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Abstract— Partial Least-Squares Discriminant Analysis
(PLS-DA) is a popular machine learning tool that is gaining
increasing attention as a useful feature selector and classifier.
In an effort to understand its strengths and weaknesses, we
performed a series of experiments with synthetic data and
compared its performance to its close relative from which it was
initially invented, namely Principal Component Analysis (PCA).
We demonstrate that even though PCA ignores the information
regarding the class labels of the samples, this unsupervised tool
can be remarkably effective as a dimensionality reducer and a
feature selector. In some cases, it outperforms PLS-DA, which
is made aware of the class labels in its input.

Our experiments range from looking at the signal-to-noise
ratio in the feature selection task, to considering many practical
distributions and models for the synthetic data sets used. Our
experiments consider many useful distributions encountered
when analyzing bioinformatics and clinical data, especially
in the context of machine learning, where it is hoped that
the program automatically extracts and/or learns the hidden
relationships.

I. INTRODUCTION

Partial Least-Squares Discriminant Analysis (PLS-DA) is
a multivariate dimensionality-reduction tool [15], [2] that has
been popular in the field of chemometrics for well over two
decades [9], and has been recommended for use in omics
data analyses. PLS-DA is gaining popularity in metabolomics
and in other integrative omics analyses [19], [18], [14]. Both
chemometrics and omics data sets are characterized by large
volume, large number of features, noise and missing data
[2], [8]. These data sets also often have lot fewer samples
than features.

PLS-DA can be thought of as a “supervised” version of
Principal Component Analysis (PCA) in the sense that it
achieves dimensionality reduction but with full awareness of
the class labels.

Besides its use as for dimensionality-reduction, it can be
adapted to be used for feature selection [5] as well as for
classification [12], [13], [16], [3].

As its popularity grows, it is important to understand that
its role in discriminant analysis can be easily misused and
misinterpreted [2], [4]. Since it is prone to the problem of
overfitting, cross-validation is an important step in using
PLS-DA as a feature selector and a classifier [17].

Furthermore, precious little is known about the perfor-
mance of PLS-DA for different kinds of data. In this paper,
we use a series of experiments to shed light on the strengths
and weaknesses of PLS-DA vis-à-vis PCA, as well as the
kinds of data distributions where PLS-DA is potentially
useful and where it fares poorly.

1Bioinformatics Research Group (BioRG), School of Computing and
Information Sciences, Florida International University, Miami FL 33199.

II. THEORETICAL BACKGROUND

The objective of dimensionality-reduction methods such
as PCA and PLS-DA is to arrive at a linear transformation
that transforms the data to a lower dimensional space with
as small an error as possible. If we think of the original data
matrix to be a collection of n m-dimensional vectors (i.e., X
is a n×m matrix), then the above objective can be thought
of as that of finding a m × d transformation matrix A that
optimally transforms the data matrix X into a collection of
n d-dimensional vectors S. Thus, S = XA + E, where E
is the error matrix. The matrix S, whose rows correspond to
the transformed vectors, gives d-dimensional scores for each
of the n vectors in X.

In PCA, the transformation preserves (in its first principal
component) as much variance in the original data as possible.
In PLS-DA, the transformation preserves (in its first principal
component) as much covariance as possible between the
original data and its labeling. Both can be described as
iterative processes where the error term is used to define
the next principal component.

As mentioned earlier, PCA and PLS-DA are considered as
unsupervised and supervised counterparts of dimensionality-
reduction tools. The new features representing the reduced
dimensions are referred to as principal components. A simple
example can highlight the differences in their approaches.
Figure 1 shows an example of a synthetic data set for which
the principal component chosen by PCA points to the bottom
right, while the one chosen by PLS-DA is roughly orthogonal
to it pointing to the bottom left.

Fig. 1: Comparing the first principal component computed
by PCA (pink) versus that computed by PLS-DA (orange)
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PCA : Figure 1 and the associated text gave an intuitive
difference between PCA and PLS-DA. In what follows, we
provide a brief algorithmic and mathematical explanation of
the differences. Informally, the PCA algorithm calculates
the first principal component along the first eigenvector,
by minimizing the projection error (i.e., by minimizing the
average squared distance from each data to its projection on
the principal component, or maximizing the variance of the
projected data). After that, the algorithm iteratively projects
all the points to a subspace orthogonal to the last principal
component and then repeats the process on the projected
points, thus constructing an orthonormal basis of eigenvec-
tors and principal components. An alternative formulation
is that the principal component vectors are given by the
eigenvectors of the non-singular portion of the covariance
matrix C, given by:

C =
1

n− 1
XTCnX, (1)

where Cn is the n × n centering matrix. The loading
vectors, denoted by L1, . . . ,Ln, are given in terms of the
eigenvectors, e1, . . . , en and the eigenvalues, λ1, . . . , λn, of
C as follows:

Li =
√
λi ei, i = 1, . . . , n, (2)

PLS-DA : As with PCA, the principal components
of PLS-DA are linear combinations of features, and the
number of these components defines the dimension of the
transformed space. In a standard variant of PLS-DA, the
components are required to be orthogonal to each other
(although this is not necessary). This is employed in the
package mixOmics [11]. In a manner similar to Eq. (1),
the principal components of PLS-DA can be formulated as
the eigenvectors of the non-singular portion of the covariance
matrix C, given by:

C =
1

(n− 1)2
XTCnyy

TCnX, (3)

where y is the class label vector.
The iterative process computes the transformation vectors

(also, loading vectors) a1, . . . ,ad, which give the importance
of each feature in that component. In iteration h, PLS-DA
has the following objective:

max
(ah,bh)

cov(Xhah,yhbh), (4)

where bh is the loading for the label vector yh, X1 =
X, and Xh and yh are the residual (error) matrices after
transforming with the previous h− 1 components.

SPLS-DA: Variant of PLS-DA that make a sparsity
assumption, i.e., that only a small number of features are
responsible for driving a biological event or effect under
study have been devised [6], [10] and shown to be successful
with applications where the number of features far outnum-
ber the number of samples [7]. Using lasso penalization,
these methods add penalties (L1 or L0 norm) to better guide
the feature selection and model fitting process and achieve

improved classification by allowing to select a subset of the
covariates instead of using all of them.

III. EXPERIMENTAL RESULTS

In this section, we discuss a variety of experiments with
synthetic data that will help us explain the strengths and
weaknesses of PLS-DA in comparison to PCA.

A. Synthetic Data for the Experiments

The following describes a standard experimental setup.
Clarifications are provided wherever the experiments differed
from this norm. For each of the experiments, labeled syn-
thetic data were generated as follows. Input consisted of the
parameters n, the number of samples and m, the number
of features. Every data set assumed that there was a rule
(e.g., a linear inequality), which was a function of some
subset of the m features (i.e., signal features), while the rest
were considered as noise features. The input parameter also
included the rule and consequently the set of signal features.
This rule will be considered as the ground truth. PLS-DA
was then applied to the data set to see how well it performed
feature selection (i.e., identified the important features in the
rule) or how well it classified (i.e., identified the labels of
the data points). All experiments were executed using PCA
and sparse PLS-DA (sPLS-DA). where the loading vector is
only non-zero for the selected features. Both are available
in the mixOmics R package, which was chosen because it
is the implementation most used by biologists and chemists.
The noise features of all points are generated from a random
distribution that is specified as input to the data generator.
The default is assumed to be the uniform distribution. The
generation of the signal features is dictated by the rule that
they satisfy.

B. Performance Metrics for the Experiments

As is standard with experiments in machine learning, we
evaluated the experiments by computing the following mea-
sures: true positives (tp), true negatives (tn), false positives
(fp), false negatives (fn), precision (tp ÷ (tp + fp)), and
recall (tp÷ (tp+ fn)). Note that in our case precision and
recall are identical because fn = fp. Since tn is large in
all our feature extraction experiments, some of the more
sophisticated measures are skewed and therefore not useful.
For example, the F1 score (2 ∗ tp÷ (2 ∗ tp+ tn+ fp+ fn))
will be necessarily low, while accuracy ((tp + tn) ÷ (tp +
tn+ fp+ fn)) and specificity (2 ∗ tn÷ (tn+ fn)) will be
extremely high. When the number of noise features is low,
precision could be artificially inflated. However, this is not
a likely occurrence in real experiments.

All performance graphs are shown as 3D plots (except in
Section III-C) where the z axis represents the performance
measure of choice, while the x and y axes represent impor-
tant parameters of the experiment, unless otherwise noted.

C. Experiments varying n/m

We first show how the performance of PLS-DA can be
affected and the number of spurious relationships found can
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(a) 50 Samples x 25 Features (b) 50 Samples x 50 Features (c) 50 Samples x 100 Features

Fig. 2: Separability of random points as the ratio of number of samples to number of features is decreased.

vary when the ratio of number of samples, n, to the number
of features, m, is varied.

As described in Section III-A, we generated n random data
points in m-dimensional space (from a uniform distribution)
and labeled them randomly. The ratio n/m was reduced
from 2:1 to 1:1 to 1:2. Given the data set, it is clear that
any separation of the data found by any method is merely
occurring fortuitously. When we have at least twice as many
features as samples, PLS-DA readily finds a hyperplane that
perfectly separates both merely by chance. As shown in
Figure 2, the two randomly labeled groups of points become
increasingly separable. These experiments only range in
ratios from 2:1 to 1:2. In many current day omics data sets,
this ratio can even exceed 1:1000. (For example, data sets
with 50 samples and 50,000 genes are commonplace.)

If any separating hyperplane is used as a rule to discrim-
inate blue points from orange points, then even though the
apparent error rate (AE) decreases for this set, its ability
to discriminate any new random points will remain dismal
[1]. In fact, the cross-validation overall error rate for the
first principal component in the three experiments shown in
Figure 2 were 0.52 ± 0.036, 0.58 ± 0.05 and 0.60 ± 0.03,
showing that even though separability increased, the errors
remain unreasonably large.

D. Experiments using PLS-DA as a feature selector

In this section, we show our experiments with PLS-DA as
a feature selector. We used 3 sets of methods for generating
the synthetic points. In the first set, we consider point sets
that are linearly separable. In the second we assume that the
membership of the points in a class is determined by whether
selected signal features lie in prespecified ranges. Finally, we
perform experiments with clustered points.

1) Experiments with Linearly Separable Points: For these
experiments we assume that the data consist of a collection
of n random points with s signal features and m − s noise
features. They are labeled as belonging to one of two classes
using a randomly selected linear separator given as a function
of only the signal features. The experiments were meant
to test the ability of PLS-DA (used as a feature extractor)
to correctly identify the signal features. The performance
scores shown in Figure 3 were averaged over 100 repeats.

Note that the performance metric measured the number of
signal features identified by PLS-DA as significant. The
linear model used implements the following rule R1:

R1 :
s∑

i=1

si ≥ C ⇒ class 0, else class 1 (5)

Two sets of experiments were performed. In the first set, n
was fixed at 200, but s and m were varied. (See Figure 3 (a).)
In the second set, s was fixed at 10, but n and m were varied.
(See Figure 3 (b).) PCA consistently outperformed PLS-DA
in all these experiments with linear relationships. Also, when
the number of samples was increased, the performance of
PCA improved, which makes sense because there is more
data from which to learn the relationship. However, it did
not help PLS-DA.

The loading vector is a reflection of what PCA or PLS-DA
guessed as the linear relationship between the features. We,
therefore, set out to verify how far was the linear relationship
that was guessed by the tools used. Even if the tools picked
many noise features, we wanted to see how they weighted the
noise and signal features they picked. Toward this goal, we
ran an extra set of experiments with the model shown above
to see if the loading vector from PLS-DA indicated a better
performance than what might be suggested by Figure 3. Note
that ideally the loading vector should have 0s for the noise
features and 1s for the signal features. We computed the
cosine distance between the loading vector computed in the
experiment and the vector reflected by the true relationship.
As shown in Figure 4, we see that the loading vectors of
both PCA and PLS-DA failed to reflect the true relationship.
These experiments were performed using n = 200 averaged
over 100 repetitions. Even though PCA successfully selected
many of the signal features during feature selection, it was
unable to get sufficiently close to the underlying linear
relationship, perhaps because of the compositional nature of
the signal variables, which gives rise to correlations.

Other related experiments include the following:
• Changing the magnitude of constant in the inequality;
• Changing the relationship from a linear inequality to

two linear equalities, i.e., the two classes of points lie
on two randomly chosen hyperplanes in the subspace
of the signal features.
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(a) Signal[1,20] vs Noise[100,800]

(b) Samples[10,400] vs Noise[150,1000]

Fig. 3: Linear relationship Signal vs Noise and Samples vs
Noise. Note that PCA is successful only because the features
that are the signal are the only correlated variables.

• Constructing rules described as the disjunction of two
simple rules, as shown below:

R2 :

bs/2c∑
i=1

si = C0 ∨
bs/2c∑
i=1

si = C0 ≥ C

⇒ class 0, else class 1

(6)

2) Interval model: In this set of experiments, we tried
PCA and PLS-DA on data sets where the rules that deter-
mined class membership are often encountered in biological
data sets. A typical rule assumes that class membership
is determined by a select set of (signal) features being
constrained to lie in specific ranges of values (intervals),
while those that don’t belong to the class are unconstrained.
For example, children are diagnosed with attention deficit

Fig. 4: Cosine distance to the real signal. Signal[2,200] vs
Noise[0,1000]

and hyperactivity disorder (ADHD) based on whether or not
their performance levels fall in specified ranges on multiple
psychological tests. We call this model as the interval model.

We tried two different ways to generate data from this
interval model. In the first version, we constrained the
signal features. To generate such data sets, members of the
class had signal features selected uniformly at random from
prespecified intervals, while all other features were generated
from a uniform distribution in the range [0, 1]. In the second
version, we constrained the noise features. Here, members
of the class had noise features selected uniformly at random
from prespecified intervals, while all the signal features were
generated from a uniform distribution in the range [0, 1].

(a) Constraining signal (b) Constraining noise

Fig. 5: Two different ways of generating interval data

We divided the range [0, 1] into subintervals of width 1/p.
Figure 5 shows an example with p = 3, but experiments
were carried out with p = 3, 5 and 10. Depending on the
experiment, signal and noise feature were assigned to either
a subinterval of width 1/p or the entire interval of [0, 1].
Figure 5 shows shaded green areas that specify valid ranges
for signal features (or noise features, as the case may be).

Figure 5a shows the setup of experiments with the first ap-
proach (constrained signal feature values) and was executed
with 200 samples and repeated 100 times.

Figure 5b shows the setup of experiments with the second
approach (constrained noise features)
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Signal-constrained Noise-constrained

p = 3

p = 5

p = 10

Fig. 6: Experiments with the interval model. Each plot shows the number of signal features ranging from 1 through 30 and
the number of noise features ranging from 100 to 400

The results are shown in Figure 6. The axes for each of
the 3d plot represent the number of signal features, number
of noise features, and the measure of performance.

We note that for the first approach when the signal features
are constrained, PLS-DA consistently outperforms PCA. This
is because there is a strong correlation between the signal
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features for class members, and PLS-DA is able to detect
that correlation. On the other hand, for the second approach
where the noise features are constrained, PCA consistently
outperforms PLS-DA.

PLS-DA performs poorly when the number of signal
features is 1 and p = 3, because the distribution of values
for the single signal feature is not very different from the
distribution of the noise features. On the other hand PLS-DA
succeeds when the constraints for the intervals are stronger
(when p = 5 or 10).

3) Cluster model: For these experiments, the signal fea-
tures of the points were generated from a clustered distribu-
tion with two clusters separated by a prespecified amount.
All noise features were generated from a uniform distribution
with mean 0.

The R package clusterGeneration was used for this pur-
pose, which also allows control over the separation of the
clusters. Cluster separation between the clusters was varied in
the range [−0.9, 0.9]. Thus when the points are viewed only
with the noise features, they appear like a uniform cloud, and
when viewed only with the signal features, the members of
the two classes are clustered. Note that cluster separation
of -0.9 will appear as indistinguishable clusters, while a
separation of 0.9 will appear as well-separated clusters.

The experiments were executed with 10 signal and 200
noise features, averaged over 100 runs.

The executions with clustered data showed PLS-DA to
be clearly superior to PCA. As shown in Figure 7, the
difference narrows when the number of samples is made
very large or the clusters are widely separated (i.e., cleanly
separated data), but the difference remains significant. PLS-
DA is able to select the correct hyperplane even with few
samples and even when the separation between the clusters
is low (values close to 0). PCA needs both an unreasonably
large number of samples and very well separated clusters to
perform respectably in comparison. However, data with high
separation values are embarrassingly simple to analyze with
a number of competing methods.

E. Experiments as a classifier

Our final set of experiments was to see how PLS-DA
fared as a classifier with cross-validation. The results corrob-
orated its performance as a feature selector. The following
experiments were executed 100 times each, with 10 signal
features. In all of the experiments carried out, there is
a correspondence between a high performance as feature
selector and a low cross-validation error.

As shown in Figure 8a, for the linear relationship model,
its performance is around 0.5, which is no better than chance
for a 2-class experiment. If the feature selection by PLS-DA
was poor, then it should come as no surprise that the classifier
fared equally poorly.

Figures 8c and 8d show the results of our experiments with
the interval model. As in the case of the feature selection
experiments, both versions performed roughly the same,
classifying much better than chance and having their best

(a) Samples[10,100k] vs Separation[-0.9,0.9]

(b) Samples[10,2k] vs Separation[-0.9,0.9]

Fig. 7: Number of samples vs cluster separation

performance when the number of samples was large and the
number of noise features was low, again as expected.

For the results with the cluster model shown in Figure 8b,
the cross-validation error is almost 0 in every case, except
when the number of samples is low, which is again consistent
with what we saw in the feature selection experiments. The
performance gets noticeably worse when, in addition to a low
number of samples, the number of noise features is large.
This can be explained by observing that the signal is hidden
among many irrelevant (noise) features, something that one
has come to expect with all machine learning algorithms.

IV. CONCLUSIONS

The obvious conclusion from our experiments is that it
is a terrible idea to use PLS-DA blindly with all data sets.
In spite of its attractive ability to identify features that can
separate the classes in the data set, it is clear that any data set
with sufficiently large number of features is separable and
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(a) Linear relationship model (b) Cluster model

(c) Signal constrained 5 intervals model (d) Noise constrained 5 intervals model

Fig. 8: Cross validation performance for the different models

that most of the separating hyperplanes are just “noise”. Thus
using it indiscriminately would turn into a “golden hammer”,
which is an oft-used, but inappropriate tool. Fortunately, the
liberal use of cross-validation would readily point to when
PLS-DA is being used ineffectively.

More significantly, our work sheds light on the kind of
relationships and the kind of data models with which PLS-
DA can be effective both as a feature selector as well as
a classifier. In particular, we claim that when classes are
determined by linear relationships, even simple unweighted
relationships, PLS-DA provides almost no insight into the
data. But, surprisingly, PLS-DA is reasonably effective when
the classes have a clustered distribution on select (signal)
features, even when these features are hidden among a

large number of noise features. PLS-DA retains a strong
performance even when the classes are contained in n-
orthotopes (i.e., rectangular boxes in the subspace of the
signal features).

In all of the experiments carried out there is a correspon-
dence between high performance as feature selector and low
cross-validation error. We have shown that just-by-chance
good behaviors exist and different methods should be used
for different datasets.

V. FUTURE WORK

There are two main directions for future improvements.
• What other models describe data sets in Bioinformatic

and Clinical life sciences? And how does PLS-DA fare
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with such data sets? How does PLS-DA compare not
just with its close relative, PCA, but with a wider suite
of feature selection methods?

• Given the weaknesses of PLS-DA, can they be ad-
dressed by theoretically tweaking the method?

SUPPLEMENTARY WEBSITE

All the figures shown in this paper can be viewed in-
teractively at the following URL, allowing for the plots to
be rotated in all 3 dimensions: http://biorg.cs.fiu.
edu/plsda.html
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