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Abstract

Background: Partial Least-Squares Discriminant Analysis (PLS-DA) is a popular machine learning tool that is
gaining increasing attention as a useful feature selector and classifier. In an effort to understand its strengths
and weaknesses, we performed a series of experiments with synthetic data and compared its performance to its
close relative from which it was initially invented, namely Principal Component Analysis (PCA).

Results: We demonstrate that even though PCA ignores the information regarding the class labels of the
samples, this unsupervised tool can be remarkably effective as a feature selector. In some cases, it outperforms
PLS-DA, which is made aware of the class labels in its input. Our experiments range from looking at the signal-
to-noise ratio in the feature selection task, to considering many practical distributions and models encountered
when analyzing bioinformatics and clinical data. Other methods were also evaluated. Finally, we analyzed an
interesting data set from 396 vaginal microbiome samples where the ground truth for the feature selection was
available. All the 3D figures shown in this paper as well as the supplementary ones can be viewed interactively
at http://biorg.cs.fiu.edu/plsda

Conclusions: Our results highlighted the strengths and weaknesses of PLS-DA in comparison with PCA for
different underlying data models.
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Background
Partial Least-Squares Discriminant Analysis (PLS-
DA) is a multivariate dimensionality-reduction tool
[1, 2] that has been popular in the field of chemomet-
rics for well over two decades [3], and has been rec-
ommended for use in omics data analyses. PLS-DA
is gaining popularity in metabolomics and in other
integrative omics analyses [4–6]. Both chemometrics
and omics data sets are characterized by large volume,
large number of features, noise and missing data [2,7].
These data sets also often have lot fewer samples than
features.

PLS-DA can be thought of as a “supervised” version
of Principal Component Analysis (PCA) in the sense
that it achieves dimensionality reduction but with full
awareness of the class labels. Besides its use as for
dimensionality-reduction, it can be adapted to be used
for feature selection [8] as well as for classification [9–
11].

As its popularity grows, it is important to note that
its role in discriminant analysis can be easily misused
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and misinterpreted [2, 12]. Since it is prone to over-
fitting, cross-validation (CV) is an important step in
using PLS-DA as a feature selector, classifier or even
just for visualization [13,14].

Furthermore, precious little is known about the per-
formance of PLS-DA for different kinds of data. We use
a series of experiments to shed light on the strengths
and weaknesses of PLS-DA vis-à-vis PCA, as well as
the kinds of distributions where PLS-DA could be use-
ful and where it fares poorly.

The objective of dimensionality-reduction methods
such as PCA and PLS-DA is to arrive at a linear
transformation that converts the data to a lower di-
mensional space with as small an error as possible. If
we think of the original data matrix to be a collection
of n m-dimensional vectors (i.e., X is a n×m matrix),
then the above objective can be thought of as that of
finding a m×d transformation matrix A that optimally
transforms the data matrix X into a collection of n d-
dimensional vectors S. Thus, S = XA + E, where E
is the error matrix. The matrix S, whose rows corre-
spond to the transformed vectors, gives d-dimensional
scores for each of the n vectors in X.

The new features representing the reduced dimen-
sions are referred to as principal components (PC). In
PCA, the transformation preserves in its first PC as
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much variance in the original data as possible. On the
other hand PLS-DA preserves in its first PC as much
covariance as possible between the original data and its
labeling. Both can be described as iterative processes
where the error term is used to define the next PC.
Figure 1 highlights the differences showing an exam-
ple of a synthetic data set for which the PC chosen by
PCA points to the bottom right, while the one chosen
by PLS-DA is roughly orthogonal to it pointing to the
bottom left.

Figure 1 Comparing the first principal component computed by
PCA (pink) versus that computed by PLS-DA (orange)

It is also important to note that a higher explained
variance or higher correlation for both PCA and PLS-
DA doesn’t always mean a better model, even though
they are many times linked [14]. The following para-
graphs give a more thorough description of the meth-
ods and their differences:

PCA Informally, the PCA algorithm calculates the
first PC along the first eigenvector by minimizing the
projection error and then iteratively projects all the
points to a subspace orthogonal to the last PC and re-
peats the process on the projected points. An alterna-
tive formulation is that the principal component vec-
tors are given by the eigenvectors of the non-singular
portion of the covariance matrix C given by:

C =
1

n− 1
XTCnX, (1)

where Cn is the n × n centering matrix. The load-
ing vectors, denoted by L1, . . . , Ln, are given in terms

of the eigenvectors, e1, . . . , en and the eigenvalues,
λ1, . . . , λn, of C as follows:

Li =
√
λi ei, i = 1, . . . , n, (2)

PLS-DA In its standard variant the components are
required to be orthogonal to each other. In a manner
similar to Eq. (1), the first PC of PLS-DA can be for-
mulated as the eigenvectors of the non-singular portion
of C, given by:

C =
1

(n− 1)2
XTCnyy

TCnX, (3)

where y is the class label vector.
The iterative process computes the loading vectors

a1, . . . , ad, which give the importance of each feature
in that component. In iteration h, it has the following
objective:

max
(ah,bh)

cov(Xhah, yhbh), (4)

where bh is the loading for the label vector yh, X1 = X,
and Xh and yh are the residual (error) matrices after
transforming with the previous h− 1 components.

sPLS-DA Variant of PLS-DA that makes a sparsity
assumption, i.e., that only a small number of features
are responsible for driving a biological event or effect
under study has been devised [15, 16] and shown to
be successful with applications where the number of
features far outnumber the number of samples [17].
Using lasso penalization, these methods add penalties
(L1 or L0 norm) to better guide the feature selection
and model fitting process and achieve improved classi-
fication by allowing to select a subset of the covariates
instead of using all of them.

Methods
In this section, we discuss the aim, design and settings
of the experiments.

Synthetic Data for the Experiments
The following describes a standard experimental setup.
Clarifications are provided wherever the experiments
differed from this norm. For each of the experiments,
labeled synthetic data were generated as follows. The
basic input parameters for each experiment are the
number of samples n and the number of features of
each sample m. Every data set assumed that there
was a rule (e.g., a linear inequality), which was a func-
tion of some subset of the m features (i.e., signal fea-
tures), while the rest were considered as noise features.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 23, 2020. ; https://doi.org/10.1101/207225doi: bioRxiv preprint 

https://doi.org/10.1101/207225
http://creativecommons.org/licenses/by-nc-nd/4.0/


Ruiz-Perez et al. Page 3 of 8

The input parameter also included the rule and conse-
quently the set of signal features. This rule will be con-
sidered as the ground truth. PLS-DA was then applied
to the data set to see how well it performed feature se-
lection or how well it classified. All experiments were
executed using PCA and sPLS-DA, where the loading
vector is only non-zero for the selected features. Both
are available in the mixOmics R package [18], which
was chosen because it is the implementation most used
by biologists and chemists. The noise features of all
points are generated from a random distribution that
is specified as input to the data generator. The default
is assumed to be the uniform distribution. The satis-
fied rule dictates the generation of the signal features.

Performance Metrics for the Experiments
As is standard with experiments in machine learning,
we evaluated the experiments by computing the fol-
lowing measures: true positives (tp), true negatives
(tn), false positives (fp), false negatives (fn), preci-
sion (tp÷ (tp+ fp)), and recall (tp÷ (tp+ fn)). Note
that in our case precision and recall are identical. This
is because of their formula is the same if fp = fn.
The data is created with s signal features and s fea-
tures are selected. Because s is the number of signal
features, regardless of whether they were selected or
not, s = tp+ fn. Also, because only s features are se-
lected, s = tp + fp. Making both equations equal, we
get that fp = fn.

Since tn is large in all our feature extraction exper-
iments, some of the more sophisticated measures are
skewed and therefore not useful. For example, the F1
score will be necessarily low, while accuracy and speci-
ficity will be extremely high. When the number of noise
features is low, precision could be artificially inflated.
However, this is not likely in real experiments.

Graphs are shown as 3D plots where the z axis rep-
resents the performance measure (percentage of signal
features in the features marked as important by the
tools), and the x and y axes show relevant parameters
of the experiment.

Experiments varying n/m
We first show how the ratio of the number of samples,
n, to the number of features, m affects the apparent
performance of PLS-DA and the number of spurious
relationships found.

As described earlier, we generated n random data
points in m-dimensional space (from a uniform distri-
bution) and labeled them randomly. The ratio n/m
was reduced from 2:1 to 1:2 to 1:20 to 1:200. Given
the data set, it is clear that any separation of the data
found by any method is merely occurring fortuitously.
When we have at least twice as many features as sam-
ples, PLS-DA readily finds a hyperplane that perfectly

separates both merely by chance. As shown in Figure
2, the two randomly labeled groups of points become
increasingly separable. This is explained by the curse
of dimensionality, that predicts the sparsity of the data
to grow increasingly faster with the number of dimen-
sions.These executions only range in ratios from 2:1
to 1:200. In many current omics data sets, ratios can
even exceed 1:1000 (i.e., data sets with 50 samples and
50,000 genes are common). This is one of the reasons of
the need of sample size determination when designing
an experiment [19].

If any separating hyperplane is used as a rule to dis-
criminate blue points from orange points, then even
though the apparent error rate (AE) decreases for this
set, its ability to discriminate any new random points
will remain dismal [20]. In fact, the CV error rates
using 1000 repetitions for the first PC in the four ex-
periments shown in Figure 2 were 0.53, 0.53, 0.5 and
0.48 respectively, showing that even though separa-
bility increased, the errors remain unreasonably large.
CV errors vary with the seed used to initialize the ma-
trix but the trend remains.

Results
In this section, we discuss a variety of experiments with
synthetic and real data that will help us explain the
strenghts and weaknesses of PLS-DA vis-‘a-vis PCA
and other tools.

Experiments using PLS-DA as a feature selector
We used 3 sets of methods for generating the synthetic
points. In the first set, we consider point sets that are
linearly separable. In the second data set we assume
that the membership of the points in a class is deter-
mined by whether selected signal features lie in pre-
specified ranges. Finally, we perform experiments with
clustered points.

Experiments with Linearly Separable Points
For these experiments we assume that the data con-
sist of a collection of n random points with s signal
features and m− s noise features. They are labeled as
belonging to one of two classes using a randomly se-
lected linear separator given as a function of only the
signal features. The experiments were meant to test
the ability of PLS-DA (used as a feature extractor) to
correctly identify the signal features. The performance
scores shown in Figure 3 were averaged over 100 re-
peats. Note that The linear model used implements
the following rule R1, where C is a constant set to 0.5:

R1 :
s∑

i=1

si ≥ C ⇒ class 0, else class 1 (5)
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Figure 2 Separability of random points as the ratio of number of samples to features decreases.

Two sets of experiments were performed. In the first
set, s was fixed at 10, but n and m were varied (see
Figure 3). In the second set n was fixed at 200, but s
and m were varied (see Additional file 1). PCA consis-
tently outperformed PLS-DA in all these experiments
with linear relationships. Also, when the number of
samples was increased, the performance of PCA im-
proved, because there is more data from which to learn
the relationship. However, it did not help PLS-DA, be-
cause the model is not designed to capture this kind
of relations. Note that PCA is successful only because
the features that are the signal are the only ones cor-
related.

Figure 3 Linear relationship: Samples vs noise.

The loading vector is a reflection of what PCA or
PLS-DA guessed as the linear relationship between
the features. We, therefore, set out to verify how far
was the linear relationship that was guessed by the
tools used. Even if the tools picked many noise fea-
tures, we wanted to see how they weighted the noise

and signal features they picked. Toward this goal, we
ran an extra set of experiments with the model shown
above to see if the loading vector from PLS-DA indi-
cated a better performance than what might be sug-
gested by Figure 3. Note that ideally the loading vector
should have zeros for the noise features and ones for
the signal features. We computed the cosine distance
between the loading vector computed in the experi-
ment and the vector reflected by the true relationship.
As shown in Additional file 2, we see that the loading
vectors of both PCA and PLS-DA failed to reflect the
true relationship. These experiments were performed
using n = 200 averaged over 100 repetitions. Even
though PCA successfully selected many of the signal
features during feature selection, it was unable to get
sufficiently close to the underlying linear relationship,
perhaps due to the compositional nature of the signal
variables, which gives rise to correlations.

Other experiments carried out with the same results
include changing the magnitude of constant in the in-
equality and changing the relationship from a linear
inequality to two linear equalities, i.e., the points lie
on two hyperplanes.

Cluster model
For these experiments, the signal features of the points
were generated from a clustered distribution with two
clusters separated by a prespecified amount. All noise
features were generated from a uniform distribution.
The R package clusterGeneration was used for this
purpose, which also allows control over the separation
of the clusters. Cluster separation between the clus-
ters was varied in the range [−0.9, 0.9]. Thus when the
points are viewed only with the noise features, they ap-
pear like a uniform cloud, and when viewed only with
the signal features, the members of the two classes are
clustered. Note that cluster separation of -0.9 will ap-
pear as indistinguishable clusters, while a separation of
0.9 will appear as well-separated clusters. The exper-
iments were executed with s = 10, n = 200, averaged
over 100 repetitions.
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The executions with clustered data showed PLS-DA
to be clearly superior to PCA. As shown in Figure 4,
while it is true that the difference narrows when the
number of samples is made very large or the clusters
are widely separated (i.e., cleanly separated data),it
still remains significant. PLS-DA is able to select the
correct hyperplane even with few samples and even
when the separation between the clusters is low (values
close to 0). PCA needs both an unreasonably large
number of samples and very well separated clusters
to perform respectably in comparison. However, data
with high separation values are embarrassingly simple
to analyze with a number of competing methods.

Figure 4 Cluster model: Samples vs cluster separation

Interval model
In this set of experiments the rules that determined
class membership are often encountered in biological
data sets. We used two different methods to generate
data from this model. In the first one, we constrained
the signal features and in the second we constrained
the noise ones. To generate such data sets, members
of one class had the constrained features selected uni-
formly at random from prespecified intervals, while all
other features were generated from a uniform distribu-
tion in the range [0, 1].

We divided the range [0, 1] into subintervals of width
1/p. Experiments were carried out with p = 3, 5 and
10. Depending on the experiment, signal and noise fea-
ture were assigned to either a subinterval of width 1/p
or the entire interval of [0, 1].

The results are shown in Additional file 3. When the
signal features are constrained, PLS-DA consistently
outperforms PCA. This due to the strong correlation
between the signal features for class members that
PLS-DA is able to detect. On the other hand, when the

noise features are constrained, PCA consistently out-
performs PLS-DA. The latter performs poorly when
the number of signal features is 1 and p = 3, because
the distribution of values for the single signal is not
very different from the distribution of the noise.

Experiments as a classifier
Our final set of experiments with synthetic data was
to see how PLS-DA fared as a classifier. The follow-
ing experiments were executed 100 times each, with 10
signal features. For the cross-validation error calcula-
tion, 5 folds and 10 repetitions were used. In all of the
experiments there is a correspondence between a high
performance as feature selector and a low CV error.

As shown in Additional file 4a for the linear relation-
ship model, its performance is no better than chance
for a 2-class experiment. This corroborates the poor
performance of PLS-DA as a feature selector for this
model.

For the results with the cluster model shown in Ad-
ditional file 4b, the CV error is almost 0 in every case,
except when the number of samples is low, which is
again consistent with what we saw in the feature se-
lection experiments. The performance gets noticeably
worse when, in addition to a low number of samples,
the number of noise features is large. This is because
the signal is hidden among many irrelevant features,
something that one has come to expect with all ma-
chine learning algorithms. Additional files 4c and 4d
show the results for the interval model. As in the case
of the feature selection experiments, both versions per-
formed roughly the same, classifying much better than
chance and having their best performance when the
number of samples was large and the number of noise
features was low, as expected.

Comparisons with other methods
To compare the PLS-DA with other known feature se-
lectors, we applied 3 more methods to the previous
data models: Independent Component Analysis (ICA),
as a feature extraction method that transforms the in-
put signals into the independent sources [21]. Sparse
Principal Component Analysis (SPCA) via regularized
Singular Value Decomposition (SVD) [22] was built
by adding sparsity constraint. Regularized Linear Dis-
criminant Analysis (RLDA) was computed by using
L2 regularization to stabilize eigendecomposition in
LDA [23].

We found that PCA based algorithms (PCA and
SPCA) have similar overall performance among the
three experiments. The same happens with LDA based
models (RLDA and sPLS-DA).

As Figure 5, and Additional files 5 and 6 show, PLS-
DA, ICA and RLDA are not able to detect linear rela-
tionships, while SPCA and PCA are. For the interval
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model with p = 3, either to constrain signal or noise
doesn’t seem to change the behavior of the LDA based
models, being outperformed by PCA when noise is
constrained as shown Additional file 7 and Additional
file 8. The performance of every method except for
ICA goes down as s becomes small.The performance of
ICA depends on the number of noise features for both
the interval and linear models. In the cluster model
experiment as shown in Additional file 9, SPCA per-
forms better than PCA as the separation between the
cluster gets higher. The separation between the clus-
ter doesn’t affects the performance of ICA, that stays
near 0. RLDA’s and PLS-DA’s performance excel, with
similar behavior .

Figure 5 Interval signal constrained for all methods.

Novel analysis of a real dataset
Bacterial Vaginosis (BV) is the most common form
of vaginitis affecting a large number of women across
the world [24]. BV is associated with an imbalance
of the vaginal flora and damage to the epithelial and
mucus layer compromising the body’s intrinsic defense
mechanisms. This can result in adverse sequelae and
increasing the risk of many STIs [25].

In a landmark paper, human vaginal microbial com-
munities were classified into five community state
types (CSTs) [26]. CSTs I, II, III, and V are domi-
nated by different Lactobacillus species, whereas CST
IV has no specific dominant species and is regarded
as the heterogeneous group. While this CST classi-
fication has enhanced our understanding of bacterial
vaginosis [26–28], a quantitative method to reliably
distinguish the CSTs was not available until the devel-
opment of the specificity aggregation index [29] based
on the species specificity [30]. The values of this in-
dex range from 0, indicating that the species is absent
in that CST to 1, indicating that that OTU is always
detected and only detected in that CST.

We used the abundance matrix from [26] (394 sam-
ples, 247 OTUs), and with a one vs all approach we de-
vised a simple scheme to differentiate each CST from
all of the others using the abundance of each taxon.
The importance of each feature given by the specificity
index computed in [29] was used as the ground truth.
Only the top 10 OTUs for each CST were considered
and their importance values were normalized.

Results are summarized in Figure 6. As PLS-DA and
PCA return a ranked list of features, a varying thresh-
old on the percentage of features selected is shown on
the X axis of Figure 6. The Y axis represents the sum
of the specificity indices achieved by the best features
at that cutoff. Note that by just selecting half of the
features, a cumulative specificity of 0.9 is achieved by
both methods. PLS-DA reaches specificity values over
0.8 with less than 5 features selected, which means
that in all of the cases, PLS-DA’s top features are in-
deed the right set of features. In contrast, PCA’s speci-
ficity has a slower growth at the beginning (selects the
wrong features), but when half of them are selected
both methods achieve the same specificity.

Figure 6 Performance of the features selected by PLS-DA and
PCA for different CSTs

Discussion
Our work sheds light on the kind of relationships and
data models with which PLS-DA can be effective both
as a feature selector as well as a classifier. In particular,
we claim that when classes are determined by linear or
non-linear relationships, PLS-DA provides almost no
insight into the data. But it is effective when the classes
have a clustered distribution on the signal features,
even when these features are hidden among a large
number of noise attributes. PLS-DA retains a strong
performance also when the classes are contained in n-
orthotopes (i.e., rectangular boxes in the subspace of
the signal features).
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In all of the experiments carried out there was a
correspondence between performance of the tools as
feature selector and CV error. This reinforces the ar-
gument that the CV error is an excellent way to dif-
ferentiate a good model from a bad one and every pa-
per using PLS-DA must report it to have any validity.
Moreover, just-by-chance good behaviors are common-
place when using this tool because the sparsity of the
data grows increasingly faster with the number of di-
mensions and it becomes easier for PLS-DA to find a
perfectly separating hyperplane.

Also even though PCA ignores the information re-
garding the class labels of the samples, it can be re-
markably effective as a feature selector for classifica-
tion problems. In some cases, it outperforms PLS-DA
which is made aware of the class labels in its input.

Conclusions
The obvious conclusion from our experiments is that it
is a terrible idea to use PLS-DA blindly with all data
sets. In spite of its attractive ability to identify fea-
tures that can separate the classes, it is clear that any
data set with sufficiently large number of features is
separable and that most of the separating hyperplanes
are just “noise”. Thus using it indiscriminately would
turn into a “golden hammer”, i.e., an oft-used, but
inappropriate tool. Fortunately, the use of CV would
readily point to when it is being used ineffectively.

Our work sheds light on the kind of relationships and
data models with which PLS-DA can be effective and
should be used both as a feature selector as well as a
classifier in the case that the underlying model of the
data is known or can be guessed. When it is not possi-
ble, one should rely on the CV error and use extreme
care when making conclusions and extrapolations.

Also, one should take advantage of the multitude of
tools available and use different methods depending on
the dataset, as the simple PCA was able to outperform
PLS-DA depending on the conditions.
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11. Botella, C., Ferré, J., Boqué, R.: Classification from microarray data

using probabilistic discriminant partial least squares with reject option.

Talanta 80(1), 321–328 (2009)

12. Brereton, R.G., Lloyd, G.R.: Partial least squares discriminant analysis:

taking the magic away. Journal of Chemometrics 28(4), 213–225

(2014)

13. Westerhuis, J.A., Hoefsloot, H.C., Smit, S., Vis, D.J., Smilde, A.K.,

van Velzen, E.J., van Duijnhoven, J.P., van Dorsten, F.A.: Assessment

of PLSDA cross validation. Metabolomics 4(1), 81–89 (2008)

14. Kjeldahl, K., Bro, R.: Some common misunderstandings in

chemometrics. Journal of Chemometrics 24(7-8), 558–564 (2010)
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