig. 5d).  To estimate the percentages, we group hits into 2.5 MB clumps and make the approximation that genes 
that are not the top hit in multi-hit clumps are non-causal; we then calculate the percent of these genes with total or 
predicted expression r2 ≥ 0.2 or ≥ 1 shared variant with the top hit in their block, aggregating genes across the 
LDL/liver and Crohn’s/whole blood TWAS.  The full distributions of total and predicted expression correlations and 
number of shared variants are shown in Fig. S1, separated by study. 
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Correlated expression across individuals may lead to spurious TWAS hit genes 
 
We explored the extent to which co-regulation could be responsible for multi-hit loci.  The 
conventional way co-regulation is measured is by correlating the expression of a pair of genes 
across individuals in an expression cohort.  Do genes that have correlated expression with a 
strong TWAS hit also tend to be TWAS hits (Fig. 5a)?  We analyzed the SORT1  locus in 
LDL/Liver (TWAS p < 1 × 10 -243; Fig. 2a) which represents the strongest hit locus across all four 
Fusion TWAS.  SORT1  has strong evidence of causality (Table 3). 
 
The SORT1  locus contains 8 other Fusion hit genes besides SORT1, and their TWAS p -values 
are highly related to their expression correlation with SORT1 (Spearman = 0.75; Fig. 2b).  A 
similar pattern holds for S-PrediXcan (Fig. 2c, d).  The two genes with the highest expression 
correlations with SORT1, PSRC1 and CELSR2, were previously noted by one of the SORT1 
mouse model studies23 to share an eQTL with SORT1 in liver (rs646776).  Given that SORT1 
has strong evidence of causality, and that other genes at the locus lack strong literature 
evidence, the most parsimonious explanation is that most or all of the other genes are 
non-causal and are only prioritized due to their correlation with SORT1.  However, we 
emphasize that there is no guarantee that other genes at the locus are truly non-causal, and 
some or all of these genes could be causal to various degrees. 
 
A         B 
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Figure 2: Co-regulation strongly predicts TWAS hit strength at the SORT1 locus.  a) Fusion Manhattan plot of 
the SORT1  locus.  b) Expression correlation with SORT1 versus TWAS p-value, for each gene in the SORT1 locus. 
c), d) The equivalent Manhattan and expression correlation plots for S-PrediXcan. 
 
Correlated predicted expression across individuals may lead to spurious TWAS hit 
genes, even without correlated total expression 
 
However, expression correlation is not the whole story: after all, TWAS tests for association with 
genetically-predicted expression, not total expression.  Total expression includes genetic, 
environmental and technical components, and the genetic component of expression includes 
contributions from common cis eQTLs (the only component reliably detectable in current TWAS 
methods), rare cis eQTLs, and trans eQTLs.  Predicted expression likely only represents a small 
component of the GWAS individuals’ total expression: a large-scale twin study24 found that 
common cis eQTLs explain only about 10% of genetic variance in gene expression. 
 
While predicted expression correlations between genes at the same locus are often similar to 
total expression correlations, they are generally slightly higher, and sometimes substantially so 
(Fig. 3a, Fig. 3d, Fig. S4).  A pair of genes can have correlated predicted expression if a) the 
same causal eQTL regulates both genes, or b) two causal eQTLs in LD each regulate one of 
the genes25.  Although only case a) counts as mechanistic co-regulation, we consider both 
cases together since they are not designed to be distinguishable by TWAS: the two genes’ 
TWAS models can rely on distinct variants even in case a), or rely on the same variant even in 
case b).  For instance, when faced with a causal eQTL in near-perfect LD with another variant, 
an L1-penalized linear expression model (lasso) will generally include only one of the two 
variants, but which variant is chosen could flip based on stochastic statistical fluctuations in the 
training set. 
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Predicted expression correlation may lead to non-causal genes being prioritized before causal 
genes, even if the total expression correlation between the two genes is low (Fig. 5b).  This type 
of confounding has also been observed in the context of gene-set analysis26.  For instance, 
SARS is the main outlier in Fig. 2b because, despite having a similar Fusion p-value to SORT1, 
it has an unexpectedly low total expression correlation of approximately 0.2; yet it is still a strong 
hit because of its high predicted expression correlation of approximately 0.9 (Fig. 3a); SARS is 
also an outlier in PrediXcan, for the same reason (Fig. 3d).  Of course, it is always possible that 
SARS may be an outlier due to having a causal effect of its own. 
 
Another example is the IRF2BP2 locus in LDL/liver (Fig. 3b).  IRF2BP2 is a gene encoding an 
inflammation-suppressing regulatory factor with evidence of causality from mouse models 
(Table 3).  RP4-781K5.7 is a largely uncharacterized long non-coding RNA (lncRNA), and lacks 
evidence for a causal role in LDL or indeed for having any function at all; most lncRNAs are 
non-essential for cell fitness27 and current evidence is compatible with a model where most 
non-coding RNAs are non-functional 28.  Nonetheless, it is possible that RP4-781K5.7 does also 
have a causal role in LDL.  While there is almost no correlation in total expression between the 
two genes (-0.02), IRF2BP2’s Fusion expression model includes a GWAS hit variant, rs556107, 
with a negative weight while RP4-781K5.7’s includes the same variant, as well as two other 
linked variants, with positive weights (Fig. 3c), resulting in almost perfectly anti-correlated 
predicted expression between the two genes (-0.94) and significant TWAS associations with 
LDL for both genes.  IRF2BP2 and RP4-781K5.7 are also both hits with S-PrediXcan (Fig. 3e) 
and, as with Fusion, both models put the largest weight on rs556107 but with opposite sign (Fig. 
3f). 
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Figure 3: Correlated predicted expression can cause non-causal hits even in the absence of correlated total 
expression.  a) For nearby genes, Fusion predicted expression correlations tend to be higher than total expression 
correlations, e.g. at the SORT1 locus.  b) Fusion Manhattan plot of the IRF2BP2 locus, where RP4-781K5.7 is a likely 
non-causal hit due to predicted expression correlation with IRF2BP2.  c) Details of the two genes’ Fusion expression 
models: a line between a variant’s rs number and a gene indicates the variant is included in the gene’s expression 
model with either a positive weight (blue) or negative weight (orange), with the thickness of the line increasing with 
the magnitude of the weight; red arcs indicate LD.  Pink rs numbers are GWAS hits (genome-wide-significant or 
sub-significant) while gray rs numbers are not.  d) The equivalent plot to a) for S-PrediXcan. e) The equivalent plot to 
b) for S-PrediXcan. f) The equivalent plot to c) for S-Predixcan.  For clarity, 4 variants with weights less than 0.05 in 
magnitude for IRF2BP2 (rs2175594, p < 0.02, weight +0.03; rs2439500, p < 0.2, weight = +0.01; rs11588636, p < 
0.3, weight = -0.03; rs780256, p < 0.9, weight = -0.03) and 5 variants for RP4-781K5.7 (rs478425, p < 0.01, weight = 
+0.02; rs633269, p < 0.02, weight = +0.01; rs881070, p < 0.06, weight = -0.02; rs673283, p < 0.1, weight = +0.004; 
rs9659229, p < 0.1, weight = -0.04) are not shown.  g) Estimated causal probability for each significant gene from 
Fusion at the SORT1 and IRF2BP2 loci, according to TWAS gene-based fine-mapping with the FOCUS method. 
 
To illustrate this phenomenon, we simulated expression and trait data (Ntrait = 10,000 individuals, 
Nexpression = 489 individuals from 1000 Genomes of European ancestry) for 1000 random genomic 
loci using the FOCUS simulation framework25 (see “Suggested best practices and future 
opportunities”), and conducted TWAS using L2-penalized linear regression (see Methods).  As 
expected, larger predicted expression correlation increased the probability of having a larger 
TWAS z-score than the causal gene (Table 2).  However, this probability remained high even 
when predicted expression correlation was low, suggesting that predicted expression, though 
better than true expression, still imperfectly captures co-regulation in the context of TWAS (see 
next section). 
 

 Predicted expression correlation magnitude with causal gene 

0-0.05 0.05-0.1 0.1-0.15 0.15-0.2 

% genes with 
|z| > |zcausal| 

36.8%  
(N = 3171) 

33.7%  
(N = 502) 

47.3%  
(N = 260) 

49.3%  
(N = 67) 

 
Table 2: Simulation of percent of genes with larger TWAS z-score than the causal gene, binned by predicted 
expression correlation.  The number of genes in each bin (among all genes at the 1000 random loci being 
simulated) is shown in brackets for each bin.  Predicted expression correlations were computed as the 
vector-matrix-vector product of the causal gene’s model weights, the LD matrix among the variants included in the 
models, and the other gene’s model weights. 
 
Shared GWAS variants between gene expression models may lead to spurious TWAS hit 
genes, even without correlated predicted expression 
 
More generally, pairs of genes may share GWAS variants in their models (or at least share LD 
partners, where a variant in one gene’s model is in LD with a variant in the other gene’s model) 
even if they have low predicted expression correlation, since other variants that are distinct 
between the models may “dilute” the correlation (Fig. 5c).  For instance, at the NOD2 locus for 
Crohn’s/whole blood, NOD2 is a known causal gene (Table 3), but 4 other genes are also 
Fusion TWAS hits (Fig. 4a), none with strong evidence of causality (though rare variants in one 

12 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 14, 2018. ; https://doi.org/10.1101/206961doi: bioRxiv preprint 

https://paperpile.com/c/L0yEDR/G2Dr
https://doi.org/10.1101/206961


gene, ADCY7, have been associated with the closely related disease ulcerative colitis but not 
Crohn’s29).  The Fusion model for the strongest hit at the locus, BRD7, puts most of its weight 
on rs1872691, which is also the strongest GWAS variant in NOD2’s model (Fig. 4b).  However, 
the NOD2 model puts most of its weight on two other variants, rs7202124 and rs1981760, which 
are slightly weaker GWAS hits.  The result is that even though BRD7 appears to be a 
non-causal hit because of co-regulation with NOD2 (though it is certainly possible that BRD7 
may be causal itself), the overall predicted expression correlation between the two genes is very 
low (-0.03), as is the total expression correlation (0.05).  The same 5 genes are also hits with 
S-PrediXcan (Fig. 4c), and NOD2 and BRD7’s models share the same rs1872691 variant, just 
like with Fusion (Fig. 4d). 
  
 
A 

 
 
B 

 
 
C 
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D 

 
 
Figure 4: Sharing of GWAS variants between expression models can contribute to non-causal hits even 
without correlated predicted expression.  a) TWAS Manhattan plot of the NOD2  locus.  b) Details of the 
expression models of NOD2  and BRD7: as in Fig. 3, a line between a variant’s rs number and a gene indicates the 
variant is included in the gene’s expression model with either a positive weight (blue) or negative weight (orange), 
with the thickness of the line increasing with the magnitude of the weight; red arcs indicate LD.  c) The equivalent plot 
to a) for S-Predixcan.  d) The equivalent plot to b) for S-PrediXcan.  For clarity, 5 variants for BRD7 (rs12925755, p < 
6e-34, weight = 0.002; rs2066852, p < 3e-10, weight = -0.02; rs17227589, p < 2e-7, weight = -0.02; rs11642187, p < 
0.04, weight = +0.007; rs2241258, p < 0.3, weight = -0.05) are not shown.  
 
In the most general case, models need not even share the same GWAS variants (or variants in 
LD) for there to be spurious non-causal hits (Fig. 5d).  For instance, rs4643314, the stronger 
GWAS hit out of the two variants in BRD7’s Fusion model, is neither shared nor in strong LD 
with any of the variants in NOD2’s model, though it is in weak LD with rs1872691 (Fig. 4b). 
Under the assumption that NOD2 is the only causal gene at the locus, this suggests that this 
variant exerts its GWAS effect via NOD2  and also happens to co-regulate BRD7, but that the 
NOD2 expression model incorrectly fails to include it (a false negative).  One trivial reason for 
false negatives is variants outside the 500 kb or 1 MB window around the TSS included in the 
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expression modeling (not an issue in this example because rs4643314 is within 500 kb of the 
NOD2 TSS), which can be solved by increasing the window size.  More problematically, bias in 
the expression panel could also lead to false negatives (see Discussion).  The scenario of 
multiple distinct GWAS hits might occur even without any false negatives in the expression 
modeling, e.g. if a variant in BRD7’s model (or a variant in LD with it) deleteriously affected the 
coding sequence of NOD2 as well as regulating BRD7.  This bias due to coding variation may 
occur even despite TWAS not being designed to detect associations mediated by coding 
variants.  
 
For methods using GWAS summary statistics (e.g. Fusion and S-PrediXcan), false negatives 
may also occur due to a mismatch in LD between the expression panel and the GWAS: for 
instance, a causal gene’s TWAS model for may rely on a variant that is tightly linked to the 
causal variant in the expression panel, but if this variant is not also linked in the GWAS, the 
gene may erroneously fail to be detected as a TWAS hit.  Conversely, a non-causal gene’s 
TWAS model may rely on a variant that is linked, in the GWAS but not the expression panel, to 
a causal variant for a different gene, leading to the non-causal gene being a TWAS hit. 
 
A 

         
 
B 

 
 
C 
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D  

 
 
Figure 5: Co-regulation scenarios in TWAS that may lead to non-causal hits, from least to most general.  a) 
Correlated expression across individuals: the causal gene has correlated total expression with another gene, which 
may become a non-causal TWAS hit.  b) Correlated predicted expression across individuals: even if total expression 
correlation is low, predicted expression correlation may be high if the same variants (or variants in LD) regulate both 
genes and are included in both models.  c) Sharing of GWAS hits: even if the two genes’ models include largely 
distinct variants and predicted expression correlation is low, only a single shared GWAS hit variant (or variant in LD) 
is necessary for both genes to be TWAS hits.  d) Both models include distinct GWAS hits: in the most general case, 
the GWAS hits driving the signal at the two genes may not be in LD with each other, for instance if the non-causal 
gene’s GWAS hit happens to regulate the causal gene as well but this connection is missed by the expression 
modeling (a false negative), or if the causal gene’s GWAS hit acts via a coding mechanism (not shown). 
 
Using reference gene expression panels from tissues that are less related to the trait 
introduces bias in TWAS  
 
It is common practice to use reference expression panels in tissues with the largest number of 
individuals available (e.g. whole blood, lymphoblastoid cell lines) with the goal of maximizing 
power, even if they are less mechanistically related to the trait.  So far, our TWAS case studies 
have used expression from tissues with a clear mechanistic relationship to the trait: liver for LDL 
and whole blood for Crohn’s.  What if we swap these tissues and use liver for Crohn’s and 
whole blood for LDL, so that we are using tissues without a clear mechanistic relationship?  It is 
well-known that the architecture of eQTLs differs substantially across tissues: even among 
strong eQTLs in GTEx (p ~ 1 × 10 -10), one quarter switch which gene they are most significantly 
associated with across tissues18. 
 
We manually curated candidate causal genes from the literature (Table 3) at 9 LDL/liver and 4 
Crohn’s/whole blood multi-hit Fusion TWAS loci and looked at how their hit strengths changed 
when swapping tissues (Fig. 6).  Strikingly, almost every candidate causal gene (9 of 11 for LDL 
and 5 of 6 for Crohn’s) was no longer a hit in the “opposite” tissue, either because they were not 
sufficiently expressed (N = 4: PPARG , LPA , LPIN3 , SLC22A4) or because they did not have 
sufficiently heritable cis expression, according to a likelihood ratio test, to be tested by Fusion (N 
= 10: SORT1 , IRF2BP2 , TNKS , FADS3 , ALDH2, KPNB1 , SLC22A5, IRF1 , CARD9, STAT3 ). 
This general trend also holds globally, albeit less strongly: genome-wide, 3085 of 5858 LDL/liver 
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genes (53%) drop out when switching to whole blood, and 1202 of 2118 Crohn’s/whole blood 
genes (57%) drop out when switching to liver.  It is important to note that just because a gene 
does not drop out, and is present in both tissues due to shared cross-tissue regulatory 
architecture, does not necessarily make it more likely to be causal. 
 

Gene Trait Evidence  Details 

SORT1 LDL Strong In mouse models, overexpression of SORT1 in liver reduced plasma LDL 
levels and siRNA knockdown increased plasma LDL levels23,30, though in 
other studies deletion of SORT1  counter-intuitively reduced, rather than 
increased, atherosclerosis in mice without affecting plasma LDL levels31,32,33. 

IRF2BP2 LDL Moderate A loss-of-function variant in IRF2BP2  has been associated with increased 
susceptibility to CAD34 IRF2BP2 knockout has been shown in mouse models 
to increase atherosclerosis, albeit via an inflammatory mechanism34. 

PPARG LDL Strong PPARG activation increases LDL metabolism via induction of LDLR and 
CYP7A135; PPAR agonists decrease glycated LDL uptake into macrophages 
via regulation of lipoprotein lipase36. 

LPA LDL Strong LPA is a primary constituent of lipoprotein(a), a class of lipoproteins related 
to LDL.  The LDL GWAS used in this study is a meta-analysis of 60 studies, 
most of which do not measure LDL levels directly but instead calculate them 
indirectly using the Friedewald formula, which does not distinguish between 
LDL and lipoprotein(a) and instead reports the sum of LDL and lipoprotein(a) 
levels37.  Thus, although LPA abundance may not causally influence true 
LDL levels, it does causally determine LDL levels as calculated by the 
Friedewald formula. 

TNKS LDL Moderate Inhibition of TNKS inhibits Wnt signalling38 and upregulates genes involved in 
cholesterol biosynthesis39.  Wnt signalling has independently been implicated 
in lipid homeostasis40,41. 

FADS1-3 LDL Strong FADS1-knockout mice had lower triglyceride and total cholesterol levels42.  
FADS2-knockout mice had roughly doubled cholesterol synthesis rate in 
macrophages43 and altered levels of multiple cholesterol esters in liver44. 
FADS3 is least well-characterized but has 52% and 62% sequence 
homology with FADS1 and FADS2, respectively45. 

ALDH2 LDL Moderate ALDH2 is required for alcohol metabolism, and alcohol consumption has long 
been known to have wide-ranging influences on lipid levels46.  Both ALDH2 
and another alcohol metabolic enzyme, ADH1B, have been associated with 
alcohol consumption47, variants at both loci have been associated with LDL 
among alcoholic men48, and Mendelian randomization using variants near 
ADH1B and other alcohol metabolic enzymes recapitulated the causal role of 
alcohol consumption on LDL levels49, suggesting that ALDH2 causally 
influences LDL levels via its effect on alcohol consumption. 

KPNB1 LDL Strong KPNB1 knockdown reduced cellular internalization of fluorescence-labeled 
LDL 50. 

LPIN3 LDL Moderate LPIN3  is one of three lipin genes; lipin genes catalyze the synthesis of 
diacylglycerols51, constituents of LDL and other lipoproteins52 and 
intermediates in the synthesis of multiple classes of lipids53. 

SLC22A4/5 Crohn’s Weak Also known as OCTN1/2 , these proteins transport substrates such as 
ergothioneine and acetylcholine, and a Crohn’s-associated variant, L503F, 
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increases SLC22A4’s transport efficiency54,55.  However, the link between 
altered transport efficiency and disease is unclear, and IRF1 is a stronger 
candidate at the locus (see below). 

IRF1 Crohn’s Strong Genome-wide, variants that increase binding of IRF1  (a transcriptional 
activator of the innate immune response) tend to increase Crohn’s risk, and 
vice versa 56.  High-density genotyping of the IRF1/SLC22A4/5 locus 
indicates that IRF1, but not SLC22A4/5, associates with Crohn’s disease 
risk, and IRF1 expression, but not SLC22A4 expression, in GI biopsies was 
increased among Crohn’s cases57.  

CARD9 Crohn’s Strong CARD9 plays critical roles in the innate immune response and has been 
implicated in a variety of autoimmune conditions58; a loss-of-function splice 
variant in CARD9 is strongly protective against Crohn’s disease59.  

NOD2 Crohn’s Strong Multiple coding variants in NOD2 are independently associated with Crohn’s 
disease59,60,61. 

STAT3 Crohn’s Strong STAT3-knockout mice develop Crohn’s-like symptoms62.  

 
Table 3: Candidate causal genes curated from the literature, with supporting evidence for causality.  The 
strength of evidence for each gene is also stated: strong indicates clear experimental evidence (SORT1, PPARG , 
FADS1-3 , KPNB1 , STAT3 ), coding loss-of-function or fine-mapped GWAS association (IRF1, CARD9 , NOD2 ) or 
functional inference (LPA ) linking the gene to the trait; moderate indicates less direct experimental (TNKS) or 
functional (ALDH2, LPIN3 ) evidence, or clear experimental evidence linking the gene to a related trait (IRF2BP2); 
weak indicates disputed evidence of causality, where another gene at the locus is a stronger candidate (SLC22A4/5). 
 
More problematically, 15 other genes at the same loci were still hits (8 in LDL/whole blood and 7 
in Crohn’s/liver), and 5 were even strong hits with p < 1 × 10 -20.  This suggests that the strategy 
of conducting TWAS in a tissue that is sub-optimal for the trait being examined, just because 
that tissue happens to have a large expression reference panel, is especially problematic 
because many hit loci may contain only non-causal genes and the causal gene may not even be 
included in the list of hits. 
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Figure 6: Most candidate causal genes drop out when switching to a tissue with a less clear mechanistic 
relationship to the trait, due to lack of sufficient expression or sufficiently heritable expression.  Fusion TWAS 
p-values at 9 LDL/liver and 4 Crohn’s/whole blood multi-hit loci, when using expression from tissues with a clear (top 
row) and less clear or absent (bottom row) mechanistic relationship to the trait.  Candidate causal genes are labeled 
and colored in red. 
 
TWAS offers improved causal gene prioritization relative to simple baselines 
 
We investigated the performance of TWAS at ranking (prioritizing) causal genes at each of the 
TWAS hit genes from the previous section.  We compared Fusion TWAS to two simple 
baselines (Table 4): the proximity of each gene’s TSS to the lead (most significant) GWAS 
variant within 2.5 MB of any gene at the locus (“proximity”), and the median expression across 
GTEx individuals of each gene in the more mechanistically related tissue, i.e. liver for LDL 
genes and whole blood for Crohn’s genes (“expression”).  By convention, higher rankings are 
given to genes with greater probabilities of causality (more significant TWAS p-values, closer to 
the lead GWAS variant, or higher expression).  All three methods perform better than a random 
ranking of the genes at the locus: the mean rank of the 17 candidate causal genes is 3.9, but 
their mean rank by TWAS is 2.0, by proximity 2.2, and by expression 2.9.  Hence, in this simple 
test, Fusion performs better than both baselines, albeit only slightly better than ranking genes by 
proximity to the lead GWAS variant. 
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Candidate causal 
gene 

Number of TWAS 
hit genes at locus 

Rank - TWAS Rank - proximity Rank - expression 

SORT1 9 1 4 4 

IRF2BP2 2 2 2 2 

PPARG 2 1 1 1 

LPA 3 2 3 1 

TNKS 3 3 3 3 

FADS1 4 1 1 2 

FADS2 4 3 2 4 

FADS3 4 4 4 3 

ALDH2 3 2 1 3 

KPNB1 3 1 2 3 

LPIN3 3 1 3 3 

SLC22A4 4 2 3 3 

SLC22A5 4 1 2 2 

IRF1 4 3 1 4 

CARD9 5 1 1 3 

NOD2 5 2 1 4 

STAT3 5 4 4 5 

Mean 3.9 2.0 2.2 2.9 

 
Table 4: Performance comparison of Fusion TWAS, expression and proximity to lead variant at ranking 
candidate causal genes. 
 
Suggested best practices and future opportunities 
 
We have highlighted two vulnerabilities, co-regulation and tissue bias, that affect the 
performance of TWAS for causal gene prioritization.  In this section, we discuss current best 
practices and future opportunities for mitigating these vulnerabilities. 
 
One emerging approach to address co-regulation is to repurpose GWAS methods for variant 
fine-mapping to TWAS, following the analogy between LD in GWAS and co-regulation in TWAS. 
FOCUS (Fine-mapping Of CaUsal gene Sets)25 directly models the predicted expression 
correlations among genes at a TWAS locus to assign a posterior probability of causality to each 
gene, and can therefore correct for co-regulation due to predicted expression correlation (Fig. 
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5b).  At the SORT1  locus, FOCUS includes SORT1, SARS  and CELSR2 in the 90% credible 
set; at the IRF2BP2  locus, FOCUS includes both IRF2BP2 and RP4-781K5.7 (Fig. 3g).  We 
recommend using fine-mapping methods such as FOCUS to improve the interpretability of 
TWAS for causal gene identification, or at a minimum considering the relative association 
strengths (p-values and effect sizes) of all genes at the locus when interpreting TWAS results.  
 
Nonetheless, we recommend keeping in mind the following caveats which make TWAS 
fine-mapping more challenging than GWAS fine-mapping.  Predicted expression only 
imperfectly captures cis expression, the component of expression driven by variants near the 
gene; there are sources of both variance and bias in the expression modeling:  
 

● Finite-sized reference panel: The main source of variance is the finite size of the 
reference panel.  Fortunately, this can be mitigated with Bayesian methods that explicitly 
model error in the expression predictions63.  This variance will become less of an issue in 
the future as reference panel sizes increase.  

● Pleiotropy across tissues: Traits rarely act through a single tissue: different genes may 
be causal in different tissues, so even using a tissue where most genes are causal may 
introduce bias for the remaining genes that are causal in a different tissue.  Fortunately, 
estimating causal tissues on a per-locus basis is an active area of research 64, and these 
approaches could be integrated into TWAS fine-mapping in the future.  

● Cell-type heterogeneity: Most existing expression panels are gathered for 
heterogeneous tissues consisting of multiple distinct cell types and states.  Genes may 
only be causal for a single cell type/state within a tissue: for instance, a study that 
identified IRX3 and IRX5 as causal genes at the FTO locus found genotype-expression 
associations in primary preadipocytes, a minority of adipose cells, but not in whole 
adipose tissue 65.  There may be substantial cell type heterogeneity within and between 
samples (e.g. due to the presence of blood and immune cells, or genetically-driven 
differences in the relative proportions of cell types within a tissue), which can also 
introduce bias.  Fortunately, with the advent of single-cell RNA sequencing, reference 
panels for individual cell types are beginning to be compiled, most prominently through 
the Human Cell Atlas66. 

● Bias in expression quantification: The time of day, physiological state (e.g. time since 
eating or exercise, disease status) or cause of death of contributors to the expression 
panel may also subtly bias measurements: though such covariates may be corrected for 
by methods such as probabilistic estimation of expression residuals67 (PEER), any 
residual signal from covariates may be captured by a gene’s expression model if variants 
in the vicinity of the gene are associated with a covariate.  There may be other sources 
of bias that are more difficult to quantify. 

 
To address tissue bias, we recommend, in general, using expression from only the most 
mechanistically related tissue available as the primary analysis, even if this tissue does not have 
samples from as many individuals as other tissues.  However, it may be advisable to switch to a 
slightly less related tissue (e.g. from a different region of the brain) if doing so would 
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substantially increase the sample size; the trade-off between tissue bias and sample size should 
be evaluated on a case-by-case basis.  When the most related tissue is not known a priori for a 
particular trait, a recent approach based on LD score regression 68 can be used to determine the 
best available tissue from among multiple reference panels.  Methods to deal with pleiotropy 
across tissues and cell-type heterogeneity, discussed above in the context of fine-mapping, can 
also help mitigate tissue bias.  If no sufficiently large reference panels from closely related 
tissues are available, we recommend a tissue-agnostic analysis that aggregates information 
across all available tissues4,69, for improved prioritization relative to using a single unrelated 
tissue. 
 
Discussion 
 
In our case studies, we have generally assumed that the single gene with substantial evidence 
of causality is the sole causal gene at the locus, with some exceptions of loci with multiple 
causal candidates of varying degrees of evidence (e.g. FADS1-3, SLC22A4/5 /IRF1 ).  While this 
is the most parsimonious explanation, it is possible that other loci also harbor multiple causal 
genes.  Indeed, under an omnigenic model of complex traits70, every gene may be causal to 
some degree, though it is still problematic if TWAS identifies marginally causal genes as strong 
hits due to co-regulation (effect size inflation).  Furthermore, the expression of other genes at 
the locus may causally contribute to the expression of the causal gene, merely by being actively 
transcribed, even if the gene is non-coding or its protein product has no causal role 71.  
 
The vulnerabilities we have explored in TWAS, co-regulation and tissue bias, also apply to other 
methods that integrate GWAS and expression data, although a thorough exploration of these 
other methods is beyond the scope of this Perspective.  Gene-trait association testing based on 
Mendelian Randomization 5,6,7 is vulnerable to non-causal hits because co-regulation, as a form 
of pleiotropy, violates one of the core assumptions of MR72.  While the HEIDI test5 is designed to 
correct MR in the case where the two genes have distinct, but linked, causal variants, it does 
not control for the case where the two genes share the same causal variant.  GWAS-eQTL 
colocalization methods such as Sherlock8, coloc9,10, QTLMatch 11, eCaviar12, enloc13 and RTC14 
are also vulnerable to this phenomenon.  The more tightly a pair of genes is co-regulated in cis, 
the more difficult it becomes to distinguish causality based on GWAS and expression data 
alone.  Our results underscore the need for computational and experimental methods that move 
beyond using expression variation across individuals to complement TWAS in identifying causal 
genes at GWAS loci. 
 
Methods 
 
TWAS with Fusion 
 
TWAS were performed with the Fusion software using default settings and also including 
polygenic risk score as a possible model during cross-validation in addition to BLUP, Lasso, and 
ElasticNet.  TWAS p values from Fusion were Bonferroni-corrected according to the number of 
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genes tested in the TWAS when assessing statistical significance.  Variants in the STARNET 
reference panel were filtered for quality control using PLINK73 with the options “--maf 1e-10 
--hwe 1e-6 midp --geno”.  STARNET expression was processed as described in the STARNET 
paper22, including probabilistic estimation of expression residuals67 (PEER) covariate correction. 
Because Fusion only supports training on PLINK version 1 hard-call genotype files and not 
genotype dosages, we trained expression models on only the variants both genotyped in 
STARNET and either genotyped or imputed in the GWAS, filtering out variants without matching 
strands between the GWAS and STARNET.  Expression models were trained on all remaining 
variants within 500 kb of a gene’s TSS, using Ensembl v87 TSS annotations for hg19 74. 
Linkage disequilibrium and total and predicted expression correlations were calculated across 
individuals in STARNET.  
 
TWAS with S-PrediXcan 
 
To run S-PrediXcan, Elastic Net prediction models and linkage disequilibrium reference were 
generated using the same PEER-corrected STARNET data from the previous section, filtered to 
match each GWAS. Variants within 1MB from the TSS and 1MN after the TES were used, to 
predict genetic features annotated as either protein coding, lincRNA or pseudogene in Ensembl 
v87. 
 
Simulations 
 
For the simulations, we sampled independent genomic regions as defined by LDetect75.  We 
then annotated each region with overlapping gene transcription start sites using all available 
genes in RefSeq v65.  To simulate trait and expression panel genotypes, we sampled 
standardized genotypes using the multivariate normal approximation with mean 0 and 
covariance defined by the linkage disequilibrium among the 489 individuals estimated from 489 
1000 Genomes samples of European ancestry.  
 
Next, we simulated heritable gene expression for all genes at a region with 80% of genes 
having a single causal eQTL and the remaining 20% having 2 causal eQTLs. Causal eQTLs 
were preferentially sampled within 50 kb of transcription start sites to exhibit a 50x enrichment 
on average compared with non-overlapping SNPs.  Effect sizes for causal eQTLs were drawn 
from a normal distribution such that genetic variation explained 20% of variance in total 
expression.  
 
Finally, given expression at genes causal for the complex trait, we sampled gene-level effect 
sizes from a normal distribution so that 20% of the variance in trait is explained by gene 
expression.  We randomly assigned one gene at the locus to be causal and looked at what 
percent of the time other genes at the locus had a larger TWAS z-score than this causal gene, 
as a function of the predicted expression correlation magnitude with the causal gene.  
 
Code availability 
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Code to replicate the post-TWAS analysis is available at 
https://github.com/Wainberg/TWAS_challenges_and_opportunities.  The version of Fusion used 
for this analysis is available at 
https://github.com/gusevlab/fusion_twas/tree/9142723485b38610695cea4e7ebb508945ec006c. 
 
Data availability 
 
GWAS summary statistics are publicly available from the CARDIoGRAMplusC4D consortium 
and Global Lipids Genetics Consortium.  STARNET genotypes are available from Johan LM 
Björkegren on reasonable request.  STARNET expression data is available from dbGAP 
(accession phs001203.v1.p1).  
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Figure S1: Distributions of co-regulation across putative non-causal genes in multi-hit Fusion TWAS loci. 
Since many multi-hit loci do not have a clear causal gene or have multiple plausible candidates, we make the 
approximation that only the most significant gene at each locus is causal.  We then plot the cumulative distribution 
functions (CDFs) of (a, d) expression correlations, (b, e) predicted expression correlations and (c, f) number of shared 
variants between these most significant genes and all the other genes at their loci, separately for LDL/liver (a-c) and 
Crohn’s/whole blood (d-f).  To collapse these CDFs into a single estimate of the percent of affected non-causal genes 
(Fig. 1c), we combine genes across the two studies and threshold to correlation r2 ≥ 0.2, a threshold commonly used 
for weak LD in GWAS, or ≥ 1 shared variant.  Note that counting only exact sharing of variants does not account for 
LD, for simplicity.  
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Figure S2: Manhattan plots of the 4 Fusion TWAS conducted in this study.  As in Fig. 1, clusters of multiple 
adjacent TWAS hit genes are highlighted in red. 
  

 
Figure S3: Number of Fusion TWAS hit genes per locus after 2.5-MB clumping. 
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Figure S4: Total versus predicted expression correlation versus the top hit, for all genes in Fusion TWAS 
multi-hit blocks that are not the top hits.  a) Liver, LDL.  b) Crohn’s, whole blood.  Note that predicted expression 
correlation is generally higher than total expression correlation, as discussed in the Results section. 
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