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Abstract6

Previous works has suggested that the harmonic mean population size can sum-7

marize the consequences of demographic fluctuations on the genetic frequencies of8

populations. We test this hypothesis by studying a model in which the demography9

and genetic composition of the population are both determined by the behavior of10

the individuals within the population. We propose an e↵ective population size that11

allows us to compare our model with the classical Wright-Fisher di↵usion both for12

neutral alleles and those under selection. We find that using our approximation for13

the e↵ective population size, the Wright-Fisher di↵usion provides good results for the14

times to absorption and probabilities of fixation of a given neutral allele and in cases15

where selection is not too strong. However, the times and laws to fixation are not16

always well predicted due to large fluctuations in population size caused by small17

growth rates or strong competition between individuals, that cannot be captured by18

the constant population size approximation. The discrepancy between our model and19

the Wright-Fisher di↵usion is accentuated in the presence of demo-genetic feed-back.20

Our results imply that the Wright-Fisher di↵usion is not appropriate when studying21

probabilities and times to fixation in long-lived species with low reproductive rates.22
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1 Introduction25

Adaptive and non adaptive evolution is characterized by the dynamics of allele frequencies26

and their eventual loss or fixation. For more than half a century, the di↵usion limit of the27

Wright-Fisher model ([15, 37]), introduced by [22, 23], has provided one of the key tools in28

population genetics for predicting the dynamics of allelic frequencies. Due to simple and29

strong analytical results obtained for this general model ([24]), it has been extended to30

take into account populations with more general and complicated behaviors such as non-31

random mating and structured populations (see for example [2, 1, 34]). The Wright-Fisher32

model makes two simplifying assumptions: (1) all individuals reproduce and die at the33

same time (discrete non-overlapping generations), and (2) population size is fixed, which34

has led to the concept of “e↵ective population size”, denoted Ne (and discussed below).35

However, population size tends to vary stochastically, notably since births and deaths36

can be independent events: reproduction by an individual is not necessarily immediately37

followed by its death (see for instance [5]), and the speeds at which reproduction and death38

occur representing di↵erent life-history strategies (i.e. r/K strategies). The ubiquity of39

stochastic demographic phenomena, such as extinction, rapid expansions and bottlenecks40

on a macroscopic scale, or independent births and deaths on a microscopic scale, requires41

a better understanding of their interaction with allele frequency dynamics (and notably42

with allele fixation).43

In existing models studying allele dynamics, Ne is a central notion which aims at44

bringing any population as ”close” as possible (the definition of closeness being dependent45

on the indicators of interest) to a classical Wright-Fisher di↵usion. In particular for46

populations with a deterministically varying population size, this parameter is defined47

as the harmonic mean of the population size (as shown in [38, 25], for instance). In48

the presence of selection, [31] explored the impact of macroscopic demographic events49

(introduced by the use of a non-constant deterministic population size) on the probability50

of fixation of alleles. They found that the harmonic mean su�ced in reflecting the change51

in fixation probabilities of fluctuating populations as long as selection was not too strong.52
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On the other hand, [21, 20] showed that the harmonic mean size is sometimes an inadequate53

definition of the e↵ective population size when population size varies stochastically and54

the authors proposed a new definition for Ne (the heterozygosity e↵ective size). The55

harmonic mean seems therefore insu�cient in capturing the e↵ects of stochastic events on56

a more microscopic level even in models where the deaths and births of individuals are57

not considered explicitly, the general e↵ects of these processes being averaged to reflect58

the behavior of the entire population.59

Recently, individual-based models examining the interaction between population size60

dynamics on the microscopic scale and probabilities of fixation have been developed ([5, 6,61

32]). However, the feedback of genetics on demography is not considered nor modeled in62

these di↵usions, whereas it can have a major impact on population viability, notably when63

selection parameters are not small, as can be observed in models of evolutionary rescue ([29,64

18]), where this feedback is a central aspect. In [32], the authors explored the consequences65

of di↵erent life-history strategies and proposed an individual-based model with “quasi-66

neutral” selection so that the impact of population genetics on population demography can67

be neglected and found that they could not define an appropriate Ne for which a classical68

neutral Wright-Fisher di↵usion would give the same mean time to absorption and fixation69

probability as their model. Mean times to fixation of neutral alleles , and eventually70

the distribution of these times, in the Wright-Fisher di↵usion depend on the population’s71

Ne ([25]) and are thus expected to be a↵ected by a population’s demographic dynamics72

(notably due to macroscopic events such as bottlenecks, expansions and extinctions, as73

can be deduced from works on coalescent theory [19]). On the contrary, the fixation74

probability of a neutral allele is always expected to be equal to its initial frequency. That75

[32]’s results for quasi-neutrality are better described by a Wright-Fisher di↵usion with76

selection (Figure 4 in their paper) thus raises three questions: i) How should fitness be77

defined in individual-based models in order to render them, if possible, comparable to a78

Wright-Fisher framework? ii) What role do life-history strategies play in the probabilities79

and times to fixation? and iii) If genotypes under selection present di↵erent demographic80
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behaviors (i.e. growth rate), how is the ensuing change in population size likely to influence81

the probabilities and times to fixation?82

In this article we propose an individual-based model in order to study the absorption83

times and fixation probabilities in a demo-genetic context, which we then compare to a84

Wright-Fisher di↵usion. In this probabilistic model both the demography and genetics85

of a given population are defined through the dynamics of each individual within the86

population. The behavior of each individual is stochastic, and dependent on demographic87

parameters that can be estimated ([27]). More precisely, we consider a population of88

diploid individuals experiencing weak selection at a single bi-allelic locus. As population89

size is directly determined by frequent birth and death events, it changes stochastically90

with time, and can also depend on the population’s genetic composition. The originality91

of our approach and model lies in four main features: (1) We consider linked stochastic92

dynamics of both the population size and its genetic composition. (2) The life-history93

strategy of a population is a natural behavior of the model and depends directly on94

the demographic parameters (as in e.g. [32]), being in no way forced. (3) Extinction95

occurs in finite time, which notably impacts fixation times. (4) We consider a sexually96

reproducing diploid population, with general dominance relationships between alleles, and97

possibility of self-fertilization (previous models considered haploid individuals, [5, 6, 32]).98

The obtained model can also be seen as a generalization of the Wright-Fisher di↵usion,99

since this di↵usion can be obtained when letting some parameters of the model (namely the100

growth and competition rates) go to +1. We compare the laws of the time to absorption101

(fixation or loss of a given allele) and the probability of fixation for our model to the102

classical Wright-Fisher di↵usion (presented in [2] for populations with self-fertilization).103

These results are obtained by simulating trajectories of di↵usion processes, and we find104

notably that105

(i) There are parameter sets for which the laws of the time to absorption for our demo-106

genetic model and for the classical population genetics model (Wright-Fisher dif-107

fusion calibrated with an appropriate e↵ective size) are very close, notably when108
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there is a high population growth rate and high death rate (due to competition for109

resources). Population genetics models therefore provide very good predictions for110

species with r-strategies (high reproductive output and short life-span).111

(ii) Laws of time to absorption can be very di↵erent when taking into account population112

size variability, notably in rapid expansion and diminution contexts (Section 3.3),113

as well as when population size fluctuations are highly stochastic, which is the case114

for populations with low reproductive rates and low death rates (K-strategies). In115

particular, we find that due to the fluctuations in population size, the frequencies of116

small and large absorption times of rare alleles are underestimated in the classical117

Wright-Fisher di↵usion model (i.e. there is a greater variance in times to absorption118

than predicted by a fixed population size).119

(iii) The demographic consequences of taking the feedback of genetics on demography120

can impact the probabilities and times to fixation in a way that can not be fully121

captured by the proposed e↵ective population size if population growth rates are122

low.123

2 Model124

We consider a population of diploid individuals, characterized by their genotype at a sin-125

gle bi-allelic locus with alleles A and a. The population is modeled by a 3-dimensional126

stochastic birth-and-death process (detailed below) giving the respective numbers of in-127

dividuals with genotype AA, Aa and aa. Contrary to previous models where population128

size is a parameter, here it is a random variable. The dynamics of population size are129

stochastic, and population extinction occurs with probability 1. Below we detail the re-130

scaled di↵usion approximation, highlighting the main di↵erences between our model and131

the di↵usion approximation proposed by [24].132
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2.1 Rescaled birth-and-death process133

The Wright-Fisher di↵usion is obtained by considering the dynamics of the proportion134

of a given allele when re-scaling a discrete time population model with constant e↵ective135

population size Ne and non-overlapping generations. In this article, population dynamics136

are determined by individual-based demographic parameters, therefore inducing variable137

population size. We introduce a scaling parameter K 2 {1, 2, ...} that will go to infinity138

(as in [16, 7, 9, 10]), modeling an infinite size approximation. The population is made up139

of three types of individuals (AA, Aa and aa, represented by 1, 2 and 3 respectively), the140

number of individuals of each type being of order K. At each time t the population is141

represented by a vector142

�
Z

K
t

�
t�0

=
⇣
Z1,K
t , Z2,K

t , Z3,K
t

⌘

t�0

143

which gives the respective number of individuals of each type, divided by K. If the pop-144

ulation is at a state z = (z1, z2, z3), the birth rates �K
i (z) for all i 2 {1, 2, 3} model sexual145

Mendelian reproduction either by self-fertilization (with probability ↵) or by random mat-146

ing (with probability 1� ↵).147

�K
1 (z) = KbK1


↵
⇣
z1 +

z2
4

⌘
+ (1� ↵)

(z1 +
z2
2 )

2

n

�
,

�K
2 (z) = KbK2


↵
z2
2

+ (1� ↵)2
(z1 +

z2
2 )(z3 +

z2
2 )

n

�
,

�K
3 (z) = KbK3


↵
⇣
z3 +

z2
4

⌘
+ (1� ↵)

(z3 +
z2
2 )

2

n

�
.

148

149

with n = z1+z2+z3 6= 0. These birth rates are naturally set to 0 when n = 0. Note that150

the parameters bKi that model the viability (or recruitment) of new-born individuals can151

depend on i, which allows for some selection at birth (as will be shown below). Individual152
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mortality can be natural or due to competition with other individuals (therefore allowing153

for density-dependence and limiting population size). Here we assume that death rates do154

not depend on genotypes, in order to focus on a small number of parameters (but see [11]155

for a more general model). If the population is at a state z = (z1, z2, z3), the rate µK
i (z)156

at which an individual with genotype i dies in the population is then given by:157

µK
1 (z) = Kz1(d

K +K(cKz1 + cKz2 + cKz3)),

µK
2 (z) = Kz2(d

K +K(cKz1 + cKz2 + cKz3)),

µK
3 (z) = Kz3(d

K +K(cKz1 + cKz2 + cKz3)).

158

The demographic parameter dK (resp. cK > 0) is the intrinsic death rate (resp. the159

competition rate) of individuals. Population size is therefore regulated by competition,160

i.e. by density-dependence.161

The demographic parameters bK , dK and cK are scaled both by K and a parameter162

�, the latter scaling the speed with which births and deaths occur, giving:163

bK1 = �K + ⇢,

bK2 = �K + ⇢+ h�,

bK3 = �K + ⇢+ �,

(1)

and164

dK = �K and cK =
⇠

K
.

The parameters � and h are respectively the selection and dominance coe�cients of165

allele a, and ⇢ is the population growth rate in the absence of selection.166

Note that in this model, we do not directly consider population size (number of individ-167

uals), but population mass, defined as NK
t = Z1,K

t + Z2,K
t + Z3,K

t . This scaling therefore168

models a population with numerous and small individuals, each represented by a mass of169
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1/K, that reproduce frequently in such a way that both the total population mass and al-170

lele proportions will not be constant (and will evolve stochastically) even when the scaling171

parameter K goes to infinity. This is the same scaling used to obtain the Wright-Fisher172

di↵usion process from the Wright-Fisher model, however our initial model (birth-and-173

death process) allows for stochastic dynamics of population mass. When K is large, the174

selection parameter � has an inherent weak impact on the birth parameters bKi , but due175

to first-order compensation between birth and death events (both of order K), its impact176

on the growth rate is macroscopic. Therefore, it will still have an e↵ect on the limiting177

population dynamics (notably by either increasing or decreasing the expected population178

mass, see next section).179

2.2 Extended Hardy-Weinberg structure and limiting di↵usion process180

Let us set for all K � 1 and all t � 0,181

Y K
t = ↵

Z2,K
t

4
� (1� ↵)

Z1,K
t Z3,K

t � (Z2,K
t /2)2

Z1,K
t + Z2,K

t + Z3,K
t

.

Note that in a pure random mating context (↵ = 0), and if the quantity Y K
t = 0, then the182

proportion of each genotype in the population is equal to the proportion of pairs of alleles183

forming this genotype, which means that the population satisfies the Hardy-Weinberg184

structure. More generally, Y K
t quantifies the deviation of the population at time t from a185

generalized Hardy-Weinberg structure. Indeed, straightforward calculations show that, as186

in population genetics theory ([17], pp. 91-93), if Y K
t = 0 then187

Z1,K
t = NK

t

⇥
(1�XK

t )2(1� F ) + (1�XK
t )F

⇤
,

Z2,K
t = 2NK

t (1�XK
t )XK

t (1� F ) ,

Z3,K
t = NK

t

⇥
(XK

t )2(1� F ) +XK
t F

⇤
,

where XK
t is the proportion of allele a in the population, and the coe�cient of in-188

breeding F = ↵
2�↵ . We can prove following [10] that Y K

t converges to 0 when K goes189

to infinity, for all t. The limiting population dynamics can then be represented at time t190
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by the couple (NK
t , XK

t ) giving the population mass and the proportion of allele a. The191

population process (NK
t , XK

t )t�0 thus converges toward a bi-dimensional di↵usion process192

(Nt, Xt)t�0 whose equation can be written as:193

dNt =
p
2�NtdB

1
t +Nt

h
⇢� ⇠Nt + �Xt

⇣
2h+Xt(1� 2h) + F (1�Xt)(1� 2h)

⌘i
dt,

(2a)

dXt =

s
2�Xt(1�Xt)

2 Nt
1+F

dB2
t + �Xt(1�Xt)

h
h+Xt(1� 2h) + F (1�Xt � h+ 2Xth)

i
dt.

(2b)

where (B1
t , B

2
t )t�0 is a bi-dimensional standard Brownian motion (stochastic component194

of the equation). This di↵usion model can be generalized without di�culty to any finite195

number of alleles, as presented in [12]. Note that, without loss of generality, we can assume196

that the time scaling parameter � is equal to 1/2, thus simplifying the above equations.197

In this case, if the stochastic quantity Nt
1+F is artificially replaced by a fixed parameter198

Ne, then the model given in (2b) is the Wright-Fisher di↵usion with selection and self-199

fertilization presented in [2], where the parameter � in our model is equal to the coe�cient200

of selection s of [2] and Ne is the e↵ective population mass.201

More interestingly, this classical Wright-Fisher di↵usion with selection and self-fertilization202

can also be directly retrieved from our model, by setting ⇢/⇠ = Ne and letting ⇢ got to203

+1.In order to determine whether a constant e↵ective population mass can summarize204

the e↵ects of a stochastic population mass as proposed in earlier models [24, 31], in Section205

33.2 we define a fixed e↵ective population mass Ne in such a way that the model in [2] is206

adequately calibrated.207

2.3 Simulating the di↵usion process208

In [2], the authors provide explicit formulas for the probabilities of fixation as well as209

approximations for the times to loss or fixation of an allele. Due to the bi-dimensionality210
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of our model which largely increases the di�culty of mathematical calculations, fixation211

probabilities as well as laws of times to fixation, loss and absorption (either loss or fixation)212

of allele a are determined using simulations of equations (2a) and (2b). These simulations213

are run using a script written in C++ (and available on Dryad). The stochastic elements of214

the equations, B1
t and B2

t are obtained by successive samplings from a normal distribution215

with mean 0 and variance dt. dt is the size of the time step and is a parameter fixed at the216

beginning of the simulation, which we have set to 10�4 for a carrying capacity K = 100 and217

and 10�5 for K = 10 and 1. Each simulation is run until the allele a is either lost or fixed218

and 100 thousand replicas are run for each parameter set (unless otherwise mentioned)219

from which the probability of fixation, as well as the means and laws of times to fixation,220

loss and absorption are obtained.221

In order to test whether deviations in times to loss or fixation from the approximations222

provided in [2] are due to demographic stochasticity or due to the approximations made, we223

run simulations of the Wright-Fisher Di↵usion (using a fixed population mass Ne defined224

in Section 33.2). We also run simulations to assess the e↵ects of the feed-back between225

selection and demography by artificially setting � = 0 in equation (2a) only. In order to226

evaluate the e↵ect of the change in population size due to the fixation of an allele under227

selection with an e↵ect �, we also consider the case where the carrying capacity is equal228

to (⇢+ �)/⇠ (see Section 3.4).229

3 Analytical and numerical results230

3.1 Demography231

The change in population mass given in Equation (2a) is made up of a stochastic term232

(dependent on dB1
t ) and a deterministic one (dependent on dt). In this di↵usion model233

with selection and self-fertilization, the probability of extinction is equal to 1. The law of234

the time to extinction depends on the ecological and genetic parameters. In the neutral235

case where � = 0, Equation (2) can be simplified the following way:236
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dNt =
p
NtdB

1
t +Nt

h
⇢� ⇠Nt

i
dt, (3a)

dXt =

s
Xt(1�Xt)

2Nt
1+F

dB2
t . (3b)

Here population mass is independent of its genetic composition and the deterministic237

term of Equation (3a) cancels out when Nt = K where238

K =
⇢

⇠
(4)

is defined as the population’s carrying capacity. Note that K does not represent the239

number of individuals that can be sustained in the population (since Nt is scaled by K240

which goes to infinity) but is an indicator of the amplitude of demographic stochasticity,241

as will be shown below. When population mass is smaller (resp. larger) than K, it will242

tend to increase (resp. decrease). For a fixed value of K, if ⇢ is large, then the population243

mass will remain close to K, whereas for small values of ⇢ the mass will tend to deviate244

further from K (see Figure 1). The smaller ⇢ the slower the population mass will come245

back to its pseudo equilibrium K; therefore a small value of ⇢ can have an important246

impact on extinction, as can be seen in Figure 1 (black lines). The role of K on population247

mass dynamics is not as straightforward since Nt is implicated in both the stochastic and248

deterministic terms (therefore both terms are increased when K increases). In Figure 1249

we also see that the e↵ect of ⇢ on demographic stochasticity is weaker when K is smaller.250

3.2 E↵ective population mass251

In the neutral case (Equation (3)), variations in population mass are modeled by a logistic252

di↵usion process (and thus are independent from the genetic composition of the popula-253

tion) and changes in allele frequency by a Wright-Fisher di↵usion with population mass254

Nt at any time t. Hence, it is natural to compare this model to the neutral Wright-Fisher255

di↵usion model of population genetics, for which the proportion XWF
t of a neutral allele256
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Figure 1: Top: Trajectories of the population mass (Nt, t � 0), for N0 = K and K =
⇢/⇠ = 1 (left), K = ⇢/⇠ = 100 (right), for ⇢ = 0.1 (black) and ⇢ = 10 (grey). Bottom:
Trajectories of the population mass (Nt, t � 0), for K = ⇢/⇠ = 1 and N0 = 100 (left), and
K = ⇢/⇠ = 100 and N0 = 1 (right), for ⇢ = 0.1 (black) and ⇢ = 10 (grey). For N0 = 1,
⇢ = 0.1 and K = 100 (bottom-right figure), we plot 3 trajectories.

at all time satisfies257

dXWF
t =

s
XWF

t (1�XWF
t )

2Ne
dBt. (5)

Here Ne represents the e↵ective population mass of a self-fertilizing population (as de-258

scribed in [2]) and is a parameter of the Wright-Fisher di↵usion model. The parameters259

⇢, ⇠ and the inbreeding coe�cient F being fixed in our model, we define a fixed e↵ective260

population mass Ne that allows us to compare our model with variable population mass261

to a Wright-Fisher di↵usion.262

In order to calibrate Ne appropriately, it is not enough for the probability of fixation to263

be the same in both models, as in the neutral case the fixation probability of an allele a264

is simply equal to its initial proportion. Therefore, we choose to calibrate Ne such that265

the mean absorption time (mean time to fixation of one of the two alleles) is the same in266
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both models. From Appendix A, Ne is defined as:267

Ne =
E(Tabs)

2(1 + F )E
⇥ R Tabs

0
1
Nt

dt
⇤ , (6)

where E(V ) represents the expectation of a stochastic variable V and Tabs the random268

absorption time of the population modeled by Equation (3). Note that E(Tabs)

E
⇥ R Tabs

0
1
Nt

dt
⇤ is269

not the expectation of the empirical harmonic mean of the mass till absorption, which270

is E
✓

TabsR Tabs
0

1
Nt

dt

◆
, but the ratio of two expectations (the di↵erence between the two is271

shown in Figure A.1, and is very important for highly fluctuating population mass). Note272

also that with this definition, the e↵ective population mass Ne depends on the initial273

frequency X0 of allele a; this dependence is illustrated in Figure A.1. We obtain numerical274

estimations of the quantity Ne from the simulation runs of Equation (2) with varying275

population mass, calculating E(Tabs) and E
⇥ R Tabs

0
1
Nt

dt
⇤
using all repetitions run for each276

parameter set. In Figure 2 (left) we plot the mean times to absorption as a function of the277

initial proportion of allele a, and for di↵erent values of ⇢. This mean time to absorption278

is given for our model with varying population mass, for the Wright-Fisher di↵usion (5)279

using the e↵ective population mass Ne given in Equation (6), as well the theoretical result280

provided in Equations (12) and (13) from [2]. Figure 2 therefore shows that the models281

are indeed correctly calibrated for di↵erent values of parameters ⇢, ⇠ and X0 (for di↵erent282

population densities and the e↵ect of the inbreeding coe�cient F see Figure A.2).283

3.3 Neutral case: absorption and fixation times laws284

Despite equal mean absorption times, the distributions of the times to absorption di↵er285

between our model with stochastically varying population mass and the simulation runs286

of the Wright-Fisher di↵usion, notably when the parameters ⇢ and K are small. This287

is illustrated by Figure 3 in which we compare the variance of the time to absorption288

for our demogenetic model and for the Wright-Fisher di↵usion (see also Supplementary289

Figure 1, in which the laws of these times to absorption are given), and this can be290

understood by decomposing the absorption time into the time to loss or time to fixation291
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Figure 2: Mean times to absorption (left) and fixation (right) of a neutral allele (� = 0)
as a function of the initial frequency X0 of allele a, for three cases: 1) Simulations of the
stochastic di↵usion process (2) (squares), 2) Simulations of the Wright-Fisher di↵usion
using Ne defined in Equation (6) (circles) and 3) Theoretical approximations provided by
[2] using Ne (triangles). Here we considered pure random mating (↵ = 0), the carrying
capacity K = 1 and the growth rate ⇢ equals 0.1 (black) or 10 (grey).

of an allele at initial frequency X0. Indeed we find that mean fixation times of minority292

alleles are lower for the model with stochastically varying population mass (Figure 2293

(right) and Supplementary Figure 2). This discrepancy between the results with varying294

and fixed sizes can be explained by the incidence of bottlenecks and extinction events,295

which is further accentuated by a small value of ⇢. This is because a low growth rate296

results in a weaker impact of the deterministic forces regulating population mass (Equation297

(3)), further increasing demographic stochasticity. Indeed, large demographic fluctuations298

eventually lead to reduced population mass harmonic means, for which absorption is more299

rapid and fixation of minority alleles is favored (Figure 4).300

As seen in Section 3.1, we can also consider that population mass changes drastically301

with time, allowing us to modeling founder e↵ects, or drastic changes in the environment302

for instance. As previously, we compare the laws of the absorption time in populations with303

rapidly decreasing or increasing mass. Population mass trajectories are given in Section304

3.1 (Figure 1 (bottom)), and we start with a proportion X = 0.1 of a neutral allele a.305

We obtain that the laws of the absorption and fixation times are very di↵erent when306
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Figure 3: Variance of the absorption time in our demogenetic model and for the Wright-
Fisher di↵usion model, as a function of growth parameter ⇢ (left), and carrying capacity
K (right). On the left K = 1 while on the right ⇢ = 0.1.

Figure 4: Fixation probability of a rare neutral allele, as a function of e↵ective population
mass. We set X0 = 0.01 and ⇢ = 0.1. On the left, K = 1 (⇠ = 0.1), while on the right
K = 100 (⇠ = 0.001).

comparing our to the Wright-Fisher di↵usion model, despite the same mean absorption307

times (Figure 5). In particular, when population mass is kept constant, the frequency of308

small (and relatively large) absorption times is underestimated when the population mass309

increases, whereas the opposite is true when the population mass decreases.310

3.4 Selection, demography and genetic feedback311

In this section we introduce selection through the parameter � in Equation (2). As men-312

tioned in Section 2.2, when comparing (2b) which describes the dynamics of allelic frequen-313

cies, to the Wright-Fisher di↵usion, we find that � has the same e↵ect on allelic frequencies314
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Figure 5: Absorption (top) and fixation (bottom) time density of a neutral allele with
initial frequencyX0 = 0.01 for our model and for the classical Wright-Fisher model (dotted
line). On the left (decreasing population mass), we fix N0 = 100 and K = ⇢/⇠ = 1, while
on the right (increasing population mass), we fix N0 = 1 and K = ⇢/⇠ = 100, with ⇢ = 0.1.

as the conventionally used coe�cient of selection s. The presence of � in Equation (2a)315

implies that population mass and the proportion of allele a are linked through the dynam-316

ics of individuals that are present in the population. It is important to note that, from317

Equation (1), selection is in fact weak and has a negligible impact on individual birth rates318

(whatever value of the selection parameter � 2 R). However, the proportion of a given319

non-neutral allele can have an important impact on the population mass dynamics. The320

consequences of this interaction can be quantified by the ratio �/⇠, which is the change in321

the carrying capacity K when the allele under selection a is fixed. Therefore, for a same322

K before fixation but di↵erent values of ⇢, similar values of � can lead to very di↵erent323
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Figure 6: Population mass and proportion of allele a dynamics, for � = 0.1, K = 100,
with ⇢ = 0.1 (black, ⇠ = ⇢/K = 0.001) and ⇢ = 10 (gray, ⇠ = ⇢/K = 0.1).

population mass dynamics (see Figure 6 with selection for a beneficial allele).324
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Figure 7: Relative probability of fixation (left) and relative time to fixation (right) for low
growth rate (⇢ = 0.1) compared to high growth rate (⇢ = 10) as a function of the initial
frequency X0 of allele a with K = 100, h = 0.25 and ↵ = 0 for s = 0.01 and �0.01.

Due to the di↵erences in population dynamics, probabilities and times to fixation can325

be a↵ected by the growth rate, even for small values of s (Figure 7). Lower ⇢ results326

in higher probabilities of fixation of deleterious alleles, and lower relative probabilities of327

fixing beneficial alleles. Furthermore, times to fixation are generally lower for populations328

with low growth rates, independently of the coe�cient of selection.329

In order to understand and quantify the consequences of feedback of genetics on de-330

mography, it is natural to artificially remove all terms dependent on � in Equation (2a),331
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hence removing any impact of changes in proportion on the dynamics of population mass.332

More precisely, let us for simplicity assume that F = 0, h = 1/2, and let us consider the333

following di↵usion process (N (NF )
t , X(NF )

t )t�0 (”NF” standing for ”No Feed-back”):334

dN (NF )
t =

q
2�N (NF )

t dB1
t +N (NF )

t

h
⇢� ⇠N (NF )

t

i
dt, (7)

dX(NF )
t =

vuuut
2�X(NF )

t

�
1�X(NF )

t

�

2N (NF )
t
1+F

dB2
t +

�

2
X(NF )

t

�
1�X(NF )

t

�
dt. (8)

For this model without feedback, we obtain that it is possible to calibrate a Wright-335

Fisher di↵usion with selection, using Equation (6) with Nt = N (NF )
t , so that the mean336

time to absorption and the probability of fixation are the same in both models (Figure 8).337

In the presence of feed-back (Equation (2)), though we generally find that for large K, large338

⇢ and/or weak selection, the proposed Ne (Equation (5)) provides a good approximation339

for the demographic e↵ects on the times and probabilities of fixation, this is not the case340

for small values of ⇢ and/or K. Indeed, when ⇢ is small there can be some discrepancies341

between the probability of fixation predicted by our model with feed-back and a population342

with constant size Ne when selection is intermediate. This can be seen in Figure 8 for343

s = 0.1 where our model with feed-back predicts a probability of up to 10% lower than344

the population with constant size Ne for low initial frequencies of the allele a. This345

di↵erence is even greater for deleterious alleles with s = �0.1 (but for intermediate initial346

frequencies), simultaneously due to the stochastic nature of population mass and to feed-347

back which further contributes to decreasing the population mass in this case (Figure348

8). Times to fixation however are well predicted, with generally the model with feed-349

back being either closer to the model without feed-back and K = ⇢ + �/⇠ and K = ⇢/⇠350

depending on the initial frequency of the allele X0. We can see from the densities of times351

to absorption, fixation and loss (Supplementary Figure 3), that the laws of the times to352

fixation are very well captured using the constant mass model, though the times to loss353

are slightly underestimated. Times to fixation of a mildly deleterious allele are however354
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slightly underestimated by the simulations run with constant mass and are closer to the355

times to fixation of the simulations run without feed-back and K = ⇢/⇠.356
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Figure 8: Left: Probability of fixation as a function of the initial frequency X0 of allele
a with K = 100, ⇢ = 0.1 for s = 0.1 and �0.1 from simulations with demo-genetic feed-
back (black full lines) and without demo-genetic feed-back (for K = ⇢/⇠ (dotted lines)
and K = ⇢ + �/⇠ (dashed lines, not shown for s = �0.1 as K = 0 in this case), and the
corresponding results of simulations run with constant mass using the corresponding Ne.
Other parameter values : h = 0.25 and ↵ = 0. Right: Time to fixation of an allele under
selection as a function of its initial frequency, same parameters as the figure on the left
but for s = 0.1 and �0.01

Concerning the e↵ect of the self-fertilization rate (which are summarized in Supple-357

mentary Figure 4) we find that as expected from the Wright Fisher di↵usion, probabilities358

of fixation of beneficial (respectively deleterious) alleles increase (respectively decrease)359

with the rate of self-fertilization ↵. We also find as previously predicted that the times to360

fixation decrease with increasing ↵. In all other aspects we find the same patterns as for361

the case without self-fertilization (↵ = 0).362

4 Discussion363

An interesting feature of our model is that it is individual-based, in the sense that the364

model is characterized by simple demographic parameters that define the behavior of365

individuals within the population. Using these demographic parameters we are able to366

calculate an e↵ective population mass Ne that allows us to predict the probabilities of367

fixation, as well as the times to absorption, using a Wright-Fisher di↵usion and specify for368
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which parameter sets this Ne is appropriate. We generally find that for populations with369

long-term fluctuations, induced by their intrinsic demographic parameters, the proposed370

Ne does not fully capture the laws of times to fixation, with rare neutral alleles being371

more frequently fixed in shorter times. We also show that, contrary to expectations,372

despite a probability of fixation of a neutral allele being equal to its initial frequency,373

when examining each repetition for a given parameter set separately, there is a higher374

frequency of fixation of rare neutral alleles for populations that maintain low harmonic375

mean masses. This result further highlights the importance of integrating demographic376

parameters in population genetics models.377

4.1 Interpreting demographic parameters378

In our model the term ⇢ defines the speed at which individuals reproduce (hence population379

growth) and ⇠ represents the competition for resources that in turn regulates population380

mass (due to increased mortality). Thus, for a given expected population mass K = ⇢/⇠381

a low ⇢ describes long-lived individuals with low death rates, whereas a high ⇢ describes382

short-lived individuals with high death rates (rapid turnover). When comparing the de-383

mographic fluctuations of two populations with di↵erent values of ⇢, the short-term and384

long-term fluctuations observed for low ⇢ and very rapid short-term fluctuations for high385

⇢ (Figure 1) agree with the patterns observed for long- and short-lived species respectively386

(Figure 1.1 in [26]). For a same K we estimate a lower Ne for long-lived species simultane-387

ously due to larger population fluctuations and to the di↵erences in population turnover388

speeds (since for low K both high ⇢ and low ⇢ populations have similar fluctuations and389

yet we observe lower expected Ne), which implies that on the long run a population with390

low ⇢ would be expected to maintain lower diversity. This prediction is supported by the391

lower than expected times to fixation of both neutral alleles and those under selection, as392

well as higher fixation probabilities of deleterious alleles for low ⇢ (see Figure 7), which393

agrees with the observation of less e�cient purifying selection in long-lived species with394

low reproductive rates compared to that of short-lived ones with high reproductive rates395
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[33, 8]. Indeed, our results indicate that in a stable environment, the stochastic demo-396

graphic fluctuations and the di↵erences in the turnover speeds of species with di↵ering r/K397

life strategies may su�ce in explaining these observations. This could explain why [33, 8]398

found that past historical demographic disturbances were less explicative than life-history399

strategies concerning contemporary genetic diversity.400

4.2 Defining selection and fitness401

One of the di�culties brought by individual-based models is how to define fitness so that it402

remains compatible with existing population genetics models. Indeed, several definitions403

of fitness do exist in literature (reviewed in [13, 30]), fitness generally being defined as404

a measure of the contribution of a given entity (allele, group of alleles, individual, ...)405

to the next generation, but the notion of generation in an individual-based model is not406

obvious. A first way to define fitness is to focus on the Wrightian fitness (see [39]), which407

is defined as the mean number of progeny per individual. In the logistic birth-and-death408

model introduced in Section 2, the expected number of o↵spring for an individual with409

reproduction rate b, natural death rate d and competition death rate c in a population410

with (let us say fixed for simplicity) size N is equal to b/(d + cN). Obviously, when411

a population is at its demographic equilibrium N = (b � d)/c where births and deaths412

compensate, the fitness of each individual is equal to 1. In this framework the e↵ect413

of a non-neutral allele or genotype (i.e. its coe�cient of selection) can be defined as414

b0/(d0 + c0N) � b/(d + cN) = 0 if b0/b = c0/c = d0/d (where b0, c0 and d0 respectively415

represent the new genotype’s birth competition and death rate). However, as shown by416

the results obtained for “quasi-neutral” selection in [32], where genotypes with the same417

Wrightian fitness but di↵erent values of b were considered, this definition is not su�cient418

in a continuous time frame. Hence a second way to consider fitness is to focus on the419

Malthusian fitness, which is defined as the growth rate of the population size. With this420

definition, fitness for our logistic birth-and-death model can be defined by the quantity421

[b/(d+ cN)]⇥ (b+ d+ cN) = W ⇥ V where W is the Wrightian fitness and V measures422
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the speed of reproduction and death of individuals. This second definition of fitness is a423

more appropriate definition of fitness when studying di↵erences in life-history strategies,424

as done in [32]. For both of these definitions, fitness is a quantity that is not inherent to425

the individual but depends on one side on demographic parameters and on the other side426

on both the population size and, in a non neutral framework, its genetic composition. This427

releases the exponential growth hypothesis naturally emerging from a concept of constant428

individual absolute fitness ([29]).429

In this present work, we have chosen to take into account only the Wrightian fitness so430

as to first explore the consequences of demographic stochasticity in a model with the same431

genetic properties as the Wright-Fisher di↵usion. Our main conclusion is that, depending432

on the life-history strategy of a population, the Wright-Fisher di↵usion is not always able433

to capture the trajectories of allelic frequencies. Future work on defining an expression434

for the coe�cient of selection in which the speed of reproduction and death V is also435

included may provide a better bridge between individual-centered models and the more436

mathematically manipulable Wright-Fisher di↵usion.437

4.3 Implications for empirical works438

Various methods have been developed to estimate the e↵ective size of populations (see [35]439

and references therein) with the aim of understanding their past and, in some cases, pre-440

dicting their future evolution. However, contemporary genetic data can be greatly a↵ected441

by historical events and so Ne is a parameter that is very population dependent ([36]).442

Furthermore, from an experimental point of view, the intricacy of population dynamics443

and population genetics requires the definition of theoretical models whose parameters can444

be estimated using laboratory experiments for a better understanding of their respective445

behaviors (reviewed in [28]). Here we provide another definition for Ne that is a result of446

both the demographic parameters of a population and, in the case of selection, its genetic447

properties. We find, that contrary to previous works the e↵ects of demographic fluctua-448

tions can not always be summarized using the mean harmonic population size as proposed449
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in [14, 24, 31]. Using the harmonic mean size is valid only when population fluctuations450

are su�ciently fast compared to the coalescent times [35], hence for populations with a451

large growth rate ⇢ and high death rates due to competition (parameter ⇠), which repre-452

sent short-lived species with high reproductive rates. This remains true even for strong453

fluctuations in population size when the carrying capacity K in low. However, for long454

lived species times to fixation cannot be summarized by Ne, this being greatly due to near455

extinction events, often ignored in deterministic models (see Chapter 1 in [26]), that can456

contribute to lower times to fixation. Thus depending on life-history and population size,457

the Wright-Fisher di↵usion is more or less appropriate in predicting population evolution.458

Though maintained genetic polymorphism is often used as a proxy for adaptive potential,459

one can also argue that the speed at which an advantageous allele goes to fixation is also460

important, especially in the face of environmental change ([18] REF). According to our461

model, long lived species will have a tendency to have lower probabilities of fixation of462

advantageous alleles, but this may be compensated by the speed at which this fixation463

occurs compared to that observed in short-lived species.464

Previous works on integrating stochasticity into demographic models have done so by465

introducing a demographic variance, meant to reflect the di↵erences between individuals466

in their survival and reproduction, into deterministic models (see for example [26]). How-467

ever, as [26] point out, empirical measures of demographic variance may be di�cult to468

obtain, all the more so in the ubiquitous presence of environmental stochasticity. One of469

the properties of our proposed models is that inter-individual variance occurs naturally,470

depending on the death and birth rates, and very few parameters are required in order471

for this variance to be ensured. Indeed, statistical methods using time series have been472

developed so as to estimate parameters compatible with our model ([3, 4]). Because of the473

hypotheses we have made concerning birth, death and competition, our model represents474

a logistic population growth model with extinction. In such a setting, [4] have shown that475

death and birth rates can be estimated separately and so be used as parameters for our476

model and compare it to empirical data, either from natural or experimental populations.477
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If our model does indeed agree with empirical observations, a natural next step would478

be to extend this model so as to consider multiple loci, either neutral or under selection,479

with possible mutation, so as to provide predictions in a more general genetic setting480

all the while incorporating intrinsic demographic behaviors which we may be of a great481

importance in shaping species diversity and evolvability.482
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A Definition of Ne and strength of selection489

Let us consider our di↵usion model introduced in Equation (2)

dNt =
p
NtdB

1
t +Nt[⇢� ⇠Nt + ⇢�Xt(2h+Xt(1� 2h) + F (1�Xt)(1� 2h))]dt,

dXt =

s
Xt(1�Xt)

2 Nt
(1+F )

dB2
t + ⇢�Xt(1�Xt)[h+Xt(1� 2h) + F (1�Xt � h+ 2Xth)]dt.

Now let us define as in [10] the time change (⌧t, t � 0) such that for all t > 0,490

Z ⌧t

0

(1 + F )Ne

2Ns
ds = t (9)

for a given real numberNe, and let us define the time changed di↵usion process (Ñt, X̃t)t�0 =491

(N(⌧t), X(⌧t))t�0.492

Then (Ñt, X̃t)t�0 satisfies the di↵usion equation:493

dÑt =

s
2Ñ 2

t

(1 + F )Ne
dB1

t

+
2Ñ 2

t

(1 + F )Ne

h
⇢� ⇠Ñt + �X̃t

⇣
2h+ X̃t(1� 2h) + F (1� X̃t)(1� 2h)

⌘i
dt,

dX̃t =

s
X̃t(1� X̃t)

Ne
dB2

t

+ �
2Ñt

(1 + F )Ne
X̃t(1� X̃t)

h
h+ X̃t(1� 2h) + F (1� X̃t � h+ 2X̃th)

i
dt.

From this equation and Equation (9) we can, in a neutral case, provide a definition

of the e↵ective population mass in our model, defined as the e↵ective population mass of

a Wright-Fisher di↵usion whose mean absorption time is the same than for our di↵usion

model with stochastically varying mass. Indeed from Equation (9)

E(Tabs) = E
✓Z Tabs

0

(1 + F )Ne

2Ns
ds

◆
, which gives
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494

Ne =
E(Tabs)

E
⇥ R Tabs

0
(1+F )
2Ns

ds
⇤ =

E(Tabs)
4

2�↵E
⇥ R Tabs

0
1
Ns

ds
⇤ .

Note that using the more widely used harmonic mean of population mass so as to495

describe Ne results in over-estimations fo Ne (Figure A.1).496

Note also that in the non-neutral case this change of time to obtain a Wright-Fisher497

di↵usion with selection is not possible. Indeed, in this case the time-changed di↵usion498

giving the proportion X̃t of allele a follows a haploid Wright-Fisher di↵usion with e↵ective499

population mass equal to Ne but with selection coe�cient equal to � 2Ñt
(1+F )Ne

at time t.500

Population demography can therefore be seen and defined as a changing environment,501

though this environment is in this case itself influenced by the feedback of genetics. In502

this case a natural approximation is to take s = �, as shown in Section 3.4.503
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A.1: Comparing the E↵ective population mass proposed in equation 6 to the Mean har-
monic population mass obtained from simulations run as a function of the initial frequency
X0 of a neutral allele a (� = 0) for two values of ⇢ (0.1 in black and 10 in gray) and two
values of K, on the left K = 1 and on the right 100.
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A.2: Mean times to absorption of a neutral allele (� = 0) with random mating (↵ = 0),
partial selfing (↵ = 0.5) and strict selfing (↵ = 1) and di↵erent values of the growth
rate ⇢, as a function of the ratio ⇢

⇠ = K (Equation 4) for three cases: 1) Simulations of
the stochastic di↵usion process (2), 2) Simulations of the Wright-Fisher di↵usion using
Ne defined in Equation (6) and 3) Theoretical approximations provided by [2] using Ne,
represented by the lines (dashed for ⇢ = 0.1 nd full for ⇢ = 10.
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[7] N. Champagnat and S. Méléard. Invasion and adaptive evolution for individual-based521

spatially structured populations. J. Math. Biol., 55:147–188, 2007.522
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