
refers to paths on the sides of the maze. The reward well locations changed within and 436	

between sessions.  437	

B. The rat’s trajectory on 5 consecutive trials for each reward well location contingency. 438	

The destination well is indicated by an arrow. The trial number relative to the start of 439	

each session is indicated. 440	

 441	

Figure S2. Speed profile similarity. 442	

A. Trial speed profile for trials shown in Fig. 1. The trajectory of each trial is indicated by 443	

the schematic on left. Solid and dotted arrows indicate opposing directions of travel on a 444	

path.  445	
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B. Median speed for each trajectory. Line color key correspond to arrow color scheme in 446	

A. 447	

C. Distribution of Pearson’s R for pairwise trial speed profile correlations. The median of 448	

the distribution (Rmedian) is indicated in red.  449	

D. Trial speed profile Rmedian for trials on days used for calculating CA1 (cyan, n=10) and 450	

PFC (orange, n=35) firing similarity (Fig. 1E). Kolmogorov-Smirnov test: not significant. 451	

 452	

Figure S3. Rmedian is dependent on trial phase. 453	

Scatter of Rmedian against mean of Rmedian values for circularly permuted trial 454	

 firing profiles (1000 permutations for each cell).  455	
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 456	

Figure S4. PFC firing is similar within and across trajectories with different lengths. 457	

A. Rmedian distribution for different path types for PFC units (same n=549 and different 458	

n=332). Kolmogorov-Smirnov and Wilcoxon rank-sum tests: not significant. 459	

B. Rmedian distribution of trial speed similarity for days used to calculate firing similarity 460	

in A (same n=24 and different n=9). Kolmogorov-Smirnov and Wilcoxon rank-sum tests: 461	

not significant. 462	

“Same” indicates comparisons between side with side or center with center trials. 463	

“Different” indicates comparisons between side and center trials.  464	
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 465	

Figure S5. SWR aligned firing of PFC path-preferring cells. 466	

SWR aligned normalized firing rate for path-preferring PFC cells. Rows sorted by SWR 467	

modulation significance. Cells above the white line show significantly excitation 468	

(p<0.05) during path location SWRs. Example PFC cells from Fig. 1 2-4 and Fig. 2 a-f 469	

are indicated. 470	
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 471	

Figure S6. Higher all-trial similarity of SWR reactivated PFC cells compared with 472	

non-reactivated cells remains after matching peri-SWR firing rates. 473	

A. Boxplot of peri-SWR firing rates from an example resampled dataset where PFC cells 474	

from the non-reactivated group (gray) were selected to match the peri-SWR firing rates 475	

and the number of cells (n=35) from the reactivated group (orange). 476	

B. Boxplot of corresponding all-trial firing similarity (Rmedian) for resampled data in A. 477	

SWR reactivated cells (orange) show higher all-trial similarity compared with non-478	

reactivated cells (gray) after matching peri-SWR firing rate. 479	
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C. Boxplot of Wilcoxon rank sum test p values for 1000 peri-SWR firing rate matched 480	

resamples. Red line indicates p=0.05. 481	

D. Boxplot of Wilcoxon rank-sum test p values for differences in all-trial similarity for 482	

the corresponding 1000 resamples in B.  483	

Binomial test for observed vs. expected proportion of resampled datasets with a 484	

significant difference (p<0.05, 5%) is ***p<10-4. Red line indicates p=0.05. 485	

 486	
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