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Abstract 22	

G protein-coupled receptors (GPCRs) are established drug targets.  Despite their 23	

considerable appeal as targets for next-generation anthelmintics, poor understanding 24	
of their diversity and function in parasitic helminths has thwarted progress towards 25	
GPCR-targeted anti-parasite drugs.  This study facilitates GPCR research in the liver 26	

fluke, Fasciola hepatica, by generating the first profile of GPCRs from the F. hepatica 27	
genome.  Our dataset describes 146 high confidence GPCRs, representing the 28	

largest cohort of GPCRs, and the most complete set of in silico ligand-receptor 29	
predictions, yet reported in any parasitic helminth.  All GPCRs fall within the 30	
established GRAFS nomenclature; comprising three glutamate, 135 rhodopsin, two 31	

adhesion, five frizzled and one smoothened GPCR.  Stringent annotation pipelines 32	
identified 18 highly diverged rhodopsins in F. hepatica that maintained core 33	

rhodopsin signatures, but lacked significant similarity with non-flatworm sequences, 34	
providing a new sub-group of potential flukicide targets.  These facilitated 35	
identification of a larger cohort of 76 related sequences from available flatworm 36	

genomes, representing new members of existing groups of flatworm-specific 37	
rhodopsins.  These receptors imply flatworm specific GPCR functions, and/or co-38	

evolution with unique flatworm ligands, and could facilitate development of 39	
exquisitely selective anthelminthics.  Ligand binding domain sequence conservation 40	
relative to deorphanised rhodopsins enabled high confidence ligand-receptor 41	

matching of seventeen receptors activated by acetylcholine, neuropeptide F/Y, 42	
octopamine or serotonin.  RNA-Seq analyses showed expression of 101 GPCRs 43	

across various developmental stages, with the majority expressed most highly in the 44	
pathogenic intra-mammalian juvenile parasites.  These data identify a broad 45	

complement of GPCRs in F. hepatica, including rhodopsins likely to have key 46	
functions in neuromuscular control and sensory perception, as well as frizzled and 47	
adhesion families implicated, in other species, in growth, development and 48	
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reproduction.  This catalogue of liver fluke GPCRs provides a platform for new 49	
avenues into our understanding of flatworm biology and anthelmintic discovery.  50	
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Author Summary 51	

Fasciola spp. liver fluke are important veterinary pathogens with impacts on human 52	

and animal health, and food security, around the world.  Liver fluke have developed 53	
resistance to most of the drugs used to treat them (flukicides).  Since no vaccines 54	
exist, we need to develop new flukicides as a matter of urgency.  Most anthelmintic 55	

drugs used to treat parasitic worm infections operate by impeding the functioning of 56	
their nerve and muscle.  In flatworms, most nervous signals are received by a type of 57	

receptor called a G protein-coupled receptor (GPCR).  Since GPCRs control 58	
important parasite functions (e.g. movement, egg-laying, feeding), they represent 59	
appealing targets for new flukicides, but have not yet been targeted as such.  This 60	

work exploited the F. hepatica genome to determine the quantity and diversity of 61	
GPCRs in liver fluke.  We found more GPCRs in the Fasciola genome than have 62	

been reported in any other parasitic worm.  These findings provide a foundation that 63	
for researchers to determine the functions of these receptors, and which 64	
molecules/ligands they are activated by.  These data will pave the way to exploring 65	

the potential of F. hepatica GPCRs as targets for new flukicides. 66	

  67	
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Introduction 68	

Fasciola spp. liver fluke are pathogens of veterinary ruminants that threaten the 69	

sustainability of global meat and dairy production.  Infection with Fasciola 70	
(fasciolosis/fascioliasis) inhibits animal productivity through liver condemnation, 71	
reduced meat and milk yields, and reduced fertility (for recent impact surveys see [1-72	

4].  Fasciola spp. also infect humans, with fascioliasis considered a neglected 73	
tropical disease [5].  Anthelmintic chemotherapy currently carries the burden of fluke 74	

control, since there are no liver fluke vaccines [6].  Six flukicidal active compounds 75	
are available for general use, with on-farm resistance reported for all except 76	
oxyclozanide [7].  Resistance to the frontline flukicide, triclabendazole, also exists in 77	

human F. hepatica infections [8,9].  Given the absence of alternative control 78	
methods, new flukicides are essential for secure future treatment of veterinary and 79	

medical liver fluke infections.  80	
 81	
The helminth neuromuscular system is a prime source of molecular targets for new 82	

anthelmintics [10-12], not least because many existing anthelmintics (dichlorvos, 83	
levamisole, morantel, piperazine, pyrantel, macrocyclic lactones, paraherquamide, 84	

amino acetonitrile derivatives) act upon receptors or enzymes associated with 85	
classical neurotransmission in nematodes [11]  The G protein-coupled receptors 86	
(GPCRs) that transduce signals from both peptidergic and classical 87	

neurotransmitters are of broad importance to helminth neuromuscular function.  88	
Despite industry efforts to exploit helminth GPCRs in the context of anthelmintic 89	

discovery [13], only a single current anthelmintic (emodepside) has been attributed 90	
GPCR-directed activity as part of its mode of action [14-16].  GPCRs are druggable 91	

targets, since 33% of human prescription medicines are attributed a GPCR-based 92	
mode of action [17].   93	
 94	
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Despite two F. hepatica genomes [18,19], no GPCR sequences have been reported 95	
from F. hepatica.  In contrast, GPCRs have been profiled in the genomes of 96	

trematodes (Schistosoma mansoni and Schistosoma haematobium [20,21]), 97	
cestodes (Echinococcus multilocularis, E. granulosus, Taenia solium and 98	

Hymenolepis microstoma [22]), and planaria (Schmidtea mediterranea, Girardia 99	
tigrina [21-24]).  These datasets illustrated clear differences in the GPCR 100	
complements of individual flatworm classes and species, with reduced complements 101	

in parasitic flatworms compared to planarians.   102	
 103	

This study profiles the GPCR complement of the temperate liver fluke F. hepatica for 104	
the first time, permitting comparisons with previously characterised species that 105	
inform evolutionarily and functionally conserved elements of flatworm GPCR 106	

signalling.  We have identified and classified 146 GPCRs by GRAFS family 107	
(glutamate, rhodopsin, adhesion, frizzled, secretin) assignment [25], the majority of 108	

which are expressed in Fasciola RNA-Seq datasets.  These include clear 109	
orthologues of GPCRs activated by known neurotransmitters, within which we 110	

performed the deepest in silico ligand-receptor matching analyses to date for any 111	
parasitic helminth.  The latter predicted ligands for 17 F. hepatica GPCRs, 112	
designating these as primary targets for deorphanisation.  Intriguingly, the dataset 113	

included a set of flatworm-expanded GPCRs lacking orthologues outside of phylum 114	
Platyhelminthes.  Evolution of such GPCRs across the parasitic flatworm classes 115	

may have been driven by flatworm-specific functional requirements or co-evolution 116	
with flatworm ligands, either of which could help support novel anthelmintic 117	
discovery.  This dataset provides the first description of GPCRs in liver fluke, laying a 118	

foundation for future advances in GPCR-directed functional genomics and flukicide 119	
discovery. 120	

  121	
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Results and Discussion 122	

A first look at GPCRs in the F. hepatica genome 123	

This study represents the first description of the GPCR complement of the temperate 124	
liver fluke, F. hepatica.  Using HMM-led methods to examine available F. hepatica 125	
genome datasets, we identified 166 GPCR-like sequences in F. hepatica (Figure 1, 126	

S1 Table).  Figure 1B shows that 49.7% contained 7 TM domains, with 88% of 127	
sequences containing at least four TMs.  The remainder of this manuscript focuses 128	

on 146 sequences containing ≥4TM domains (S1 Table; S2 Text).  Twenty 129	
sequences containing ≤3 TMs were analysed no further (Figure 1). 130	
 131	

Our ≥4TM dataset (146 sequences) was comprised of three glutamate, 135 132	
rhodopsin, two adhesion, five frizzled, and one smoothened GPCR.  Sequence 133	

coverage was generally good in terms of TM and extracellular domain 134	
representation, so we did not attempt to extend truncated sequences into full-length 135	
receptors.  The overall dataset contained excellent representation of seven TM 136	

domains, while N-terminal extracellular LBDs and cysteine-rich domains (CRD) were 137	
also detected (in glutamate, frizzled/smoothened, adhesion families).  However, we 138	

could not identify N-terminal secretory signal peptides in any sequence, suggesting 139	
incomplete sequence coverage at extreme N-termini.  Rhodopsins are designated by 140	
ubiquitously conserved motifs on TMs 2, 3, 6 and 7.  All rhodopsin sequences 141	

contained at least one of these motifs (Figure 2, S3 Table), including in the highly 142	
diverged flatworm-specific rhodopsins described below. 143	

 144	
Table 1 compares the F. hepatica GPCR complement with other flatworms, 145	

illustrating that F. hepatica has the largest GPCR complement reported from any 146	
parasitic flatworm to date.  The bulk of the expansion involves rhodopsins, while the 147	
other GRAFS families are comparable between F. hepatica and other flatworm 148	
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parasites.  Secretin is the notable exception, at least one of which has been identified 149	
in every other species studied, but which was absent from the datasets scrutinized 150	

here. 151	
 152	

Table 1.  Comparison of the Fasciola hepatica G-protein coupled receptor 153	
(GPCR) complement with those reported from other flatworms.  Species 154	
complements are shown in the context of GRAFS nomenclature [25]. * Saberi et al 155	
[24] described 566 GPCRs in Schmidtea mediterrannea, of which 516 fall within 156	
GRAFS nomenclature. 157	
 158	

 159	
 160	
 161	

 162	
 163	

 164	
 165	
 166	

 167	
Stringent annotation of flatworm-specific orphan rhodopsin GPCRs in F. 168	

hepatica 169	
Encompassing 135 sequences, the rhodopsin family is the largest of the GRAFS 170	
classifications in F. hepatica.  Rhodopsins comprise four subfamilies (α, β, γ and δ) 171	

[26]; we identified members of both α and β groups, with nucleotide-activated (P2Y) 172	
receptors (γ group), and olfactory (δ group) receptors absent from our dataset 173	

(Figures 1, 2; S1 Table).  The F. hepatica α subfamily contained 38 amine receptors 174	
and three opsins, with the β subfamily comprised of at least 47 peptide receptors.  175	
Homology-based annotations were supported by an ML phylogeny (Figure 2A), 176	

which clearly delineated between amine and opsin α clades, and the peptide-177	
activated β-rhodopsin clades.  Amine and peptide receptors were further delineated 178	
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by additional phylogenetic and structural analyses, permitting high-confidence 179	
assignment of putative ligands to 16 GPCRs (see below).   180	

 181	
Six clades contain an additional 44 rhodopsin sequences with low scoring (median E 182	

= 5.6e-5) similarity matches to a range of disparate α and β rhodopsins.  Due to the 183	
subsequent difficulty in designating these clades as amine, peptide or opsin, we 184	
labelled them orphan rhodopsins (“R” clades in Figure 2A).  Eighteen GPCRs within 185	

the orphan clades displayed exceptionally low similarity scores relative to non-186	
flatworm sequences (Figure 2A,B).  Seven returned no-significant hits in BLASTp 187	

searches against non-flatworm members of the ncbi nr dataset (the most diverse 188	
sequence dataset available to the research community), and the remaining eleven 189	
scored E>0.01.  Domain analysis (InterPro) identified rhodopsin domains 190	

(IPR000276 or IPR019430) in thirteen of these (S1 Table, S3 Table), confirming their 191	
identity as rhodopsin-like GPCRs.  More troublesome to classify were five that, in 192	

addition to lacking significant BLASTp identity to non-flatworm sequences, also 193	
lacked any identifiable protein domains/motifs (with the exception of TM domains).  194	

We annotated these as rhodopsins because: (i) They did not contain motifs/domains 195	
representative of any other protein family; (ii) They displayed topological similarity to 196	
GPCRs (ten had seven TM domains, seven had six TMs, one had five TM domains); 197	

(iii) They contained at least two of the conserved rhodopsin motifs in TM domains 2, 198	
3, 6 and 7 similar to those seen in the rest of the F. hepatica rhodopsins (Figure 2C; 199	

S4 Table).  As highly diverged rhodopsins with little or no sequence similarity versus 200	
host species, these 18 F. hepatica receptors have obvious appeal as potential 201	
targets for flukicidal compounds with exquisite selectivity for parasite receptors over 202	

those of the host.  This potential is contingent on future work demonstrating essential 203	
functionality for these receptors; showing their wider expression across flatworm 204	

parasites would enable consideration of anthelmintics with multi-species activity.  To 205	
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investigate the latter question, we used BLASTp to search the 18 F. hepatica 206	
rhodopsins against other available genomes representing phylum Platyhelminthes. 207	

 208	
An orphan family of lineage-expanded rhodopsins in flatworm genomes 209	

Although lacking similarity against non-flatworm datasets, each of the 18 lineage-210	
expanded F. hepatica rhodopsins returned high-scoring hits in BLASTp searches 211	
against the genomes of other flatworms (WormBase Parasite release WBPS9).  All 212	

returns were subsequently filtered through a stringent five-step pipeline (Figure 3A) 213	
consisting of: (i) Removal of duplicate sequences; (ii) Exclusion of sequences 214	

containing fewer than four TM domains; (iii) A requirement for reciprocal BLASTp 215	
against the F. hepatica genome to return a top hit scoring E<0.001 to one of the 216	
original 18 F. hepatica queries; (iv) A requirement for BLASTp against ncbi nr non 217	

flatworm sequences to return a top hit scoring E>0.01; (v) Removal of sequences 218	
lacking conservation of the ubiquitous rhodopsin motifs seen in the divergent F. 219	

hepatica rhodopsins (Figures 2C, 3C).  The latter motifs were largely absent from 220	
cestode rhodopsins (with the exception of a single sequence from Diphyllobothrium 221	

latum, and three sequences from Schistocephalus solidus), and present in only two 222	
sequences from a single monogenean (Protopolystoma xenopodis).  This left our 223	
final dataset consisting of 76 “flatworm-specific” rhodopsins (fwRhods; Figure 3B, 224	

Table S4) in phylum Platyhelminthes, heavily biased towards trematodes (70 225	
sequences).  Nineteen sequences from nine species of cestode were omitted from 226	

the final dataset despite meeting the inclusion criteria in most respects, because they 227	
lacked conservation of ubiquitous rhodopsin motifs (filtering step (v)).  Although their 228	
further characterisation was beyond the scope of this study, they warrant more 229	

detailed examination in future studies as potential cestode-specific rhodopsins.  Note 230	
that our filtering pipeline also excluded initial hits from Gyrodactylus salaris 231	

(Monogenea), and the Turbellarians Macrostomum lignano and S. mediterranea.  232	
Individual species complements of fwRhods showed some consistency (Figure 3B); 233	
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the trematodes F. hepatica and Echinostoma caproni (both phylum Platyhelminthes 234	
Order Echinostomida) bore 18 and 19 sequences, respectively, most species of 235	

family Schistosomatidae contained 3-4 sequences each.  The inclusion of two 236	
cestode species and a single monogenean may be an indication of the existence of 237	

distantly related rhodopsins in those lineages, rather than a true measure of the 238	
extent of cestode and monogenean fwRhod diversity.  Again, proper classification of 239	
these groups will require further more focused study that was beyond the scope of 240	

the current work.   241	
 242	

Our method for identification of fwRhods is supported by a similar BLAST-driven 243	
approach used to identify highly diverged “hidden orthologues” in flatworms [27].  It 244	
should be noted that the existence of sequences lacking sequence similarity to 245	

genes of other species is not a new finding.  “Taxonomically-restricted genes” 246	
comprise 10-20% of every sequenced eukaryote genome, and may be essential for 247	

phylum-specific morphological and molecular diversity [28].  How do our fwRhods 248	
compare to previously reported groups of flatworm restricted GPCRs in S. mansoni, 249	

S. mediterrannea and E. granulosus [21,22,24]?  Phylogenetic comparisons of these 250	
groups (Figure 3D) demonstrated that the previously described Schmidtea Srfb 251	
cluster [24] and the PROF1 clade (E. multilocularis, Schmidtea, S. mansoni [21]) are 252	

equivalent, and likely represent a single group.  Our phylogeny added 23 fwRhods to 253	
this clade, including three from F. hepatica (BN1106_s6156B000040, D915_03083, 254	

D915_13002).  Figure 3D designated the remaining fwRhods within additional pre-255	
existing groups [24], placing 34 within Rho-L (including eight from F. hepatica), nine 256	
in Srfc (one from F. hepatica), four in Rho-R (one from F hepatica) and two in Srfa 257	

(one from F. hepatica).  Four fwRhod sequences were omitted from this tree due to 258	
poor alignment. 259	

 260	
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Our approach to classifying flatworm-restricted rhodopsins was to err towards 261	
stringency, and this may have resulted in erroneous exclusion of some sequences 262	

from the dataset.  There is no set definition for lineage specificity in the literature, but 263	
ours is the most stringent yet applied to flatworm GPCRs.  Applying our BLASTp 264	

E≥0.01 cutoff (modified from Pearson [29]) to the previously described groups of 265	
flatworm-specific rhodopsins [21,22,24], excludes 57 of the 62 PROF1s described 266	
from S. mansoni and S. mediterranea and 287 of the 318 RhoL/R and Srfa/b/c 267	

flatworm-specific clusters in S. mediterranea.  Further pursuit of the extent of lineage 268	
restricted GPCRs in the wider phylum was beyond the scope of this study, but we 269	

are currently trawling for taxonomically restricted flatworm GPCRs on a phylum wide 270	
scale. 271	
 272	

We have established the existence of a group of rhodopsin GPCRs that appear 273	
restricted to, and expanded in, phylum Platyhelminthes.  By definition these 274	

receptors are orphan (i.e. their native ligands are unknown), so key experiments 275	
must focus on identifying their ligands and functions.  Such experiments can exploit 276	

the expanding molecular toolbox for flatworm parasites, which in F. hepatica includes 277	
RNA interference (RNAi) [30-33], interfaced with enhanced in vitro maintenance 278	
methods, and motility, growth/development and survival assays [31,34,35].  Our 279	

phylogeny (Figure 2A) suggests that fwRhods are more similar to peptide than amine 280	
receptors.  If their heterologous expression can be achieved, one approach to 281	

characterisation would be to screen them with the growing canon of peptide ligands 282	
from flatworms [36-38], as well as from other genera, in a receptor activation assay.  283	
Subsequent localisation of their spatial expression patterns would provide additional 284	

data that would inform function. 285	
 286	

Predicting ligands for F. hepatica rhodopsin GPCRs 287	
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In addition to the flatworm-specific fwRhod sequences described above, for which 288	
the ligands and functions remain cryptic, we also identified many rhodopsins with 289	

clear similarity to previously annotated GPCRs.  Figure 2A shows the phylogenetic 290	
delineation of these sequences into amine-, opsin- and peptide-like receptors, 291	

distinctions that are supported by BLASTp comparisons with general (ncbi nr) and 292	
lineage-specific (superphylum level) datasets, as well as by gross domain structure 293	
(InterProScan) (S1 Table).  These data provided a foundation for deeper 294	

classification of putative ligand-receptor matches. 295	
 296	

The structure and function of GPCR LBDs can be studied using molecular modelling 297	
to predict interactions with receptor-bound ligands.  These predictions can then be 298	
validated by targeted mutagenesis of residues within the LBD, measuring impacts 299	

with downstream signalling assays.  Such experiments have been performed in 300	
model vertebrates and invertebrates, enabling identification of evolutionarily 301	

conserved binding residues/motifs.  These data inform assignment of putative 302	
ligands to newly discovered receptors.  Since mutagenesis experiments have not yet 303	

been performed in flatworm GPCRs, we employed a comparative approach to 304	
identify 17 F. hepatica rhodopsins with LBD motifs diagnostic of receptors for NPF/Y, 305	
5-HT, octopamine (Oct) or acetylcholine (ACh) (Figure 4; S4 Table), thus enabling in 306	

silico ligand-receptor matching of these GPCRs. 307	
 308	

Comparison of F. hepatica rhodopsins by structural alignment with LBD residues 309	
conserved across vertebrate NPY and dipteran NPF receptors [39-44] identified 310	
three peptide receptors with more than 75% identity across 9 ligand-interacting 311	

positions (Figure 4A).  The two highest scoring GPCRs (BN1106_s3169B000088 312	
and D915_05685) are also found, in our phylogenetic analysis (S5 Figure) in the 313	

same clade as the deorphanized NPF/Y receptors of human (HsNPYR2), Glossina 314	
mortisans (Glomo-NPFR) and S. mediterranea (SmedNPYR1).  These data 315	
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designate these three F. hepatica GPCRs as prime candidates for further work to 316	
deorphanize and confirm these receptors as NPF/Y-activated, and to probe the 317	

biology of NPF/Y receptors in parasitic flatworms.  A single NPF/Y receptor has been 318	
functionally characterised in S. mediterranea, displaying a role in the maintenance of 319	

sexual maturity [24].  If related functions are conserved in liver fluke NPF/Y receptors 320	
they could have appeal as therapeutic targets in adult fluke that could interrupt 321	
parasite transmission, although their utility for the control of acute fasciolosis, caused 322	

by migrating juveniles, would be open to question. 323	
 324	

Broad phylogenetic comparison of our peptide receptor set with a comprehensive 325	
collection of deorphanized bilaterian rhodopsin GPCRs (S5 Figure), identified F. 326	
hepatica receptors similar to those for myomodulin, FLP, luqin and Neuropeptide KY 327	

(NKY).  These ligands have all been predicted or demonstrated in previous 328	
biochemical or in silico studies of flatworm neuropeptides [36-38].  We also 329	

uncovered F. hepatica GPCRs with phylogenetic similarity to allatotropin, allatostatin, 330	
thyrotropin-releasing hormone and sex peptide receptors.  These ligands have not 331	

yet been reported in flatworms, although the existence of allatostatin-like receptors in 332	
flatworms is supported by the inter-phyla activity of arthoropod allatostatins in 333	
helminth (including flatworm) neuromuscular assays [45]. 334	

 335	
No F. hepatica neuropeptide sequences have been published yet, but our 336	

unpublished data suggest the presence of at least 36 neuropeptide genes in the F. 337	
hepatica genome (Duncan Wells, Queen’s University Belfast, personal 338	
communication).  These ligands would facilitate deorphanisation of heterologously-339	

expressed peptide GPCRs (S1 Table).  This is essential work, since although two 340	
planarian peptide receptors have been deorphanised [23,24], no flatworm parasite 341	

peptide GPCRs have been ligand matched yet.  Receptor deorphanisation provides 342	
a starting point for drug discovery, by enabling development of agonists or 343	
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antagonists that modulate the interaction of a GPCR with its cognate ligand.  Such 344	
compounds could form the basis of ligand series for screening pipelines that would 345	

lead to new flukicides [46,47]. 346	
 347	

Serotonin (5-hydroxytryptamine, 5-HT) is abundant throughout flatworm nervous 348	
systems, and is considered the primary flatworm excitatory neurotransmitter [48].  349	
Deorphanized GPCRs activated by 5-HT have been described in turbellarians and 350	

trematodes, with an S. mansoni 5-HT receptor (Sm5HTR) involved in neuromuscular 351	
control [49-51].  Five F. hepatica rhodopsins (Figure 4B) bore appreciable (≥80%) 352	

positional identity in amino acids shown to be key ligand-interacting residues in the 353	
human 5HT1A LBD [52,53].  Notably, these residues were also conserved in the 354	
deorphanized S. mansoni 5-HT receptor (Sm5HTR, Smp_126730) [51].  Three of the 355	

sequences (BN1106_s362B000177, BN1106_s81B000700 and 356	
BN1106_s10B000515) also resembled Sm5HTR in our phylogenetic analysis, 357	

identifying them as likely 5-HT receptors.  The remaining two (D915_00277 and 358	
BN1106_s1436B000114) appeared phylogenetically more similar to an S. mansoni 359	

dopamine receptor (Smp_127310) [54].  These annotations provide rational starting 360	
points for receptor deorphanization using functional genomic and/or heterologous 361	
expression tools.  We found that F. hepatica dopamine-like receptors, identified by 362	

phylogeny (S5 Figure), displayed poor conservation (max 56% overall identity) to the 363	
human D2 LBD [55].  Due to this lack of selectivity, we did not annotate any F. 364	

hepatica GPCRs as dopamine receptors. 365	
 366	
Although common in other invertebrates, octopamine has not yet been directly 367	

demonstrated as a neurotransmitter in flatworms.  Evidence for its presence is 368	
indirect, based on tyramine β-hydroxylase (octopamine’s biosynthetic enzyme) 369	

activity in cestodes and planaria [56,57].  Three rhodopsins (Figure 4C) showed 370	
100% conservation of the arthropod octopamine LBD, as determined from 371	
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Periplaneta americana and Bombyx mori [58,59], with an additional four showing 372	
88% conservation.  Of these seven rhodopsins, four resolved in close phylogenetic 373	

proximity to Drosophila mushroom body octopamine receptors (D915_02972), 374	
Drosophila octopamine beta-receptors (D915_08505 and BN1106_s1016B000108) 375	

(S5 Figure) or a Drosophila tyramine receptor (D915_05578), denoting these as 376	
high-confidence octopamine receptors.  These data provide further evidence in 377	
support of a functional role for this enigmatic classical neurotransmitter in flatworms. 378	

 379	
Acetylcholine has species-specific impacts on flatworm neuromuscular preparations 380	

in vitro, with myoinhibitory effects in Fasciola [60].  Two putative muscarinic 381	
acetylcholine receptors (mAChRs), shared highest LBD identity with a Rat M3 ACh 382	
receptor (Figure 4D) [61].  Although these were only 67% identical to the rat 383	

sequence, the five ligand-interacting residues within their LBDs were 100% identical 384	
to those of a deorphanised S. mansoni mAChR, known to be involved in 385	

neuromuscular coordination (SmGAR) [62].  These receptors (D915_00814 and 386	
BN1106_s1913B000092) were also the most similar to SmGAR in our phylogeny (S5 387	

Figure) so we consider them amongst our high confidence candidates for 388	
deorphanization. 389	
 390	

F. hepatica glutamate receptors bear divergent glutamate binding domains 391	
At least three glutamate-like GPCRs exist in F. hepatica (Figure 5A, S1 Table).  All 392	

three are defined by significant BLASTp similarity (median E=2.3e-34) to metabotropic 393	
glutamate receptors (mGluRs), and/or by the presence of InterPro GPCR family 3 394	
(Class C) domains IPR017978, IPR000162 or IPR000337.  Phylogenetic analysis of 395	

these GPCRs was performed alongside receptors representative of the various Class 396	
C subgroups (Figure 5) [63], including Ca2+-sensing receptors, γ-aminobutyric acid 397	

type B (GABAB) receptors, metabotropic glutamate (mGluR) receptors, and 398	
vertebrate taste receptors; for reference we also included the two previously reported 399	
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mGluRs from S. mansoni [21].  One F. hepatica GPCR (BN1106_s2924B000081) 400	
resolved alongside Smp_052680, which has previously been described as an S. 401	

mansoni mGluR; these receptors form a close outgroup from the mGluR clade, 402	
supporting their designation as mGluRs.  A second F. hepatica glutamate receptor 403	

(BN1106_s1717B000113) also has a close S. mansoni ortholog (Smp_128940), both 404	
of which reside in an orphan outgroup that is of uncertain provenance.  The third F. 405	
hepatica glutamate receptor resides within another orphan group, close to human 406	

GPR158 and GPR179, two closely related class C GPCRs expressed respectively in 407	
the human brain and retina [64].  Although these receptors have been linked with 408	

specific disease states [65,66], their ligands remain unknown. 409	
 410	
Divergence within the LBD can inform the ligand selectivity of Class C receptors 411	

[21,67].  To further classify the two orphan glutamate GPCRs described above, we 412	
generated multiple sequence alignments to analyse the conservation of established 413	

agonist-interacting residues between mammalian mGluR and GABAB receptors and 414	
our F. hepatica GPCRs.  These analyses identified no significant conservation of 415	

either mGluR or GABAB LBD residues (Figure 6B).  Figure 6B also includes the 416	
previously reported S. mansoni glutamate receptors [21], where Smp_052660 417	
contained a relatively well-conserved LBD with Smp_062660 appearing more 418	

atypical.  Since all three F. hepatica glutamate GPCRs bear atypical LBDs with 419	
respect to both GABAB and mGluR, it remains difficult to unequivocally define their 420	

ligand selectivity on the basis of conserved motifs.  Nevertheless, the lack of in silico 421	
evidence for F. hepatica GABAB GPCRs reflects the dominance of GABAA-like 422	
pharmacology, which suggests that flatworm GABA signal transduction is probably 423	

entirely mediated by ionotropic receptors [48,68]. 424	
 425	

The Wnt binding domain is conserved in F. hepatica frizzled/smoothened 426	
receptors 427	

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 22, 2017. ; https://doi.org/10.1101/207316doi: bioRxiv preprint 

https://doi.org/10.1101/207316
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 18	

Ten frizzled (fzd) GPCRs and a single smoothened (smo) GPCR are recognised in 428	
the human genome.  In F. hepatica we identified five fzd-like sequences and one 429	

smo-like sequence (Figure 6; Table S1; Table S7).  All of these show high scoring 430	
similarity to annotated sequences in the ncbi nr dataset (median E=3.8e-83), and all 431	

five fzd contain InterPro domain IPR000539, with the single smo containing domain 432	
IPR026544 (Table S1).  Phylogenetic analysis of these alongside vertebrate and 433	
invertebrate receptors placed all in close proximity to existing fzd/smo groups (Figure 434	

6A).  Four F. hepatica fzd had individual direct orthologs with the four known S. 435	
mansoni fzd [21]. 436	

 437	
Frizzled receptors are activated by cysteine-rich glycoprotein ligands known as Wnts 438	
(Wingless and Int-1), and are involved in developmental signalling through at least 439	

three different signalling pathways [69].  Crystallography of mouse fz8, docked with 440	
Xenopus wnt8, identified 14 amino acids within the fz8 CRD that make contact with 441	

the Wnt8 ligand [69].  Positional conservation of these residues is apparent when fz8 442	
is aligned with the five F. hepatica fzd sequences (Figure 6B; S6 Table), suggesting 443	

conservation of the wnt-frizzled interaction between liver fluke and vertebrates.   444	
 445	
Two Wnt ligands have been described in S. mansoni [70,71] ; our BLAST searches 446	

identified at least three Wnt-like sequences in the F. hepatica genome 447	
(BN1106_s198B000330.mRNA-1, BN1106_s1256B000163.mRNA-1, 448	

BN1106_s737B000430.mRNA-1; Figure 6C).  These showed conservation of the 23 449	
conserved cysteine residues that are diagnostic of Wnt glycoproteins [72].  Norrin, a 450	
non-Wnt protein ligand, can also activate Fz4, and the canonical β-catenin pathway.  451	

The amino acids involved in norrin binding to the fz4 CRD have also been 452	
determined [73], but we did not observe conservation of these in any of the F. 453	

hepatica fzd.  Similarly, BLASTp searches of human norrin (Uniprot Q00604) against 454	
the F. hepatica genome did not return significant hits, suggesting that the norrin-fz 455	
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signaling axis may not function in liver fluke.  Smoothened receptors are structurally 456	
similar to frizzleds, but operate in a ligand-independent fashion within hedgehog 457	

signaling pathways that control several developmental processes [74].  Model 458	
organism genomes typically contain only one smoothened gene (SMO); this was the 459	

case in S. mansoni and S. mediterranea [21], and here we have identified a single F. 460	
hepatica smoothened (BN1106_s1509B000194 ; Figure 6; Table S1). 461	
 462	

Fzd/smo GPCRs are involved broadly in the control of cellular development.  Our 463	
discovery of fzd/smo GPCRs, and their Wnt ligands, in F. hepatica opens avenues 464	

towards probing molecular aspects of development and differentiation in the putative 465	
stem cells/neoblasts of liver fluke [35].  Neoblasts are the cells that impart the 466	
regenerative capacity of free-living turbellarian flatworms [75], and neoblast-like cells 467	

also represent the only proliferating cells in several parasitic species [76-78].  468	
Therefore, these cells are important in understanding fundamental fluke biology and 469	

represent potential repositories of unique anthelmintic targets, capable of inhibiting 470	
worm growth or development.  The presence of both receptor and ligand sequences 471	

will permit functional genomic dissection of Wnt-Frizzled ligand-receptor signalling 472	
networks, aimed at elucidating their roles in the development and differentiation of 473	
liver fluke neoblast- like cells.  These FhGPCRs will enable comparisons between 474	

the biology of parasitic and free-living flatworms, where Wnt signaling is known to be 475	
essential for anterior-posterior polarity in regenerating planaria [79,80]. 476	

 477	
Class B (Adhesion and Secretin) receptors 478	
Class B receptors incorporate both adhesions and secretins.  Adhesions are 479	

characterised by a long N-terminal extracellular domain (ECD) that includes several 480	
functional motifs.  These ECDs are auto-proteolytically cleaved into two subunits that 481	

subsequently reassemble into a functional dimer [26].  We identified two Class B 482	
sequences in the F. hepatica genome (S7 Figure, S1 Table), both of which 483	
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(scaffold181_78723-79604, and BN1106_s537B000355) contained GPCR class B 484	
InterPro domain IPR000832 and displayed closest BLASTp similarity (E=5.6e-7) to 485	

latrophilin-like receptors.  These data suggest that both are adhesions, rather than 486	
secretins.  Phylogenetic analysis of these GPCRs alongside human Class B 487	

receptors supports the definition of scaffold181_78723-79604 as an adhesion, 488	
alongside two previously reported S. mansoni adhesions (Smp_176830, 489	
Smp_099670) [21], while the other receptor appears more divergent.  490	

BN1106_s536B000355 pairs with another known S. mansoni adhesion 491	
(Smp_058380) [21], although both sit in closer proximity to human secretins than 492	

adhesions.  493	
 494	
Deorphanization of a handful of adhesions matches them with a complex assortment 495	

of ligands including collagen, transmembrane glycoproteins, complement proteins 496	
and FMRFamide-like neuropeptides [81].  This assortment of potential ligands, and 497	

their expression in almost every organ system has led to the proposal of a diverse 498	
range of functions for vertebrate adhesions.  The F. hepatica adhesion complement 499	

of two GPCRs is greatly reduced compared to the 33 receptors known in humans; in 500	
other flatworms 14, 4 and 1 adhesions have been described in S. mediterranea, E. 501	
multilocularis and S. mansoni, respectively [21,22,24].  Functional characterisation 502	

will be a challenging task given the wide range of possible functions to be assayed; 503	
an appealing starting point would be to investigate roles in neoblast motility prior to 504	

differentiation, given that mammalian adhesion GPCRs are involved in the control of 505	
cellular migration [81]. 506	
 507	

Developmental expression 508	
Using RNA-Seq methods, we were able to confirm expression of 101 GPCRs across 509	

libraries representing several F. hepatica life-stages.  These datasets included 510	
publically available reads from individual developmental stages [18], and a 511	
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transcriptome that we generated in-house for 21-day liver stage ex-vivo juveniles 512	
(juv2).  Since these datasets were generated independently and clearly display 513	

distinct sequence diversities, we avoided any further direct comparisons between 514	
Cwiklinski juv1 and our juv2 datasets.  Each dataset is analysed separately, below. 515	

 516	
Figure 7A illustrates detection of 83 GPCRs across Cwiklinski’s developmentally 517	
staged RNA-Seq datasets.  These comprised four FZD, thirteen aminergic 518	

rhodopsins, two opsins, 41 peptidergic rhodopsins, and 23 orphan rhodopsins.  The 519	
latter included nine fwRhods.  Clustering within Figure 7A’s expression heatmap 520	

shows clear developmental regulation of GPCR expression, outlining nine GPCRs 521	
with relatively higher expression in adults, two with higher expression in 21d 522	
juveniles, 64 GPCRs preferentially expressed in either 1h, 3h or 24h NEJs, and six 523	

receptors expressed most highly in eggs.  GPCR classes appear to be randomly 524	
distributed across these expression clusters, giving little opportunity to infer function 525	

from expression.  Adult-expressed GPCRs include five orphan fwRhods, three 526	
peptide receptors including a putative NPF/Y receptor, and a predicted octopamine-527	

gated aminergic rhodopsin.  The majority of expressed GPCRs occurred in the NEJ-528	
focused expression cluster.  Given data implicating GPCRs in motility, 529	
growth/development and sensory perception [11], it is no surprise to find high levels 530	

of GPCR expression in the NEJs, which must navigate and burrow their way from the 531	
gut lumen into the liver parenchyma, while also sustaining rapid growth from the start 532	

of the infection process.  The high expression in these stages, of receptors that we 533	
predict to be activated by myomodulators such as ACh, FMRFamide, GYIRFamide, 534	
myomodulin, myosuppressin and 5-HT, provide tentative support for these 535	

predictions.  The focused expression of six GPCRs in eggs suggests potential roles 536	
in the control of cellular proliferation and fate determination processes that occur 537	

during embryonation of liver fluke eggs.  This complement did not include frizzled or 538	
adhesion GPCRs that are traditionally implicated in the control of development, 539	
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instead consisting of rhodopsins (including an angiotensin-like peptide receptor, two 540	
octopamine-like amine receptors, one opsin receptor and one fwRhod receptor).   541	

 542	
Focusing on the pathogenic 21-day juvenile stage, we detected 76 GPCRs in our 543	

juv2 datasets, and 29 in the corresponding juv1 samples from Cwiklinski’s dataset 544	
(Figure 7B).  Our juv2 dataset included three glutamate, one adhesion, four frizzled, 545	
one smoothened, and 67 rhodopsins.  The identity of the receptors expressed here 546	

again attest to the key role of neuromuscular co-ordination in this highly motile life 547	
stage, which must penetrate and migrate through the liver parenchyma en route to 548	

the bile ducts.  Amongst the receptors expressed in this stage and thought to have a 549	
role in neuromuscular function are several activated by classical neurotransmitters 550	
including ACh, dopamine and 5-HT.  The peptide receptors include some with 551	

phylogenetic similarity to receptors for myoactive flatworm peptides (FMRFamide, 552	
GYIRFamide, NPF) [11], as well as receptors from other invertebrates activated by 553	

peptide ligands known to have excitatory effects on flatworms (allatostatin A, 554	
myomodulin, proctolin) [82].  The presence of highly expressed GPCRs with 555	

probable neuromuscular functions in liver stage juveniles, points to the importance of 556	
studying these receptors with a view to flukicide discovery.  The damage caused by 557	
migrating juvenile fluke requires that new flukicides are effective against this stage.  558	

The neuromuscular GPCRs expressed in migrating juveniles provide compelling 559	
targets for new drugs. 560	

 561	
Conclusions 562	
GPCRs are targets for 33% of human pharmaceuticals [17], illustrating the appeal of 563	

GPCRs as putative anthelmintic targets.  This study provides the first description of 564	
the F. hepatica GPCR complement permitting consideration of a GPCR target-based 565	

screening approach to flukicide discovery.  To facilitate the deorphanization 566	
experiments that will precede compound screening efforts, we have described a set 567	
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of high confidence rhodopsin ligand-receptor pairs.  We identified these GPCRs, 568	
including receptors for ACh, octopamine, 5HT and NPF/Y, through phylogenetic 569	

comparison with existing deorphanised receptors and positional conservation of 570	
ligand-interacting residues within ligand binding domains.  Our additional descriptions 571	

of flatworm-specific rhodopsins support the potential for synthetic ligands to be 572	
parasite-selective anthelmintics.   573	
  574	
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Materials and Methods 575	

Liver fluke sequence databases 576	

We exploited two F. hepatica genome assemblies available from WormBase 577	
ParaSite [83], generated by Liverpool University 578	
(http://parasite.wormbase.org/Fasciola_hepatica_prjeb6687/Info/Index/; [18], and 579	

Washington University, St Louis 580	
(http://parasite.wormbase.org/Fasciola_hepatica_prjna179522/Info/Index/; [19]. 581	

 582	
Identification of GPCR-like sequences from F. hepatica 583	
Figure 1 summarises our GPCR discovery methodology, which employed Hidden 584	

Markov Models (HMMs) constructed from protein multiple sequence alignments 585	
(MSAs) of previously described S. mansoni and S. mediterranea GPCR sequences 586	

[21].  Individual HMMs were constructed for each GRAFS family [25].  Alignments 587	
were generated in Mega v7 (www.megasoftware.net) [84] using the Muscle algorithm 588	
with default parameters.  HMMER v3 (http://.hmmer.org) was employed to construct 589	

family-specific HMMs (hmmbuild) from alignments and these were searched 590	
(hmmsearch) against a predicted protein dataset from F. hepatica genome 591	

PRJEB6687 consisting of 33,454 sequences [18].  Returned sequences were filtered 592	
for duplicates and ordered relative to the hmmsearch scoring system, enabling the 593	
classification of hits according to the GRAFS family to which they showed most 594	

similarity (i.e. highest score, lowest E value).  All remaining returns were then used 595	
as BLAST queries (BLASTp and tBLASTn) to identify matching, or additional, 596	

sequences originating from the PRJEB6687 and PRJNA179522 genomes (Figure 1).  597	
Where sequences appeared in both genomes, we kept the longest annotated 598	

sequence (S1 Table). 599	
 600	
GPCR annotation 601	
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Sequences resulting from HMM searches were filtered by transmembrane (TM) 602	
domain composition, using hmmtop (http://www.sacs.ucsf.edu/cgi-bin/hmmtop.py) 603	

[85,86].  Sequences containing ≥4 TMs were analysed as described below. 604	
 605	

Homology analyses 606	
All GPCRs were used as BLASTp [87] queries, to identify their closest (highest 607	
scoring) match in the ncbi non-redundant (nr) protein sequence dataset 608	

(https://blast.ncbi.nlm.nih.gov/Blast.cgi), with default settings and the “Organism” field 609	
set to exclude Platyhelminthes (taxid: 6157).  All GPCRs were additionally searched 610	

against more phylogenetically limited datasets, by using the “Organism” field to limit 611	
the BLASTp searches to: (i) Basal phyla, Ctenophora (taxid:10197), Porifera 612	
(taxid:6040), Placozoa (taxid:10226), Cnidaria (taxid:6073); (ii) Superphylum 613	

Lophotrochozoa (taxid: 1206795), excluding phylum Platyhelminthes (taxid: 6157); 614	
(iii) Superphylum Ecdysozoa (taxid: 1206794); (iv) Superphylum Deuterostomia 615	

(taxid: 33511).  For BLASTp searches against other flatworms, we performed local 616	
BLAST+ [88] on the WBPS9 release of WormBase Parasite, which included 617	

predicted protein datasets from 30 flatworm species.  In all cases, we recorded the 618	
single highest scoring hit, or recorded “no significant similarity found” in cases where 619	
no hits were returned (Table S1); sequences generating both GPCR hits and “no 620	

hits” were retained.  Where the top hit was not to a GPCR, that sequence was 621	
removed from the dataset. 622	

 623	
Domain composition 624	
GPCR identities were confirmed using InterProScan Sequence Search 625	

(www.ebi.ac.uk/interpro/search/sequence-search) [89] and/or HMMER HMMScan 626	
(www.ebi.ac.uk/Tools/hmmer/search/hmmscan) [90].  Again, sequences returning 627	

non-GPCR domains were omitted from the dataset, with all others retained.   628	
 629	
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Motif identification 630	
As an additional measure of confidence in our identifications, we analysed the 631	

presence/absence of key motifs diagnostic of receptor families and subfamilies.  632	
These analyses were performed for rhodopsins generally, the ligand binding domains 633	

(LBDs) of rhodopsin receptors for acetylcholine (ACh), neuropeptide F/Y (NPF/Y), 634	
octopamine and serotonin (5-hydroxytryptamine, 5HT), and for the LBDs of 635	
glutamate and frizzled/smoothened families.  Motifs were identified via protein 636	

multiple sequence alignment (MSA) of GPCRs, performed in MAFFT 637	
(www.mafft.cbrc.jp/alignment/server) [91].  Only identical amino acids were accepted 638	

at each site, with conservation expressed as % identity across all sites.  Motif 639	
illustrations (Figures 3 & 7) were generated using WebLogo 3 640	
(http://weblogo.threeplusone.com) [92]. 641	

 642	
Phylogenetic reconstruction 643	

Maximum likelihood (ML) phylogenetic trees were constructed using PhyML 644	
(http://www.phylogeny.fr) [93], from protein MSA generated in MAFFT 645	

(www.mafft.cbrc.jp/alignment/server/) [91].  Alignments were manually edited (in 646	
Mega v7) to include only TM domains, by removing extramembrane blocks aligned 647	
with human glutamate, rhodopsin, adhesion or frizzled proteins.  Trees were 648	

constructed from these TM-focused alignments in PhyML using default parameters, 649	
with branch support assessment using the approximate likelihood ratio test (aLRT), 650	

under “SH-like” parameters.  Trees, exported from PhyML in newick format were 651	
drawn and annotated in FigTree v1.4.2 (http://tree.bio.ed.ac.uk/software/figtree/). 652	
 653	

RNA-Seq analyses 654	
Expression of F. hepatica GPCRs was investigated in publically available and in-655	

house generated RNA-Seq datasets.  These included developmentally staged 656	
Illumina transcriptome reads associated with one of the F. hepatica genome projects 657	
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[18] (reads accessed from the European Nucleotide Archive at 658	
http://www.ebi.ac.uk/ena/data/search?query=PRJEB6904).  These samples 659	

originated from distinct developmental stages of US Pacific Northwest Wild Strain F. 660	
hepatica (Baldwin Aquatics), including egg (n=2), metacercariae (met; n=4), in vitro 661	

NEJs 1h post-excystment (NEJ1h; n=1), in vitro NEJs 3h post-excystment (NEJ3h; 662	
n=2), in vitro NEJs 24h post-excystment (NEJ24h; n=2), ex-vivo liver-stage juveniles 663	
(juv1; n=1) and ex-vivo adult parasites (Ad; n=3).  Our in-house datasets were 664	

generated from ex vivo liver stage F. hepatica juveniles (Italian strain, Ridgeway 665	
Research Ltd, UK), recovered from rat (Sprague Dawley) hosts at 21 days following 666	

oral administration of metacercariae (juv2; n=3).  Total RNA, extracted with Trizol 667	
(ThermoFisher Scientific) from each of the 3 independent biological replicates, was 668	
quantified and quality checked on an Agilent Bioanalyzer, converted into paired-end 669	

sequencing libraries and sequenced on an Illumina HiSeq2000 by the Centre for 670	
Genomic Research at the University of Liverpool, UK.  RNA samples were spiked 671	

prior to library construction with the ERCC RNA Spike-In Mix (ThermoFisher 672	
Scientific) [94].  All read samples were analysed using the TopHat and Cufflinks 673	

pipeline [95-100], with mapping against PRJEB6687 genome sequence and 674	
annotation files (accessed from WormBase Parasite; 675	
http://parasite.wormbase.org/ftp.html).  Data were expressed as number of fragments 676	

mapped per million mapped reads per kilobase of exon model (FPKM).  In juv2 677	
datasets we discarded GPCRs represented by fewer than 0.5 FPKM (the minimum 678	

linear sensitivity that we detected with our ERCC spike in); for the staged datasets, 679	
we included only receptors represented by ≥0.5 FPKM in at least one life stage.  680	
Heatmaps were generated with heatmapper (http://www.heatmapper.ca/) [101] set 681	

for Average Linkage, and Pearson Distance Measurement. 682	
  683	
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Figure Captions 1084	
Fig 1: Methods for discovery and annotation of Fasciola hepatica G protein 1085	

coupled receptors (FhGPCRs).  (A) Hidden Markov Models (HMMs) representing 1086	
glutamate, rhodopsin, adhesion, frizzled/smoothened and secretin families, and two 1087	

rhodopsin subfamilies, were built from protein multiple sequence alignments of 1088	
Schistosoma mansoni and Schmidtea mediterranea GPCRs [21].  HMMs were built 1089	
and searched respectively using the hmmbuild and hmmsearch modules of HMMER 1090	

v3.0.  Searches were performed against two publically available F. hepatica 1091	
genomes using hmmsearch and basic local alignment search tool (BLAST) tools.  1092	

Each putative FhGPCR sequence was assessed for transmembrane (TM) domain 1093	
composition with hmmtop before classification using tools including BLASTp, 1094	
Interproscan and CLANS.  (B) The largest proportion (49%) of FhGPCRs carried the 1095	

full complement of 7 TMs, with 88% of sequences bearing at least 4 TMs.  (C) 1096	
GRAFS composition of 146 FhGPCRs carrying ≥4 TMs.  (D) Rhodopsins were 1097	

subject to further classification, including BLASTp vs datasets representing major 1098	
non-flatworm animal phyla and superphyla.  These rhodopsin homology 1099	

classifications fed back into phylogenetic analyses versus deorphanised bilaterian 1100	
GPCRs to confirm their putative ligand selectivity, with a final analysis of ligand 1101	
binding domain composition comparing conservation of ligand interacting residues 1102	

for characterised GPCRs reported in the literature with our F. hepatica assignments. 1103	
 1104	

Fig 2: Phylogenetic classification of Fasciola hepatica rhodopsin G protein-1105	
coupled receptors.  (A) Maximum-likelihood cladogram of F. hepatica rhodopsins.  1106	
Phylogeny delineated clades containing rhodopsins with distinct homologies (RA, 1107	

amine; RP, peptide; RO, opsin: R, orphan rhodopsin).  The orphan clades contained 1108	
sequences with generally low BLASTp similarity to their closest non-flatworm 1109	

BLASTp hit, but concentrated within them were 18 sequences with exceptionally low 1110	
(E>0.01) BLASTp similarity to non-flatworm sequences (fwRhods).  The tree was 1111	
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midpoint rooted and was generated from a multiple protein sequence alignment 1112	
trimmed to TM domains I-VII.  Numbers at nodes indicate statistical support from 1113	

approximate likelihood ratio test (aLRT).  Tip colours are coded according to the E-1114	
value scale (as indicated) of that GPCR’s closest BLASTp match in the ncbi nr 1115	

database, excluding phylum Platyhelminthes.  (B) Summary of sequence similarity 1116	
comparisons between GPCRs within each rhodopsin clade, and their closest 1117	
BLASTp hits in major phylogenetic groups (Basal: Cnidaria, Ctenophora, Porifera, 1118	

Placozoa; superphylum Lophotrochozoa, omitting Platyhelminthes; Superphylum 1119	
Ecdysozoa; superphylum Deuterostomia; phylum Platyhelminthes).  BLASTp E-value 1120	

(median) is summarised in each case, colour coded as a heat map on the same 1121	
colour scale as (A).  The number of GPCRs comprising each F. hepatica clade (n) is 1122	
also indicated.  (C) Sequence diversity within ubiquitous rhodopsin motifs of the 1123	

majority (117) of the F. hepatica rhodopsins (upper panel), compared to those motifs 1124	
in 18 F. hepatica fwRhods (lower panel).  The mammalian consensus motifs are 1125	

illustrated above the top panel, along with an illustration of the location of each motif 1126	
within the rhodopsin 7TM domain structure.  Some variability is visible within the TM2 1127	

and TM6 motifs, but TM3 and TM7 motifs are well conserved. 1128	
 1129	
Fig 3: Identification of flatworm-specific rhodopsins (fwRhods) in genomes 1130	

from phylum Platyhelminthes.  (A) The 18 Fasciola hepatica GPCRs in our dataset 1131	
that had poor BLASTp similarity (E>0.01) to non-flatworm sequences in the ncbi nr 1132	

dataset (lsGPCRs), were used as queries in BLASTp searches of flatworm genomes 1133	
in WormBase Parasite (release WBPS9).  All hits scoring E<0.01 were back-1134	
searched by BLASTp against our F. hepatica GPCR dataset.  Sequences scoring 1135	

E<0.01 against one of the original F. hepatica GPCRs were retained as matches.  1136	
These sequences were then filtered to identify those lacking matches in ncbi nr, 1137	

lacking non-GPCR protein domains, possessing at least 4 transmembrane (TM) 1138	
domains, and containing rhodopsin motifs consistent with those seen in the majority 1139	
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of F. hepatica rhodopsins (see C).  (B) This process identified 76 fwRhods in phylum 1140	
Platyhelminthes, the majority (70) of which were from class Trematoda.  Small 1141	

numbers were returned from classes Cestoda and Monogenea.  Note that no 1142	
fwRhods fitting these criteria were identified in class Turbellaria.  (C) Sequence 1143	

diversity within ubiquitous rhodopsin motifs of 18 F. hepatica fwRhods (upper panel), 1144	
compared to those motifs in the 58 fwRhods identified in the wider phylum (lower 1145	
panel); motifs are broadly similar between F. hepatica and the rest of the phylum.  1146	

(D) Maximum likelihood phylogeny of 76 fwRhods, alongside flatworm-specific 1147	
rhodopsins described previously (70 platyhelminth rhodopsin orphan family 1 1148	

(PROF1) [21,22], and 245 S. mediterranea G protein coupled receptor [GCRs, 1149	
comprising RhoL, RhoR, Srfa, Srfb and Srfc families, reported as lacking non-1150	
flatworm homologues [24]) with branches coloured to indicate Family (dark blue, 1151	

PROF1; mid blue, Srfa; cyan, Rho-L; green, Rho-R; orange, Srfb; purple, Srfc; red, 1152	
fwRhod).  Tree was rooted to a human rhodopsin (P08100) and was generated from 1153	

an alignment trimmed to transmembrane domains I-VII.  Numbers at nodes indicate 1154	
statistical support from approximate likelihood ratio test (aLRT).   1155	

 1156	
Fig 4: Conservation of ligand-interacting residues between 17 Fasciola 1157	
hepatica G protein-coupled receptors (GPCRs) and structurally characterized 1158	

homologues from other species.  (A) Neuropeptide F/Y receptor ligand binding 1159	
residues as characterised by mutagenesis in human neuropeptide Y receptor NPY1R 1160	

[39-43], and conserved in Anopheles gambiae (Ag) and Drosophila melanogaster 1161	
(Dm) neuropeptide F receptors (NPFR) [44].  Numbering relative to HsNPY1R.  (B) 1162	
Serotonin (5-hydroxytryptamine; 5HT) receptor ligand binding residues as 1163	

characterised by mutagenesis in human 5HT receptor (Hs5HT1A) [102], and 1164	
conserved in Schistosoma mansoni 5HTR [51].  Numbering relative to Hs5HT1A.  1165	

(C) Octopamine receptor (OaR) ligand binding residues as characterised by 1166	
homology modelling of the Periplaneta americana (Pa) [58], and mutational analysis 1167	
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of the Bombyx mori (Bm) [59] octopamine receptor ligand binding domain.  1168	
Numbering relative to PaOAR, except for Y412 which is shown relative to BmOAR.  1169	

(D) Acetylcholine receptor ligand binding residues as characterised by homology 1170	
modelling of the S. mansoni G protein-coupled acetylcholine receptor (SmGAR) [62]; 1171	

numbering relative to SmGAR.  In each case, only F. hepatica sequences displaying 1172	
at least 75% identity across the stated ligand binding residues are shown.  Relative 1173	
positions of residues across seven transmembrane domains (TM1-7) are shown.  TM 1174	

diagrams are not to scale. 1175	
 1176	

Fig 5: Fasciola hepatica glutamate G-protein coupled receptors (GPCRs) 1177	
display divergent phylogeny and ligand binding domain (LBD) composition.  1178	
(A) Maximum likelihood phylogeny containing three F. hepatica glutamate receptors, 1179	

alongside representative receptors from the various recognised GPCR Class C 1180	
subgroups (subclasses indicated by blue boxes: Ca2+, Ca2+-sensing receptor; 1181	

GABAB, γ-aminobutyric acid type B receptors; mGluR, metabotropic glutamate 1182	
receptors; Orphan, receptors with no known ligand; Taste, vertebrate taste 1183	

receptors).  Two previously reported Schistosoma mansoni glutamate receptors are 1184	
also included; F. hepatica sequences are coloured red, S. mansoni are coloured 1185	
blue, all others are black.  Node numbers indicate statistical support as determined 1186	

by approximate likelihood ratio test (aLRT).  Tree was midpoint rooted.  (B) 1187	
Conservation of ligand-interacting residues between vertebrate GABAB and 1188	

metabotropic glutamate receptors (mGluR), and F. hepatica class C GPCRs.  1189	
Agonist-interacting residues were identified by multiple protein sequence alignment 1190	
of F. hepatica glutamate receptors against mutationally-identified ligand interacting 1191	

residues (those causing a significant reduction in receptor signalling activity), from 1192	
mouse GABAB receptor (top panel), or selected human mGluR subtypes (lower 1193	

panel).  Identical amino acids in F. hepatica/S. mansoni GPCRs are represented by 1194	
white text on black background, functionally conserved amino acids by black text on 1195	
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grey background.  In lower panel, mutations causing a significant reduction in mGluR 1196	
receptor activity are bold and numbered, with the region of the glutamate molecule 1197	

bound by each residue indicated (COOH, C-terminus; NH2, N-terminus).  For 1198	
references see [63,103,104]. 1199	

 1200	
Fig 6: Frizzled/smoothened seven transmembrane receptors and wnt ligands in 1201	
Fasciola hepatica.  (A) Maximum likelihood phylogeny containing six F. hepatica 1202	

frizzled/smoothened receptors, alongside those from Schistosoma mansoni, 1203	
Drosophila melanogaster, Caenorhabditis elegans and Homo sapiens (identified by 1204	

FSMP, d, c and h, respectively).  F. hepatica sequences are coloured red, S. 1205	
mansoni are coloured blue, all other species are coloured black.  Radial labels 1206	
indicate human frizzled clusters (hClust) I-IV, and the smoothened clade.  Node 1207	

numbers indicate statistical support as determined by approximate likelihood ratio 1208	
test (aLRT).  Tree was rooted against a Dictyostelium frizzled sequence (dicty-fslJ-1).  1209	

Tree composition adapted from [21].  (B) WebLogo comparison of ligand interacting 1210	
residues between mouse fz1-10 (top panel) and F. hepatica frizzled receptors.  1211	

Numbering in top panel x-axis is relative to mouse fz8 [69].  (C) Three wnt-like 1212	
sequences exist in F. hepatica.  Shading indicates positions of 22 characteristic Cys 1213	
residues, positions numbered relative to D. melanogaster wnt-1 (Dro-wnt-1). 1214	

 1215	
Fig 7: Expression profiling of 101 G protein-coupled receptors (GPCRs) in 1216	

Fasciola hepatica life stages.  (A) Expression heatmap generated from log2 FPKM 1217	
values of 83 GPCRs identified from developmentally staged RNA-seq libraries.  Life 1218	
stages are represented in columns (Egg; Met, metacercariae; NEJ_1h, newly-1219	

excysted juvenile collected 1h post excystment; NEJ_3h, NEJ collected 3h post-1220	
excystment; NEJ_24h, NEJ collected 24h post-excystment; Juv_21d, liver stage 1221	

juvenile parasites collected from murine livers 21 days following oral administration of 1222	
metacercariae; Adult, adult parasites collected from the bile ducts of bovine livers).  1223	
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Rows indicate individual GPCRs, as denoted by the ID and phylogeny columns.  The 1224	
latter indicates receptor classification and predicted ligand where available (see S1 1225	

Table).  Expression cluster column indicates clusters of GPCRs with highest 1226	
expression focused in particular life stages.  (B) Detection of 76 GPCRs in Illumina 1227	

RNA-Seq libraries generated from F. hepatica 21 day liver-stage juveniles, recovered 1228	
ex vivo from rat infections.  Data show expression of three glutamate (G), one 1229	
adhesion (A), four frizzled (F), one smoothened (S) and 67 rhodopsin (R) GPCRs.  1230	

The rhodopsins include representatives of amine (RA1, RA3), opsin (RO), peptide 1231	
(RP1-7), and orphan (R2,3,4,6).  Data points (each at n=3) represent mean log2 1232	

FPKM ± 95% confidence intervals, as calculated by cuffdiff.  In both panels, flatworm 1233	
rhodopsins (fwRhods) are marked in red text.  ACh, acetylcholine; AstA. Allatostatin 1234	
A; Dop, dopamine; FMRFa, FMRFamide; GHS, growth hormone secretagogue; 1235	

GYIRFa, GYIRFamide; Myom, myomodulin; Myos, myosuppressin; NPF/Y, 1236	
neuropeptide F/Y; Oct, octopamine; Pkt, prokineticin; Tyr, tyramine; 5HT, 5-1237	

hydroxytryptamine. 1238	
  1239	
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Supporting Information Captions 1240	
S1 Table.  Fasciola hepatica G protein coupled receptor (GPCR) dataset 1241	

summary.  Table describes sequences containing 4-9 transmembrane (TM) 1242	
domains.  Each sequence is defined in terms of GRAFS family, and annotated for 1243	

TM composition, sequence length, phylogeny, domain composition and homology 1244	
relative to various datasets. 1245	
 1246	

S2 Text.  Fasciola hepatica G protein-coupled receptor (GPCR) protein 1247	
sequence dataset. 1248	

 1249	
S3 Table.  Flatworm-specific rhodopsins (fwRhods) in Fasciola hepatica and 1250	
other flatworms.  Species and genome IDs of sequences that have ≥4 1251	

transmembrane (TM) domains, and lack high-scoring orthologues in non-flatworms 1252	
(BLASTp score E≥0.01 vs ncbi nr excluding Platyhelminthes), and show 1253	

conservation of at least two of the four ubiquitous rhodopsin motifs.  Each sequence 1254	
is annotated for protein domains where present (Pfam HMMScan). Accessions refer 1255	

to WormBase ParaSite. 1256	
 1257	
S4 Table.  Rhodopsin ubiquitous motifs and ligand binding domains for ACh, 1258	

NPF/Y 5-HT, octopamine.  Note data are in individual tabs.  Rhodopsin: Sequence 1259	
motifs extracted from alignment of F. hepatica rhodopsins, corresponding to 1260	

ubiquitous rhodopsin motifs of TMs 2, 3, 6 and 7; Acetylcholine, NPF, 5-HT, 1261	
Octopamine: Amino acids extracted from alignment of F. hepatica rhodopsins with 1262	
mutationally or structurally-characterised GPCRs (comparators).  Summary: Percent 1263	

identity of ACh, NPF, 5-HT and Oct receptor LBDs, indicating most conserved LBD 1264	
sequences showing at least 75% identity. 1265	

 1266	
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	 50	

S5 Fig.  Phylogenetic comparison of Fasciola hepatica GPCRs with 1267	
deorphanised bilaterian GPCRs.  (A) Peptide receptors (F. hepatica black or 1268	

magenta as described in Fig x); (B) Amine receptors (F. hepatica dark blue); In all 1269	
cases, non-flatworm receptors are coloured light blue. In (A) outer labels indicate 1270	

positions of receptors for neuropeptide families previously reported in flatworms 1271	
(McVeigh et al., 2009; Collins et al., 2010; Koziol et al., 2016); in (B), outer labels 1272	
represent major groups containing phylogenetically similar F. hepatica sequences.  1273	

Trees were midpoint rooted, maximum likelihood phylogenies of transmembrane 1274	
domains I-VII.  Numbers at nodes indicate statistical support from approximate 1275	

likelihood ratio test (aLRT).  Scale bars at the centre of each tree indicate number of 1276	
substitutions per site.  Abbreviations: ACh, acetylcholine; CCAP, crustacean 1277	
cardioactive peptide; Dop, dopamine; FLP, FMRFamide-like peptide; GrH, 1278	

gonadotropin-releasing hormone; Luq, luqin; Mmd, myomodulin; NKY, neuropeptide 1279	
KY; NPF/Y, neuropeptide F/Y; Oct, octopamine; PK, pyrokinin; SIFa, SIFamide; Tyr, 1280	

tyramine; SmGPR, schistosome GPCRs; 5HT, 5-hydroxytryptamine. 1281	
 1282	

S6 Table.  Frizzled receptor ligand binding domain motifs.  Amino acids 1283	
extracted from alignment of F. hepatica frizzled and smoothened GPCRs with 1284	
mutationally characterised mouse fz8, also showing positionally-conserved residues 1285	

in mouse fz1-10 (top panel) and F. hepatica frizzled receptors.  Numbering in top row 1286	
relative to mouse fz8 (Janda et al., 2012).  Green boxes indicate identical residues in 1287	

F. hepatica vs mammalian Fzd. 1288	
 1289	
S7 Figure: Adhesion receptor phylogeny.  Maximum likelihood phylogeny of 1290	

Fasciola hepatica adhesion/secretin-like GPCRs alongside class B GPCRs from 1291	
human and Schistosoma mansoni.  Tree was a midpoint rooted, maximum likelihood 1292	

phylogeny of transmembrane domains I-VII.  Numbers at nodes indicate statistical 1293	
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	 51	

support from approximate likelihood ratio test (aLRT).  Scale bars at the centre of 1294	
each tree indicate number of substitutions per site. 1295	

 1296	
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(Galvez et al., 2000; JBC 275, 41166-41174).

Geng et al (2013) Nature 504(7479) 10.1038/nature12725

Table x. Conservation of ligand-interacting residues between vertebrate GABAB and metabotropic
glutamate receptors (mGluR), and Fasciola hepatica class C GPCRs (FhGlu1-3). Amino acids of
FhGlu1-3 with primary sequence orthology to agonist-interacting residues identified by protein alignment 
FhGlu1-3 against mutation-identified human and rat GABAB receptors (A), or selected human mGluR
subtypes (B). A, Mutationally-identified agonist-interacting residues of (1) human GABAB receptor 1B and
(2) rat GABAB receptor 1a. Identical amino acids in FhGlu1-3 are represented by white text on black
background, functionally conserved amino acids by black text on grey background. B, Mutationally-
identified agonist-interacting residues of human mGluR1-4, 7, 8. Mutations causing a significant reductio
in mGluR receptor activity are bold and numbered. FhGlu1-3 residues identical to any of these are
represented by white text on black background, functionally-conserved residues by black text on grey
background. (1Galvez et al., 2000; 2Geng et al., 2013; 3Wellendorph & Bräuner-Osborne, 2009)

Wellendorph & Brauner-Osborne (2009) Brit J Pharmacol 156, 869-884.
A
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Smp_128940 S A S D N
Smp_052660 S T T E D
B COOH αNH2 αNH2 αNH2 αNH2 αNH2 COOH
mGluR1 Y74 R78 S S165 T188 D208 Y236 E292 G293 D318 D K409
mGluR2 R57 R Y S145 T168 D188 Y216 R S D295 R K377
mGluR3 R64 R68 Y150 S151 T174 D194 Y222 R277 S D301 Q306 K
mGluR4 K74 R78 G S159 T182 D Y N E D K K
mGluR7 N R G S T D Y N D D K K
mGluR8 K71 R75 A S T D Y N E D309 K K
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