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To detect overlap or convergence among the diverse genetic pathways that can extend lifespan, we
collected a dataset of 60 C.elegans age-dependent transcriptomes by RNA-seq technique for worm
strains with vastly different lifespans. We selected four exceptionally long-lived mutants and three
examples of the most successful life-extending RNAi treatments (which increased mean lifespan
by 35% rather than 120% as reported). We used the dataset augmented with publicly available
gene expression datasets to produce a transcriptomic signature of biological age. We introduced a
transcriptomic measure of biological age and observed that its dependence on chronological age is
modulated by a single parameter, the rate of aging. We hypothesized that the scaling revealed in the
gene expression kinetics underlies the recently observed scaling of the survival curves in C.elegans,
and the stochasticity in gene expressions leads to deceleration of mortality with age, reaching a
plateau at advanced ages. Using experimental survival data, we confirm that the plateau mortality
agrees closely with the estimate of Gompertz exponent at the cross-over age near the mean lifespan.
The genes associated with aging in our data are enriched with the targets of transcription factors
such as DAF-16, ELT-2, ELT-6, NHR-10, ZTF-9, NHR-86, and miRNAs including miR-57, -59, and
-244, which is in agreement with previous studies. Overall, our meta-analysis results are consistent
with a concept of aging based on critical dynamics of molecular level variables (e.g., gene expression),

and support our view of aging as arising from dynamic instability of a single (critical) mode.

I. INTRODUCTION

To date, the strongest lifespan extension effect is
achieved in C.elegans and corresponds to almost 10-fold
increase of lifespan by the mg44/ nonsense mutation of
age-1 gene [1, 2]. That extreme hyperlongevity, how-
ever, requires two generations of homozygosity for a mu-
tation, and thus total pre-embryonal genetic disruption.
In human subjects any reasonable therapy against aging
would instead be applied at a considerably later stage
(in adulthood, ideally at advanced ages). Sadly, the best
“therapeutic” models yield significant, but considerably
smaller reported increase of lifespan (up to +150% by
let-363 RNAI) by interventions at embryonic and post-
embryonic stages [3]. Pharmacological inhibition of the
gene homologues yielded even smaller effects on lifespan
in flies, worms, yeasts [4-6] and mice [7-9]. It seems
challenging that a single nonsense mutation can dra-
matically extend the lifespan of the animals, whereas
an RNAIi of the same gene is not able to produce the
same level of effect, especially if administered later in
life. Should we think that such a mutation changes the
molecular machinery of the whole organism during devel-
opment in such a dramatic way that the course of aging
of the super-long-living strains is qualitatively different

both in terms of rates and form, and hence cannot be
reproduced therapeutically? Or is the Gene Regulatory
Network (GRN) sufficiently robust, so that the pace of
aging can be reduced without qualitative alterations of
the relevant molecular mechanisms?

In order to address these questions, we prepared
a dataset of Cl.elegans age-dependent transcriptomes
by RNA-seq technique for worm strains with vastly
different lifespans. We started by studying isogenic
strains carrying the most long-lived C.elegans mutations:
daf-2(e1370) [strain SR806], age-1(mg44) [SR808, at
the first and second generations of homozygosity|, and
the longest-lived daf-2; daf-12 double mutant [strain
DR1694] [1, 2]. The average lifespans in the series range
from twofold to tenfold longer than that of the wild
type. To model the effects of therapeutic interventions
in adult animals, we have chosen five RNAi treatments
with the largest reported increase of lifespan (daf-4 [10],
che-8 [11], cye-1 [12, 13], cco-1 [14], eat-4 [15]). We con-
firmed longevities of worm strains subjected to these five
RNAI interventions. The lifespan modification effects in
our hands, however, proved to be generally smaller than
originally reported: the maximum increase of average
lifespan in the series turned out to be +35%, instead of
+120%. We further selected the three RNAi treatments
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representing, apparently, the most diverse modes of ac-
tion and targeting che-3, daf-4 and cyc-1 for a mRNA
collection follow-up. The overall variation in lifespan
among the strains in both series together ranges from 17
up to 160 days. For each of the mutants or intervention
examples we characterized the transcriptomes at several
ages by RNA-seq technique in order to cover the whole
lifespan range, 60 transcriptomes in total (9 different bi-
ological conditions). The experimental data were aug-
mented by a meta-analysis of publicly available gene ex-
pression measurements in C.elegans (roughly 4000 sam-
ples).

We analyzed the gene expression signatures in the ex-
periments within the context of the “aging at critical-
ity” framework [16], borrowed from dynamical systems
and bifurcation theory [17]. To summarize briefly, we
expect that GRNs of most species operate near an order-
disorder bifurcation point [18] and are intrinsically unsta-
ble [19]. The order parameters associated with the insta-
bility undergo a stochastic evolution in an effective po-
tential determined by the underlying genetic interactions
and hence can be used to produce a molecular (transcrip-
tomic in our case) signature of age. The curvature of the
potential imposes a natural time scale, which turns out to
be the Mortality Rate Doubling Time (MRDT), the most
important characteristic of the aging trajectory. The pat-
tern of molecular changes associated with age over time
was robust across diverse biological conditions tested in
our experiments. We also showed that life-extending mu-
tations and knockdown therapies extend lifespan by sta-
bilizing the regulatory network and thus reducing the rate
of aging. The universality of the aging trajectories is
therefore the molecular basis for the universal character
of the survival curves in previous experiments [20]. We
supported these theoretical propositions by confirming
the predicted quantitative relation between the MRDT
and the mortality plateau at late ages. Therefore the
aging-at-criticality model provides the best mechanistic
explanation of all observations hence is expected to be
useful for understanding of aging dynamics and in future
anti-aging target identification efforts in C.elegans and
other species.

II. RESULTS

A. Selection of long-lived strains and life-extending
interventions

Several mutations leading to exceptional longevity of
C.elegans have been identified [21-24] and studied exten-
sively for their remarkable elevations of both lifespan and
stress-resistance traits [1, 2| (see also Table Ia). To model
the effects of anti-aging interventions we have tested five
RNAIi treatments targeting genes with the largest re-
ported life-span extending effects (see Figure la and Ta-
ble Ib for the summary of our confirmatory survival ex-
periment and the lifespans reported in the original pub-

lications).

The strongest effect we obtained by RNA1i corresponds
to an increase in lifespan by +35%. We chose the three
genes producing significant results in our survival exper-
iment and representing apparently diverse modes of ac-
tion, che-3, daf-4 and cyc-1, for the mRNA collection
follow-up (see Table Ib, highlighted in bold).

B. Age-dependent transcriptomes of long-lived
C.elegans strains

To understand the nature of gene expression changes,
associated with aging and lifespan, we produced an age-
dependent RNA-seq experimental dataset, consisting of
the four mutant strains from Table Ia, three examples
of life-extending RNAi from Table Ib and two control
survivals representing C.elegans wild-type (Bristol-N2,
strain DRM). We utilized a standard pipeline for RNA-
seq data processing (see Materials and Methods VD for
details), yielding a dataset of 60 transcriptomes in total.

We perform the Principal Components Analysis (PCA)
of all the acquired data and present its results for the
mutants (Fig. 1b) and the RNAI treated strains (Fig. 1c)
separately. Even though the number of samples in the
data is dramatically smaller than the number of iden-
tified genes, the data covariance matrix is profoundly
singular (the first four components explain nearly 75%
of the overall variance in the data). The first principal
component is universally associated with aging in all our
experiments. The correlation with age rescaled by the av-
erage lifespan has Pearson correlation coefficient r = 0.75
(p < 1071%). This indicates that the dynamics of gene
expression in relation to aging occurs along the single di-
rection in the multidimensional space of all possible gene
transcripts levels, coinciding with the first principal com-
ponent loading vector. We also note that the variance
of gene expression along PC1 remained quite consistent
across all experiments, for samples ranging from youngest
to oldest of each cohort. Because the first principle com-
ponent comprised transcripts of the precisely the same
genes in genetic mutants with large effects on lifespan
(b), as in RNAI] interventions with much more modest
effects (c), these results strongly support their conver-
gence on a common proximal pathway of life extension.

C. Meta-analysis of aging and signature of
biological age in C.elegans transcriptomes

We first asked whether the aging direction associated
with the first principal component is indeed a prop-
erty of aging dynamics, rather than an artifact due to
inconsistency of PCA for relatively small sample size.
In theory, this could be addressed by a meta-analysis
of age-dependent transcriptomes from unrelated experi-
ments using the publicly deposited gene-expression data.
Typically, every single experiment ends up with a very
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Gene Protein encoded LS* (d) Rel.LS Report.Rel.LS
Mutant strain LS* (d) N2, FV (none) 185  1.00 (none)
SR806(daf-2) 39 daf-4 RNAi TGF-beta receptor ortholog 25 1.35 2.2 [10]
SR808(age-1) 160 che-3 RNAi Dynein H chain iso 1b 24.5 1.32 2.0 [11]
SR808(age-1) F1 38 cyc-1 RNAi Cytochrome C1 22 1.19 1.9 [12, 13]
DR1694(daf-2;daf-12) 43 cco-1 RNAi Cytochrome C oxidase 24 1.30 1.8 [14]
N2 (WT) 17 cat-{ RNAi BNPI glutamate transporter, 21 114 (none) [15]

affecting phar.pumping

(2)

(b)

Table I: (a) The long-lived-mutant C.elegans strains [1, 2| used for in-house mRNA preparation and analysis by
RNA-seq technique. (b) The confirmation survival experiment summary table, listing the results of the RNA
interference in C.elegans. RNAI of the five target genes was reported to have the largest impact on lifespan. The top
three successful RNA1i interventions (in bold) were selected for further transcriptomic measurements.
Abbreviations: LS, mean adult lifespan; Rel.LS, relative adult lifespan; N2, the DRM stock of wild-type strain
Bristol-N2; FV, empty feeding vector in place of RNAi. *mean adult lifespan, days post-L4/adult molt
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Figure 1: (a) Survival plots for five RNAi treatments compared to a control (empty vector) RNAi in C.elegans.
RNAI treatments correspond to different targeted genes/pathways affecting longevity (see Table Ib for the
lifespans). Principal components analysis (PCA) of the experimental RNA-seq transcriptomic datasets for (b) four
long-lived mutants and C.elegans wild-type (Bristol-N2, strain DRM), and (c¢) three life-prolonging RNAi-treated
groups and C.elegans FV controls (fed bacteria harboring empty feeding-vector plasmid). The marker type denotes
strains and RNAi groups (see Tables Ta and Ib for lifespans). The markers in (b) and (c) are colored according to
age rescaled to lifespan (see the colorbar).

large number of measured transcripts’ levels but very few
samples. Analysis of such small datasets is very challeng-
ing [25, 26] because it is prone to over-fitting even if all
of the samples are collected in the same laboratory under
the same conditions. A direct comparison of gene expres-
sion data obtained in different laboratories is notoriously
hard due to the nature of experimental procedures, lead-
ing to batch effects requiring, but not necessarily cured
by, extensive normalization [27-29].

On the horns of this dilemma, we theorized that a suf-
ficiently large collection of “shallow” datasets (up to a
dozen samples in a single experiment) would share the
essential biology and include effects of experimental and
batch differences as uncorrelated noise. To see if the
“depth” can exceed the noise, we decided to create a com-
prehensive transcriptomic dataset for C.elegans by com-
bining all the publicly-available gene expression experi-

ments into a single database. This “MetaWorm” dataset
contains, in toto, more than 400 different transcriptomic
experiments with N = 3724 nematode samples character-
ized by the expression of G = 4861 genes most commonly
expressed /detected in the samples. The composition of
the dataset and the details of the normalization proce-
dures are described in Section V G.

The gene expression variance in the combined dataset
is dominated by batch effects and hence we do not expect
PCA to reveal aging in association with the first principal
component. Given the theoretical expectations, however,
we can hope to identify the direction of aging by searching
for genes associated with age. The MetaWorm dataset
is sufficiently large to generate the cross-validation en-
semble of single-gene association tests using random re-
sampling. We further reduced the number of candidate
genes by thresholding the transcripts by the frequency
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Geneset FDR

DAF-16 targets [30] 4.6e-7

CEC-3 targets (spr-5 mutant, generation 10) [31]  2.0e-4
small RNAs decreased by starvation at PO [32] 1.3e-3
PQM-1 L3 targets [33] 1.4e-3

Rb/E2F pathway (DPL-1,EFL-1,LIN-35), intestine [34] 2.7e-3
PMK-1 targets down in Day 15 vs. Day 6 [35] 3.8¢-3
age-regulated ELT-2 targets [36] 3.8¢-3

up by CSR-1 and w/out CSR-1-bound 22G RNA [37] 7.1le-3
proteins interacting with CEY-1 [38] 7.1e-3
MUT-14, SMUT-1 (DEAD box) [39] 1.6e-2

Hox gene targets (LIN-39, MAB-5, EGL-5) [40] 3.3e-2

Table II: Transcription factors or RNA-binding proteins
for which targets are significantly enriched in the
identified direction of aging (327 genes).
Over-representation analysis was performed using
WormExp database [41].

of significant associations in the resampling; we estimate
that the chosen cross-validation threshold corresponds to
p < 107 uncorrected, or p < 0.05 after Bonferroni cor-
rection. Finally, the set of genes associated with aging
in our MetaWorm study consists of 327 genes: 260 up-
and 67 down-regulated with age, respectively. The aging
genes are very few in number, whereas approximately
4000 out of 4861 genes were never observed in the top-
200 gene-list after resampling, and thus do not seem to be
significantly associated with age in the majority of exper-
iments (see Electronic Supplementary Materials for the
full list of genes implicated in aging in our calculations).

D. Biological interpretation of the direction of
aging

We note that the genes associated with age may not
include regulators of aging. The dataset we created by
RNAseq, comprising 60 samples (section ITA), is not
large enough to produce a reliable set of relevant targets
by a direct reconstruction of the gene-expression inter-
action subspace responsible for the progression of aging.
The MetaWorm dataset is considerably larger, but is ap-
parently noise-dominated and is not suitable, at least in
our hands, for the identification of proximal mediators
of aging. The solution of this problem would require a
different methodology and we are leaving such an investi-
gation for future research. In the meantime, we checked
whether the 327 genes implicated by aging dynamics are
enriched with the targets of natural gene expression reg-
ulators previously implicated in aging or longevity, such
as Transcription Factors (TF) and miRNAs.

1. Targets of transcription factors or RNA binding proteins

We utilized WormExp [41], a curated database of gene
sets built from published high-throughput expression
studies in C.elegans, to predict the proteins whose targets
are enriched within our “aging genes” set. The significant
results of over-representation analysis against the known
targets of transcription factors or RNA-binding proteins
are presented in Table II. We observed considerable en-
richment for the targets of DAF-16, a well-documented
longevity-promoting transcription factor [42], that is also
involved in antibacterial defense and is in part regulated
by ELT-2 [43]. ELT-2 regulates downstream intestinal
components of the DAF-2/DAF-16 pathway and con-
trols p38-dependent gene induction [44], and is consid-
ered to be a key C.elegans transcription factor for intesti-
nal development and function. Recently, normal aging in
C.elegans was reported to be modulated by ELT-2, whose
over-expression extends median lifespan by 15-25% [36].
The targets of ELT-2 were also significantly enriched.

We found enrichment for genes encoding protein tar-
gets of PMK-1 (p38 mitogen-activated protein kinase, a
regulator of the innate immune response), reported to
contribute to longevity and immunosenescence [35, 45|,
and PQM-1, a stress-response transcription factor that
interacts antagonistically with DAF-16, recently charac-
terized as an important lifespan regulator [46].

We then turned to another listing of transcription fac-
tors and their target genes — a high-quality network ob-
tained in [47]. We found that targets of the follow-
ing transcription factors were the most over-represented
among the genes comprising the identified direction of
aging: NHR-1, ELT-6, NHR-10, MAB-3, ZTF-9, NHR-
86. Three of these proteins are nuclear hormone recep-
tors (NHRs) involved in lipid storage and/or catabolism,
which may modulate aging via impaired autophagy and
lysosomal lipolysis [48]. ELT-6 downregulates the ex-
pression of ELT-3 which in turn affects expression of
multiple aging-related genes; ELT-6 knockdown increases
C.elegans lifespan [49]. Finally, as annotated in Worm-
Base [50], ZTF-9 is a zinc finger transcription factor reg-
ulated by several of the most potent longevity-limiting
proteins including AGE-1, ISP-1, DAF-12 and DAF-2.

2. miRNAs

To determine if there are any miRNAs with over-
represented targets in the direction of aging, we per-
formed enrichment analysis. Two sources of data de-
scribing miRNA targets were used — TargetScan [51] and
MirTarBase [52]. The former resource contains results
of in silico prediction of targets of miRNAs, while the
latter database contains experimentally validated inter-
actions. The five top miRNAs enriched from each data
source are presented in Table III. Although only three
of them (miR-57, miR~244 and miR-59) remained signif-
icant after strict Bonferroni correction for multiple test-
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miRNA (TargetScan) miRNA (MirTarBase)

miR-57 miR-59-3p
miR-244 miR-256
miR-253 miR-1819-3p
let-7/miR-48/84/241/795 miR~60-3p
miR-245 miR~52-5p

Table III: The miRNAs whose targets are significantly
enriched in the identified direction of aging. Significant
findings (Bonferroni-corrected p < 0.05) are highlighted
in bold. Data on miRNA targets were obtained from
TargetScan [51] and MirTarBase [52].

ing, we found evidence that several of the other miRNAs
are indeed involved in the regulation of aging.

The miRNA [et-7 is differentially expressed in several
aging studies and is associated with DNA damage check-
point genes and mitochondrial respiration genes [53].
A known target of let-7 is the nuclear hormone recep-
tor daf-12, which serves as a key regulator of germline
elimination-induced longevity [54]. In a recent paper, it
was reported that miR-60 is expressed almost exclusively
in the intestine and directly modulates genes functioning
in intestinal endocytosis. Furthermore, C.elegans ani-
mals lacking miR-60 have a dramatically extended life-
span under chronic oxidative stress condition [55]. De-
spite 3-fold upregulation of miR-253 during aging, no
significant change in lifespan was observed for miR-253
mutants [56], suggesting a redundant, parallel route to
modulation of the same targets. Other miRNAs impli-
cated here were not previously reported to affect (or be
affected by) aging.

E. Universality of aging trajectory

Thus far we have focused on the list of genes asso-
ciated with aging in C.elegans. Another useful tool is
the transcriptomic signature of biological age (cf. DNA
methylation age, which is a weighted sum of DNA methy-
lation features, trained to approximate chronological age
in humans [57-59] and mice [60, 61]). Since the pro-
gression of aging is inherently restricted to essentially
a one-dimension manifold, the corresponding projecting
operator is not unique. Any number of other convenient
signatures can be obtained by applying additional re-
quirements, such as for example, sparsity. We performed
a cross-validated lasso regression of gene expressions in
the MetaWorm dataset on age re-scaled by the average
lifespan, in this 327-gene subset comprising the direc-
tion of aging (see Electronic Supplementary Materials for
the summary of the respective regression weights). The
pipeline is a variant of the distance correlation sure in-
dependent screening (DC-SIS), which is a fairly intuitive
proposition given the extremely high dimensionality of

the data [62].

We next applied the established regression model, the
signature of biological age, to our own RNA-seq tran-
scriptomic data. We observe that the biological age
model yields a universal dependence of the transcrip-
tomic bioage on the dimensionless measure of chronologi-
cal age, rescaled to the average lifespan of a strain, for the
mutants (Fig. 2a) and the RNA1 treated strains (Fig. 2b).
The universal scaling dependence appears to hold even
for exceptionally long-lived strains, and altogether com-
prised animals with average adult lifespans ranging from
17 days for wild-type N2-DRM control worms to 160
days for age-1(mg44) mutants, and the trajectories ap-
pear identical for very long-lived mutants and wild-type
worms with lifespans extended moderately by RNAi ex-
posure. It thus appears that there is a single parameter
describing the rate of aging.

We note that the direction of aging, as a list of tran-
scripts physically associated with age, is a well defined
object with a clear biological meaning. It is the right
eigenvector of the gene-gene interaction matrix, charac-
terizing the deterministic part of gene expression kinetics
(see Section V E). On the other hand, the biological age
signature is not unique and has no direct physical or bi-
ological meaning other than being a convenient tool for
experimental data analysis.

F. TUniversal scaling in mortality law, mortality
deceleration

Considering mortality as a consequence of molecular
changes, the universality of the transcriptome aging tra-
jectory (Fig. 2a and Fig. 2b) should also manifest itself
as a universality in survival curves. This is exactly what
has been observed [20], when worms of different strains
were subjected to different stresses and thus had their
life-spans generally reduced. The probability of remain-
ing alive to a certain age differed among the experimental
conditions. At the same time, the shape of the survival
curve was the same after a proper time-rescaling trans-
formation.

The aging-at-criticality hypothesis has another
testable prediction for mortality. Early in life, up
to approximately the average lifespan, mortality
can be approximated by the Gompertz equation
M(t) ~ Myexp (at), where My is the initial mortality
rate (IMR) and « is the Gompertz exponent, related to
the MRDT. We predicted, however, that the exponential
rise in mortality rates would cease at late ages, approach-
ing a plateau at the mortality level determined as the
value of the Gompertz exponent [16]. We obtained the
mortality records from [20] and computed the Gompertz
exponent and the mortality plateau estimates for all the
reported conditions (Fig. 2¢, see VF for the details of
the calculations). We observe a fairly tight correlation
between the parameters across a range of almost two
orders of magnitude.
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Figure 2: The universal scaling of transcriptomic bioage z" (obtained from the transcriptomic signature) as a
function of the rescaled chronological age t" /¢ for the in-house collection of gene-expression data for (a) four
long-lived mutants and C.elegans wild-type (Bristol-N2, stock DRM), and (b) three groups of N2 wild-type worms
treated with life-prolonging RNAi or bacteria carrying only the empty feeding vector (FV) without an RNAI insert.
The dashed lines in (a) and (b) are a guide-to-eye for the bioage plateauing. All markers are colored according to
lifespans of the strains (see Tables Ia and Ib for the lifespans). Overall, the scaling spans almost tenfold variation in
median adult lifespan, ranging from 17 to 160 days. (c) The plateau mortality M (¢ > ¢) obtained from the tail of
cumulative hazard m(t) versus the Gompertz exponent « calculated from the experimental C.elegans survival
curves |20]. The predicted behavior is shown by the dotted line. The values of the average lifespan ¢ are depicted by
the pseudo-color: red for small and green for large values.

III. DISCUSSION

The results of the present work support the concept
of aging being an organism-level manifestation of criti-
cal dynamics of a single unstable mode of the underlying
regulatory network [16]. A key observation, relevant to
both theoretical and practical applications, is that the
aging direction is extremely robust and is shared by the
long-lived mutants characterized by as much as 10-fold
increase in lifespan, even relative to long-lived controls.
We inferred a transcriptomic signature of biological age
for Cl.elegans and investigated aging trajectories, the de-
pendence of the biological age on chronological age, to
distinguish the progression of aging in one strain from
another. Early in life, up to approximately average lifes-
pan, the age-dependent rise in transcriptomic indices of
biological age is a universal function of a dimensionless
age variable, obtained by rescaling the chronological age
to the strain life expectancy. This is easy to understand if
the influence of stochastic forces is small in young animals
and therefore the progression is almost deterministic with
the same time scale defining the shape of the gene expres-
sion variations and the value of the average lifespan. In
fact, the temporal scale is defined by the underlying gene
regulatory network stiffness and hence can be modified
by external conditions or therapies on the level of specific
gene-gene interactions in a very well-controlled manner.

According to the theory, later in life the dynamics of
aging are defined by the interplay of increasingly im-
portant non-linearities of the gradually disintegrating
gene regulatory network, as it is perturbed by stochas-
tic forces. First, large deviations from the youthful state

are incompatible with survival and hence the biological
age should also plateau at roughly the average lifespan of
each cohort, across a 10-fold range of longevities (Fig. 2a
and Fig. 2b). Second, the stochasticity of aging dynam-
ics leads to mortality deceleration such that mortality
reaches a plateau at advanced ages, at the level of the
Gompertz exponent obtained from fitting the mortality
to the Gompertz equation close to the mean lifespan. Us-
ing the best available experimental data from [20], exper-
imental mortality in C.elegans decelerates and reaches a
plateau at late ages near the level of the Gompertz expo-
nent, related to the mortality rate doubling time in the
vicinity of the average lifespan, thus fully confirming the
theoretical prediction. This phenomenon evidently un-
derlies the plateau in mortality rates observed previously
in very large populations of medflies and fruitflies [63, 64],
which we have here extended to relatively small popula-
tions of C.elegans (Fig. 2¢). The results match expecta-
tions and, together with the scaling universality of the
aging trajectory (Fig. 2a and Fig. 2b), are the key re-
sults of our study and serve as a good confirmation of
the theoretical model.

We note that, in analyzing transcriptomic data, one
confronts a ubiquitous dilemma. One option would be
to work with a few samples and thousands of genes as-
sessed in a single laboratory, which is in many respects
an ill-defined mathematical problem and prone to over-
fitting. The other possibility is to combine samples from
many different laboratories (thus tackling the mathemat-
ical problem), although this produces side effects that are
notoriously difficult to address, due to the nature of ex-
perimental procedures, i.e. batch effects requiring exten-
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sive normalization. In all likelihood, these difficulties lead
to additional problems such as lack of reproducibility and
inconsistency of results obtained in different laboratories.
In the present study, we assumed that batch effects in
gene expression are uncorrelated from one laboratory to
another, and thus can be considered as noise. The critical
dynamics of gene expressions associated with aging are
responsible for the most biologically relevant variation in
any set of transcriptomes of the same species. There-
fore, we expected that the aging signature has the best
signal-to-noise ratio and therefore a simple “piling” of the
gene expression datasets from multiple unrelated exper-
iments into a single MetaWorm dataset, after thorough
normalization, yields valuable and transferable insights
into aging dynamics.

Using the combined MetaWorm dataset, we have iden-
tified a list of genes associated with aging. The genes
are relatively few in number (less than 7% of the avail-
able transcripts) and are enriched with targets of tran-
scription factors known for promoting longevity via dis-
parate interacting pathways, namely DAF-16, ELT-2,
ELT-6, NHR-10, ZTF-9, and NHR-86. They are also
enriched for miRNAs including miR-57, -59, -244 and -
256 (see Results and Appendix for the complete results
of over-representation analysis). We theorize that tar-
geting other regulators in our list, such as miR-59 and
miR-256, in addition to the known regulators, may fur-
ther influence aging in C.elegans. In the near future,
we plan to test our predictions experimentally by inhi-
bition of identified transcription factors and/or miRNAs
associated with normal progression along the direction of
aging.

We expect that the “aging at criticality” framework
should be applicable beyond C.elegans studies, extend-
ing to many other species including humans. Recently,
we observed evidence of critical dynamics in association
with aging in a subset of the large-scale human 2003-
2006 National Health and Nutrition Examination Survey
(NHANES) dataset representing physical activity met-
rics [65]. Although aging dynamics in humans appears
on a relatively slow (sub-exponential) time course, age-
related changes are responsible for most of the variance
in the signal, and progress along the aging trajectory ex-
plains most of the variation in mortality. In the same
work, we demonstrated that the collective mode variable
associated with age has a simple meaning of biological
age and is shown to drift (increase) with age and perform
a random walk leading to irreversibly increasing hetero-
geneity in the population.

The evidence for stochasticity in aging dynamics at
late ages helps answer a critical question of when an anti-
aging treatment should be applied to obtain the largest
possible effect. We speculate that at pre-embryonal and
embryonal stages in the simplest animals, or early in life
in humans, the growth of an organism is to a large de-
gree determined by a development program. At more
advanced ages, the stochasticity of the GRN kinetics
takes its toll over time and leads to increasing pheno-

typic heterogeneity at every level. This may help to
explain why anti-aging interventions at the early stages
have a broader and more generic effect on aging in diverse
species. In contrast, interventions applied at late ages
have the potential to treat specific conditions of an in-
dividual trajectory of aging progression with all stochas-
tically accumulated errors — a possibility that could not
have been foreseen or implemented without the identifi-
cation of a universal direction of aging, i.e. a specific set
of genes departing from youthful expression levels with
the advance of age.

We hypothesize that the universality of C.elegans ag-
ing trajectories, a hallmark of this study, might be ex-
trapolated to other species. For humans this universal-
ity would mean that prospective anti-aging treatments
would eventually lead to a dramatic increase of lifespan
with almost no detrimental effect on well-being.

The criticality hypothesis provides a fruitful insight
into the evolutionary process of adjusting GRN proper-
ties to meet temporal requirements on the level of indi-
vidual organism development, and of ever-present pres-
sure of natural selection on species, see, e.g. [66]. On
the one hand, it is favorable for an individual GRN to
be as stress-resistant and long-lived as possible, but, on
the other hand, the long-term effects of such a network’s
rigidity would be disastrous for the whole species. Evolu-
tion would fine-tune and optimize the parameters of the
GRN and finally stabilize the GRN by driving the net-
work toward the critical point. We believe the concept
of aging as criticality in a dynamic system will provide a
systematic approach to map longevity-controlling mech-
anisms, and eventually bring about powerful lifespan-
modifying interventions.
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V. MATERIALS AND METHODS
A. Strains

The following C.elegans strains were used in this
study: wild-type strain Bristol-N2, subline DRM (herein
called “N2” or “N2-DRM”); SR806 [daf-2(e1370)]; SR807
lage-1(hx546)], DR1694 |daf-2(e1391);daf-12(m20)], and
SR&08 [age-1(mg44)] at the first (“F1”) and second (“F27)
generations of homozygosity. Strains SR806-SR808 were
outcrossed 6 generations into N2-DRM; please see [1] for
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details. The above mutant strains, and N2-DRM, were
grown in 35-mm Petri dishes, on the surface of NGM-
agar (1% Bacto-Peptone, 2% agar in nematode growth
medium) spotted with E.coli OP50 (a uracil-requiring
mutant). Several RNAi treatments (daf-4, che-3, cyc-
1, eat-18) that were reported as life extending were also
assessed. Worms were maintained on NGM-agar plates
at 20°C, seeded with E.coli HT115 expressing double-
stranded RNAs for target-gene knockdowns [67] for both
RNA-preparation and lifespan studies.

B. Survivals

Lifespan assays were conducted at 20°C, as described
previously [1]. Briefly, synchronous cultures were ini-
tiated by lysis of gravid hermaphrodites in alkaline
hypochlorite. Worms were selected at the L4 larval stage,
placed 50 worms per plate, and transferred at 1- to 2-day
intervals onto fresh plates during days 1-7, and at 2- to
3-day intervals thereafter. A worm was scored as dead if
it failed to move, either spontaneously or in response to
a mechanical stimulus; lost worms were excluded (cen-
sored) from the survival analysis.

C. RNA isolation

Synchronized strains of C.elegans were grown on 100-
mm NGM plates, as above, and harvested for RNA ex-
traction at the ages indicated. Worms were washed off
plates and rinsed twice in survival buffer; after 30 min at
20°C (to allow digestion of enteral bacteria), they were
flash frozen and stored at —80°C. Frozen worms were
ground in a dry-ice-cooled mortar and pestle, and total
RNA was extracted using RNeasy RNA extraction kits
(Qiagen), followed by RNA purification for construction
of transcript libraries using TruSeq RNA kits (Illumina,
v.2). Sequences are generated as PE100 multiplexes,
100-bp paired-end reads from an Illumina HiSeq2500
or NextSeq instrument, producing 40 — 50 x 10% reads
per sample. Paired samples are analyzed with DESeq2
(v1.4.5), and combined sequences are mapped to the
C.elegans genome using TopHat 2.0.6.

D. Experimental RNA-seq dataset

RNA-seq reads were mapped to the human genome
(WBcel235, Ensembl annotation) using TopHat 2.1.1
(with --b2-very-sensitive and --GTF options) [68] and
gene-level read counts were obtained using the htseq-
count software [69]. Low-expressed genes with at least
one zero read count per sample were removed from sub-
sequent analysis. Raw read counts were normalized using
upper quartile method [70] and converted to RPKM val-
ues using edgeR library [71].

E. GRNs at criticality summary

We focus on transcriptomic data and describe time-
evolution of gene expression by a matrix z}', where in-
dices n = 1...N and ¢ = 1...G enumerate samples
and gene transcripts, respectively, G is the total num-
ber of genes and N is the total number of samples.
The measurements are taken at successive instances of
time/age, t™. Following [16] we describe the dynamics
of a transcriptome by a differential equation, represent-
ing the gene-expression kinetics: dx;(t)/dt = f(x;,1),
where all important properties of an organism are encap-
sulated into the function f (x;,t). The equations are still
complex and for small deviations from the initial state
we use a linearized version, &; = fo + >, K;jz;. Here
K;; = dfi/dz; is the matrix, representing the simplest
form of interaction in the model.

The matrix consists of kinetic rates corresponding to
time scale of elementary biological processes, which are
normally very high compared to characteristic rates as-
sociated with aging. The lifelong dynamics associated
with aging is only possible whenever the interaction ma-
trix K;; possesses a very small eigenvalue, a. Under the
circumstances, the dynamics of the biological variables is
said to be critical and can be accurately described with
the help of the following one-factor model

xf =T + biz" + &7, (1)

where Z; is the system state, corresponding to the ani-
mals early in life, b; is the right eigenvector of the matrix
K;; corresponding to the singular eigenvalue «, and 2"
is the order parameter, associated with the GRN insta-
bility, a stochastic variable, associated with aging, and
following the Langevin equation:

z=az+n,

where the stochastic variable 1 represents the effects of
external and endogenous stress factors. In [16] we solved
the equation and demonstrated, that « is nothing else,
but the Gompertz exponent, characterizing exponential
increase of chances to die as a function of chronological
age. The parameter defines a natural time scale, associ-
ated with the GRN instability, and depends on the bal-
ance between the damage accumulation and repair sys-
tems efficacy [19].

For the lack of a better word, the biological age 2",
in contrast to the chronological age t™, is a universal
parameter describing the progress of aging. Mutations
or anti-aging therapies modify interactions in the GRN.
Formally, this corresponds to alterations in the matrix
elements K;; and change in its most relevant eigenvalue,
a. The mortality in the model can be related to the ef-
fects of non-linearities: at sufficiently large values of z the
higher order corrections can no longer be neglected and,
starting at about average lifespan, the dynamics of the
order parametre accelerates and the GRN disintegrates.
Since normally the average lifespan exceeds the MRDT,
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the effects of the non-linearities and stochastic forces can
be negletcted, at least early in life. Therefore, we expect
that aging trajectories corresponding to different lifes-
pans are self-similar and different by a single time scale
factor a.

Practically, it would be interesting to derive an esti-
mate of the biological age from the gene expression data
using a linear model

G
2" & Z a; (] — ;). (2)
i=1

Since, however, the aging dynamics in biological signals
is restricted to a one-dimensional manifold, the definition
of biological age is not unique. This difficulty is not only
a consequence of limited number of samples in a typical
experiment. Any vector, orthogonal to b; can be added to
the projector a; without changing the prediction results
significantly, especially if the experimental noise (such as
batch effects) is large. The best possible candidate for a;
is the left eigenvector of the matrix K;; corresponding to
the eigenvalue a.

F. Mortality analysis

Since there exists and we have here defined a univer-
sal molecular signature of bioage, the universality at the
molecular level should be apparent as a universal behav-
ior of mortality. The discrepancy between the mortality
behavior predicted by the Gompertz equation and ex-
perimental mortality for late ages in C. elegans is suf-
ficiently large and thus can be used to test the aging
theory predictions quantitatively with high-quality mor-
tality data. Mortality data of appropriate quality were
recently published in [20], where a temporal scaling law of
aging in C.elegans was observed, similar to that inferred
for D.melanogaster [72]. This scaling law states that un-
der the influence of some intervention, survival curves are
stretched along the age axis by a dimensionless factor.

To extract the Gompertz exponent « from the mortal-
ity data [20], we used the corresponding survival curves
and fitted them to the prediction of the Gompertz equa-
tion. The procedure is only sensitive to the behavior
of the survival curves in the neighborhood of the aver-
age lifespan. This is fortunate, since a GRN’s stiffness
parameter « coincides with the Gompertz exponent in
this interval only. The value of the plateau mortality
M(t > t) was then calculated from the tail of the cu-
mulative hazard m(t), estimated from the raw mortality
data by the well-defined Nelson—Aalen routine [73] with
the help of the Lifelines package [74].

Since the mortality rate reaches a plateau at late ages,
the behavior of the cumulative hazard for these ages is
linear and the value of M (t > t) can be extracted by lin-
ear regression of the cumulative hazard on age. We cal-
culated the cumulative hazard m(t) from the experimen-
tal data and as the prediction of the Gompertz equation

05 1.0 15 2.0 2.5 3.0

t/t

Figure 3: Evidence for the deceleration and plateauing
of experimental mortality in C.elegans. The normalized
cumulative hazard m(t)/(at) calculated from the
Gompertz equation (colored thick dashed ) as derived
from the experimental Kaplan-Meier plots [20] (colored
thick solid lines). The tail of the cumulative hazard
(black thin dashed lines) was used for the calculation of
the plateau mortality M (¢ > t) by linear regression.
The values of the Gompertz exponent « are indicated
by the pseudocolor: red for large and green for small
values.

and compared them in Figure 3, where the disagreement
between the two is substantial and significant, both qual-
itatively (exponential growth for the Gompertz equation
and linear growth for the plateau mortality) and quanti-
tatively (the cumulative hazard for the Gompertz equa-
tion is several orders of magnitude larger for late ages).

G. MetaWorm transcriptome

The MetaWorm dataset was compiled from all
publicly-available information on expression profiles
C.elegans from GEO database [75] and annotated with
the corresponding worms’ ages. For individual genes rep-
resented by multiple probesets, the probeset with the
largest signal was used. Gene expressions in all datasets
were normalized using the YuGene [27] algorithm. The
final MetaWorm dataset represents a 3724 x 4861 ma-
trix (samples-x-genes) and incorporates more than 400
transcriptomic experiments (see Electronic Supplemen-
tary Materials).
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H. Enrichment analysis

Functional annotation (GO and pathway) analysis of
the gene components comprising the direction of ag-
ing b; against targets of transcription factors was per-
formed with WormExp resource [41], a curated collection
of genesets derived from analysis of C.elegans expression

10

datasets. We also utilized transcription factor regula-
tion data obtained in [47]. Over-representation analy-
sis against targets of miRNAs was performed using the
cluster-Profiler package [76]. The list of predicted regula-
tory targets of C.elegans miRNAs was downloaded from
TargetScanWorm [51] and MirTarBase [52] databases.
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