Abstract
S100 proteins bind linear peptide regions of target proteins and modulate their activity. The peptide binding interface, however, has remarkably low specificity and can interact with many target peptides. It is not clear if the interface discriminates targets in a biological context, or whether biological specificity is achieved exclusively through external factors such as subcellular localization. To discriminate these possibilities, we used an evolutionary biochemical approach to trace the evolution of paralogs S100A5 and S100A6. We first used isothermal titration calorimetry to study the binding of a collection of peptides with diverse sequence, hydrophobicity, and charge to human S100A5 and S100A6. These proteins bound distinct, but overlapping, sets of peptide targets. We then studied the peptide binding properties of S100A5 and S100A6 orthologs sampled from across five representative amniote species. We found that the pattern of binding specificity was conserved along all lineages, for the last 320 million years, despite the low specificity of each protein. We next used Ancestral Sequence Reconstruction to determine the binding specificity of the last common ancestor of the paralogs. We found the ancestor bound the whole set of peptides bound by modern S100A5 and S100A6 proteins, suggesting that paralog specificity evolved by subfunctionalization. To rule out the possibility that specificity is conserved because it is difficult to modify, we identified a single historical mutation that, when reverted in human S100A5, gave it the ability to bind an S100A6-specific peptide. These results indicate that there are strong evolutionary constraints on peptide binding specificity, and that, despite being able to bind a large number of targets, the specificity of S100 peptide interfaces is indeed important for the biology of these proteins.