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Abstract

Isoscapes are maps depicting the continuous spatial (and sometimes temporal) variation in iso-
tope composition. They have various applications ranging from the study of isotope circulation
in the main earth systems to the determination of the provenance of migratory animals. Isoscapes
can be produced from the fit of statistical models to observations originating from a set of dis-
crete locations. Mixed models are powerful tools for drawing inferences from correlated data.
While they are widely used to study non-spatial variation, they are often overlooked in spatial
analyses. In particular, they have not been used to study the spatial variation of isotope compo-
sition. Here, we introduce this statistical framework and illustrate the methodology by building
isoscapes of the isotope composition of hydrogen (measured in δ2H) for precipitation water in Eu-
rope. For this example, the approach based on mixed models presents a higher predictive power
than a widespread alternative approach. We discuss other advantages offered by mixed models
including: the ability to model the residual variance in isotope composition, the quantification of
prediction uncertainty, and the simplicity of model comparison and selection using an adequate
information criterion: the conditional AIC (cAIC). We provide all source code required for the
replication of the results of this paper as a small R package to foster a transparent comparison
between alternative frameworks used to model isoscapes.
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Abbreviations used in this paper

• AIC: Akaike Information Criterion

• BLUP: Best Linear Unbiased Predictor

• BWR: a method for building isoscape introduced by Bowen and Wilkinson (2002) and Bowen
and Revenaugh (2003)

• cAIC: conditional Akaike Information Criterion

• DHGLM: Double Hierarchical Generalised Linear Model

• GLM: Generalised Linear Model

• GLMM: Generalised Linear Mixed-effects Model

• GNIP: Global Network for Isotopes in Precipitation

• LM: Linear Model

• LMM: Linear Mixed-effects Model

• MAE: Mean Absolute Error

• ML: Maximum Likelihood

• REML: Restricted Maximum Likelihood

• RMSE: Root Mean Squared Error
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1 INTRODUCTION

In this paper, we introduce a methodology based on mixed models for describing how the ratio of
light to heavy isotopes found in environmental materials varies in space. The spatial variation in
isotope composition is typically represented by maps called isoscapes (from isotopic landscapes).
Isoscapes have multiple purposes which have be reviewed by Bowen (2010) and West et al. (2010,
chapters 13-20). Briefly, they are used to study the relationship between environmental (biological,
climatological, geological and hydrological) factors and the isotope composition, which provides
information on the major earth systems such as the cycle of carbon, nitrogen or water. Isoscapes
are also increasingly used in ecology and forensic science to determine where organisms (or part
of) are coming from; a task that is possible because the isotope composition of living organisms
is influenced by that of their environment.

Similarly to what is usually done to compute weather forecasts, the physicochemical processes
known to impact isotope composition can be simulated numerically to obtain isoscapes (Noone
and Sturm, 2010). These dynamical models are useful because they allow for the precise study
of how the different processes interplay to shape the spatial distribution of isotopes. However,
the predictive power of such models is currently too low for many applications. The alternative
approach consists in ignoring the precise mechanistic details shaping the spatial distribution
of isotopes and seeing isoscape construction as a statistical prediction problem: from a limited
number of observations at fixed spatial locations, the goal is to predict the continuous spatial
process that generates the data.

Within the scope of the statistical approach, a widely used method to model isoscapes is that
of Bowen and colleagues (Bowen and Revenaugh, 2003; Bowen and Wilkinson, 2002), but other
approaches have been considered. Often the models are fitted in two steps: a regression model
to environmental variables is fitted first, and then a spatial model is fitted to the residuals of
this first fit. This second fit may use traditional Kriging techniques that are broadly known in
spatial statistics (Cressie, 1993; Zimmerman and Stein, 2010), but various other techniques have
been considered in the isoscape literature (e.g. Bowen and Revenaugh, 2003). Several authors
have argued that Kriging is best understood as prediction under a particular linear mixed model
(not to be confused with mixing models) (e.g. Christensen, 1991, 2011; Diggle and Ribeiro, 2007;
Diggle et al., 1998; Pollice and Bilancia, 2007), and therefore mixed model methods could be used
to model isoscapes.

Fitting isoscapes using mixed models should present several benefits. First, mixed models
fulfil the needs covered by traditional Kriging methods, but contrary to traditional Kriging ap-
proaches mixed models are based on clear and explicit statistical definitions (Zimmerman and
Stein, 2010). Second, mixed models offer the possibility of covering a wider range of assump-
tions than usually considered in the Kriging and isoscape literature. Third, mixed-model theory
provides likelihood-based methods to fit jointly the spatial and environmental components of a
model, which is generally known to reduce biases in parameter estimates (Cressie, 1993). Fourth,
the likelihood framework makes this approach superior in terms of inference possibilities as well
as for model comparison or selection procedures. For example, after a single fitting procedure
mixed models provide confidence intervals, prediction intervals, and model selection criteria.
Last but not least, mixed models are widely used to study many kinds of spatial but also non-
spatial problems (Bolker et al., 2009; Pinheiro et al., 2007; Venables and Ripley, 2002); therefore,
more flexible models keep being proposed (e.g. Lee and Nelder, 2006), efficient algorithms to fit
these models are implemented in both general and dedicated statistical software, and guidance
on how to use mixed models keeps accumulating (Bolker et al., 2009).

Despite the benefits of the mixed-models based approach, it is not routinely used to analyse
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the spatial distribution of isotopes. Early works relied on so-called ordinary Kriging (e.g. Gutier-
rez, 1991), which does not estimate the effects of environmental variables. Later on, Bowen and
Wilkinson (2002) and Bowen and Revenaugh (2003) introduced such estimation. Albeit being
model-based and representing an improvement over previous methods, the statistical approaches
used by Bowen and colleagues do not use Kriging methods (and mixed models a fortiori). Kriging
has been reintroduced in later works (e.g. Terzer et al., 2013; Van der Veer et al., 2009), but the
Kriging is done without using mixed models explicitly.

Here, we explain how to build isoscapes using mixed models. Our methodology is general
and can handle different datasets, isotopes, or environmental materials. As a study case, we
will build the isoscape for the hydrogen composition (measured in δ2H) of precipitation water
using data from the Global Network for Isotopes in Precipitation (IAEA/WMO, 2017). This
will illustrate how to fit the mixed models underlying isoscapes, how to build different isoscapes
from the fitted models, how to weight monthly predictions by precipitation amounts to obtain the
traditional annual weighted predictions, and how to compare different statistical models fitted on
the same data. We will also show that, at least for the data we use, our approach is more accurate
than the widely used approach from Bowen and Wilkinson (2002) and Bowen and Revenaugh
(2003). Finally, we will discuss the benefits and limits of the mixed-model based approach with
respect to practical applications.

We implement the analysis in the free open-source statistical software R (R Core Team, 2017)
and perform most computations using the package spaMM (Rousset and Ferdy, 2014). This pack-
age is a multi-purpose package that allows the user to fit mixed models with (but also without)
spatial autocorrelation by maximum (or restricted maximum) likelihood. We provide all the
source code necessary to produce all the figures and tables present in this paper under the form
of a small package (available in Supplementary material). We developed this package for repro-
ducibility purposes only, and we did not design this package for general usage on other datasets
or applications. For general usage we recommend instead to either use spaMM directly, or to use
the IsoriX package which is a wrapper for spaMM specifically developed for modeling the spatial
distribution of isotopes, as well as to assign organisms to their origin location (Courtiol et al.,
2016). We assume little prior knowledge of mixed models in this paper and we define some
key concepts related to these models in the glossary. We assume nonetheless knowledge of the
basic concepts generally introduced in the context of generalized linear models (GLMs) such as
linear predictor, regression coefficients, or residuals; otherwise see Venables and Ripley (2002,
Chapter 7) for an introduction to GLM and Diggle et al. (2003) for a gentle introduction to spatial
mixed models.

2 METHODOLOGY

2.1 Defining the spatial variation in isotope composition with mixed models

Statistically, the spatial variation in the isotope composition of an environmental sample can be
expressed as a linear mixed-effects model (LMM, see glossary) that describes, for each observa-
tion i at a geographical location g (a given monitoring station where the precipitation water is
collected), the value of the response variable isogi (a given measurement of the isotope composi-
tion) as

isogi = Fixg + Randomg + Errorgi . (1)

Hereafter, we denote this model as the mean model. The terms Fix, Random and Error denote
the fixed effects, the random effects, and the residual errors, respectively (see glossary). By
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definition, Errorgi is independent for each observation i, which distinguishes it from the effect
Randomg which is common to all observations at the location g. We will now detail each of these
three terms.

Let us first consider the fixed effects (Fix). Different parameterizations have been proposed
to model how spatial and climatic covariates influence the isotope composition of hydrogen and
oxygen in precipitation water (e.g. Bowen and Wilkinson, 2002; Terzer et al., 2013; Van der Veer
et al., 2009). For now, we consider the following parametrization (but we will consider others
below):

Fixg = β0 + βlat × latg + βelev × elevg , (2)

where the two covariates involved are latg, which represents the latitude of the location g, and
elevg, which represents its elevation. We use the latitude1 and the elevation to approximate
the effects that temperature exerts on the isotope composition in precipitation water (Bowen
and Wilkinson, 2002). Contrary to temperature per se, the indirect proxies we choose (latitude
and elevation) are readily available for any location, which will be crucial to predict the isotope
composition over a geographic area. The regression coefficient β0 represents an intercept, that is
the predicted mean isotopic values at sea level (elev = 0) at the equator (lat = 0). The regression
coefficients βlat and βelev transform the latitude and the elevation into isotope compositions.

Second, we consider random effects in the model (Random) in order to capture two sources of
variation accounting for departure from the mean composition in isotopic values predicted by the
fixed effects:

Randomg = RandomSpatialg + RandomUncorrg (3)

The source of variation RandomSpatial stems from the many unmeasured environmental factors
that vary spatially but that are not (and could not all be) considered as fixed effects. Such factors
are sources of spatial autocorrelation: nearby locations are often traversed by the same air masses
and are thus more similar in their isotope composition than distant locations. We can describe this
correlation between the random effects in different locations as a function of their geographical
distance.

To represent this spatial autocorrelation, we use the so-called Matérn correlation function
(Matérn, 1960). Specifically, we assume that the correlation between random effects at spatial
distance dab between two given location (a and b) is of the form Mν(ρdab) where ρ is a spatial
scale parameter and Mν is the Matérn correlation function, which can be written as:

Mν(x) ≡ xνKν(x) (4)

where Kν is the Bessel function of second kind and order ν, and ν is the “smoothness” parameter
(the higher ν is, the smoother are the realized surfaces at a small scale). The Matérn correlation
function is appropriate to fit autocorrelated processes with more or less rugged realizations, and
is the most useful correlation model for a wide range of applications (Stein, 1999; see also e.g.
Diggle and Ribeiro, 2007). It includes the commonly used exponential and squared exponential
(or “Gaussian”) correlation functions as special cases (for ν = 0.5 and ν → ∞, respectively). Any
ν > 0 may be considered in Euclidean spaces of any dimension. However, Euclidean distances
are poor approximations of geographical distances over large spatial ranges. We thus recommend
the use of an appropriate distance method such as orthodromic distances to account for the earth
curvature. On a sphere, 0 < ν ≤ 0.5, as for higher values, matrices of correlation values between
different locations may not be positive semi-definite and therefore invalid as correlation matrices.

1For work including observations in the southern hemisphere, Bowen and Wilkinson (2002) recommend to use the
absolute latitude. It makes no difference here as all latitudes we use are positive.
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Thus, ν = 0.5 is the highest value that can be considered for isoscapes with orthodromic distances.
We therefore assume that the random effects in each location (i.e. RandomSpatialg) are nor-

mally distributed, with mean zero, variance λRS, and correlation

Correlation(RandomSpatiala, RandomSpatialb) = Matérn(dab, ρ, ν) , (5)

where ρ is a scaling factor for the distance, and ν is the smoothness parameter of the Matérn.
The second source of variation – RandomUncorr – represents factors that differ between loca-

tions but that are not spatially correlated. Examples could be weather conditions (micro-climates)
or sources of measurement error that vary locally. This second random effect has mean zero,
variance denoted λRU, takes the same value for all realizations drawn from the same location, and
is uncorrelated between different locations.

Finally, the residual term of the model (Error) is, by definition for LMMs, normally distributed
with mean zero and a variance φg. This variance φg is typically assumed constant in LMMs.
However, as we shall see, the per-location estimates of the variation between observations varisog
are themselves strongly spatially structured. We thus propose to model the square of Errorgi as
a random variable with expectation:

φg = E
(
Error2

gi

)
= exp

(
FixD

g + RandomSpatialD
g + RandomUncorrD

g

)
. (6)

Hereafter, we denote this model as the residual dispersion model. In this model, we consider
that the fixed-effects component FixD is reduced to an intercept βD

0 . The spatial random ef-
fect (RandomSpatialD) is again normally distributed with zero mean, but has now a variance λD

RS

and a Matérn correlation structure with parameters ρD and νD. The uncorrelated random effect
(RandomUncorrD) is also normally distributed with zero mean, has now a variance λD

RU and is again
uncorrelated between different locations. Note that the roman D index is not a mathematical ex-
ponent: it denotes parameters of the residual dispersion model. Note that there is no particular
reason to expect the estimatations for the two random effects of the residual dispersion model to
equate those for the two random effects of the mean model. We will thus have to estimate four
different random effects. The exponential in eq. 6 ensures that the predicted value of the variance
φg in any location will be positive.

2.2 The dataset

For demonstration, we will fit the aforementioned mixed models on monthly measurements of the
isotope composition of the hydrogen (technically expressed as δ2H) found in precipitation water.
The dataset was provided by the Global Network for Isotopes in Precipitation (IAEA/WMO,
2017), which distributes freely isotope measurements from precipitation water collected all over
the world. The coverage of the GNIP data is variable depending on the world region, and we will
restrict our analysis to Europe (here defined as locations within the latitude 30°00’N - 70°00’N
and the longitude 30°00’W - 60°00’E), which is a particularly data dense area. We discarded
observations for which required information was missing, those corresponding to a month and
monitoring station only observed a single time, and those for which “month” samples have been
derived from a precipitation collection based on 25 days or less, or on 35 days or more. We also
excluded the data from one monitoring station for which sampled names indicated they were half
month samples instead of monthly ones. After this filtering procedure, our data yielded a total
of 30546 monthly measurements associated with 326 different locations. These data cover 658
out of the 660 possible months covering the study period (1960-2014). The raw data provided by
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the GNIP project are readily aggregated into monthly measurements for each available year and
sampling location. We chose to aggregate these data further, across years, so to obtain a single
mean and variance estimate for each available month-location combination. We aggregated the
data this way for faster fitting of both the mean model and the residual dispersion model, as
detailed below. We denote the final aggregated dataset GNIPdataEU (table 1).

month meaniso variso nyear stationID lat long elev

1 -49.68 69.16 10 142700 58.10 6.57 13
2 -48.86 202.83 10 142700 58.10 6.57 13
3 -46.36 89.24 9 142700 58.10 6.57 13
4 -45.83 104.17 7 142700 58.10 6.57 13
5 -43.60 113.02 10 142700 58.10 6.57 13
6 -34.16 60.38 10 142700 58.10 6.57 13
7 -35.26 220.08 9 142700 58.10 6.57 13
8 -42.80 152.14 8 142700 58.10 6.57 13
9 -52.76 211.23 8 142700 58.10 6.57 13

10 -49.01 195.41 9 142700 58.10 6.57 13
11 -52.01 284.18 10 142700 58.10 6.57 13
12 -54.53 379.32 9 142700 58.10 6.57 13

1 -160.75 311.84 6 206000 68.68 21.53 403
2 -142.87 317.88 6 206000 68.68 21.53 403
3 -146.82 76.54 6 206000 68.68 21.53 403

Table 1. First 15 rows of the GNIPdataEU dataset. We derived this dataset from data provided by the Global Network of Isotopes in
Precipitation (IAEA/WMO, 2017). It contains a total of 3313 rows and 8 columns. These columns provide the month of the sample
collection (month), the mean and variance of δ2H measured across years for the month and locality considered (meaniso, variso), the
number of years considered (nyear), the World Meteorological Organization code of the monitoring station where the water sample
has been collected (stationID), and the approximate coordinates and elevation of the sampling site as provided by GNIP (lat, long,
elev).

2.3 Fitting approach

We now want to fit the mixed models on the GNIPdataEU dataset to obtain estimates for the fixed
effects β0, βlat, βelev and the random effect parameters λRS, ρ, ν, λRU of the mean model (eq. 1),
and likewise the estimates for the fixed and random effect parameters βD

0 , and λD
RS, ρD, νD, λD

RU

of the residual dispersion model (eq. 6). Because the spatial variation in the hydrogen isotope
composition in precipitation water varies seasonally, we will fit both models on each of the twelve
months independently. We will thus use twelve different subsets of GNIPdataEU corresponding
to each month (GNIPdataEU1 to GNIPdataEU12). The following discussion explains how to fit both
models for a given month and we choose January for this illustration (i.e. we use GNIPdataEU1).
We will later show how model fits can be combined across months to produce annual averaged
predictions.

The procedure consists in fitting first the residual dispersion model to the observed variances
in each location, before fitting the mean model. In this procedure, the fixed effects and random
effects parameters are estimated jointly for the mean model (but not for both models simultane-
ously). Our estimating procedure is thus an iterative full-likelihood fit of the mean observations,
and it allows for full likelihood-based inference under the mean model, given the estimates of the
parameters of the residual dispersion model.
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2.3.1 Fitting the residual dispersion model

We first use the spatial mixed-effect model for the expectation of the residuals of the mean model
(eq. 6), and fit this residual dispersion model to the variance estimates variso, derived from
nyearg monthly observations in each location g (see table 1). From our earlier assumption that
Errorgi is normally distributed with variance φg, variso is Gamma-distributed with mean φg and
variance 2φ2

g/(nyearg − 1).2 We can therefore model variso using a Gamma generalized linear
mixed-effects model (Gamma GLMM).

To account for the variance 2φ2
g/(nyearg − 1) of variso in the residual dispersion model,

we need to consider how residual variance is represented in a Gamma GLMM. The package
spaMM follows the established usage for Gamma GLMs (McCullagh and Nelder, 1989), where the
Gamma-distributed response is by default parametrized by its mean µ and a dispersion parameter
Φ such that the variance of the response is µ2Φ. In addition, known prior weights wi can be
specified, such that the dispersion for each level i of the response variable is Φi = Φ/wi. We
can therefore represent 2φ2

g/(nyearg − 1) as µ2φD/wg for µ = φg, φD = 2, and prior weights
wg = nyearg − 1 for each location g.

We now use this result to fit the residual dispersion model on the data for January using the
function fitme() from spaMM, as follow:

dispfit1 <- fitme(

formula = variso ~ 1 + Matern(1|long + lat) + (1|stationID),

family = Gamma(link = log), data = GNIPdataEU1, fixed = list(phi = 2),

prior.weights = nyear - 1, control.dist = list(dist.method = "Earth"),

method = "REML")

This simple call produces an R object denoted dispfit1 that contains estimates of the param-
eters of the residual dispersion model. The arguments formula and family are used to specify
the residual dispersion model. Specifically, in the formula, the "1" indicates to fit one intercept,
the term Matern(1|long + lat) indicates to fit a spatially-structured random effect following a
Matérn correlation structure where the variable long and lat3 will be used for the computation of
the distance between observations, and the term (1|stationID) indicates to fit an uncorrelated
random effect whose realizations will be identical for all observations with the same value for
the variable stationID. The argument family specifies the Gamma family with log link, where
the link corresponds to the exponential in eq. 6. The argument data indicates in which R ob-
ject the dataset is stored. The argument fixed is used to fix parameter values(s) in the model,
and we use it here specifically to fix the residual dispersion φD = 2 in dispfit1. The argument
prior.weights is used to provide the prior weights. The argument control.dist specifies the
Earth computation method for orthodromic distances, instead of the default distance method in
spaMM (Euclidean distances). Finally, the argument method specifies that restricted maximum like-
lihood is used to fit the model. For non-Gaussian GLMMs, the REML method actually implements
an approximate concept of restricted likelihood defined by Lee et al. (2006, p. 187). We recom-
mend to stick to REML because other forms of maximum likelihood lead to biases in estimation
of prediction variances, which we will use to build the isoscapes.

2For n independent samples of a Gaussian distribution with variance σ2 and unknown mean, let S2 be the usual
variance estimator (i.e. debiased by n− 1 denominator). Then (n− 1)S2/σ2 follows a chi-squared distribution with
n− 1 degrees of freedom. This is a special case of the Gamma distribution with mean n− 1 and variance 2(n− 1).
Then S2 is Gamma-distributed with mean σ2 and variance 2σ4/(n− 1).

3Even though the absolute latitude can be used as a covariate for the fixed effect part of the model, the signed
latitude should always be used in the Matérn term otherwise the computation of distances would be wrong.
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2.3.2 Fitting the mean model

The second step of our procedure is to fit the mean model. This is a LMM with two distinctive
features. First, we need the predictions φ̂g of the expected square of the residual error in each
location, given by the fit of the residual dispersion model. We can derive the predictions from
dispfit1 with the function predict() from spaMM and store them within our working dataset
with the call:

GNIPdataEU1$disp <- predict(dispfit1, newdata = GNIPdataEU1)[, 1]

Second, since the fit of the main model is a fit to the mean of nyearg observations in each
location g, we will also specify that the residual variance for each such mean is φ̂g/nyear by
using prior weights nyear.

We fit the mean model for January using the function fitme() as before:

meanfit1 <- fitme(

formula = meaniso ~ 1 + lat + elev + Matern(1|long + lat) + (1|stationID),

family = gaussian(link = identity), data = GNIPdataEU1,

resid.model = list(formula= ~ 0 + offset(disp), family = Gamma(link = identity)),

prior.weights = nyear, control.dist = list(dist.method = "Earth"),

method = "REML")

This call produces an object denoted meanfit1 that contains estimates of the parameters of the
mean model. Here, we specified explicitly the form that residual errors take using the argument
resid.model. Its formula element forces the residual variance to be exactly as predicted by
dispfit1, by way of the standard offset() syntax, combined with the 0 which indicates no to fit
an intercept. The model for residual errors expected by fitme must belong to the Gamma family,
which we specify using the family argument. The default link for the Gamma family being log,
the exponential of the offset would serve as prediction for φg. In order to consider the offset
directly, we must thus also specify that the fitting procedure must use the non-default identity
link.

2.4 Building isoscapes

We will use the fits obtained above to predict the spatial variation in hydrogen isotope compo-
sition for an average month of January during 1960-2014. Specifically, we aim to predict three
different isoscapes: the traditional isoscape that represents the prediction for δ2H in each location
(called point prediction), and two additional maps representing the prediction variance and the
residual variance.

The prediction variance has the following meaning. Our model assumes that that there is
a true unknown isoscape, which is fixed (in particular, it does not change as data accumulate)
but which is represented by the mixed model as a random draw from possible realizations of
isoscapes (random draws of the Matérn-correlated process and of any other random effect). We
infer this realized isoscape by fitting the model to a limited amount of data, with some uncertainty
since different random draws of the unknown isoscape may give the same observed data. There
is thus a conditional distribution of possible true isoscapes given the data. For LMM, the Best
Linear Unbiased Prediction (BLUP) is the mean of this conditional distribution (Robinson, 1991),
and the prediction variance is ideally the mean squared difference between the true unknown
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value of the linear predictor and the BLUP at a given location. Put more simply, the prediction
variance quantifies how precise our point predictions are.

The residual variance has a different meaning. It estimates the variance of new observations
drawn from the true unknown isoscape at a given location. This variance corresponds to the point
prediction from the residual dispersion model. It thus represents here the between-year variance
in each location.

2.4.1 The dataset for predictions

Because it is not possible to make prediction for an infinite number of locations, we will predict
the isotope composition on a regular array within the extent of latitudes and longitudes of our se-
lected area. We call these locations prediction locations. The prediction locations are thus arranged
in rows of equal latitudes and columns of equal longitudes forming a regular geographic array
or rasters.

To compute a prediction for each prediction location, we need the parameter estimates from
the fit of the mean model and from the fit of the residual dispersion model provided by meanfit1

and dispfit1, respectively. The objects meanfit1 and dispfit1 also contain all necessary param-
eters required to compute the prediction and residual variances. For each prediction location,
we also need the values for all covariates used in the mixed models. In the case of the models
presented above, the covariates needed are the latitude, longitude and elevation. The latitude
and longitude is directly defined by the prediction location. Other covariates (the elevation in
our case) also come from rasters. Therefore, the maximal resolution one can achieve to predict
isoscape values are constrained by the lower resolution of the required rasters. Here, we use a
raster called elevraster, which stores elevations for the entire Earth at a resolution of approx-
imately one elevation value per 100 square-km. This resolution thus defines the resolution at
which we compute the predictions forming the isoscapes.

To prepare all the values for the covariates needed for the prediction procedure, we first
load the elevation raster and crop it to the extent of Europe. Then, we extract the geographic
coordinates of each elevation from this object to build a table (a data.frame, in R language) that
contains all the values for the covariates needed for the prediction procedure. This can all be
done easily in R with the help of functions from the packages raster and sp (see Supplementary
material for R code). We call datapred the table containing the values for the covariates needed
for the prediction procedure (table 2).

lat long elev stationID

69.42 -29.58 2136.03 new1
69.42 -28.75 2163.40 new2
69.42 -27.92 2081.96 new3
69.42 -27.08 1787.53 new4
69.42 -26.25 1437.74 new5
69.42 -25.42 798.55 new6

Table 2. First six rows of the object datapred. The columns long, lat, elev and stationID provide the covariate values for
predictions. Notice that in the column stationID, we gave a new unique name for each prediction location. This enables spaMM to
assign to the new locations the expected realization of the uncorrelated random effect (i.e. zero) instead of the value of the uncorrelated
random effect inferred for locations where monitoring stations exist.
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2.4.2 Predicting the isoscapes for January

Using the table datapred and the parameter estimates obtained from dispfit1, we start by pre-
dicting the residual dispersion variance for each prediction location, according to

φ̂g = exp
(
F̂ix

D
g + ̂RandomSpatial

D
g

)
. (7)

Hat symbols denote estimations of fixed effects, predictions of random effects, and functions of
them. On the right-hand side of the equation, they thus denote estimations and predictions from
the fit of the dispersion model. Note that the uncorrelated random effect is not apparent because
the prediction of an uncorrelated random effect is necessarily zero for any new location.

This computation is done by a first call to the spaMM function predict(). We directly store the
predictions for the residual variance in datapred. In R language, this gives:

datapred$disp <- predict(dispfit1, newdata = datapred)[, 1]

We can then use the table datapred and the parameter estimates obtained from meanfit1 to
compute the predicted isotope value over all possible observations i at a location g as

ˆisog. = β̂0 + β̂lat × lat.absg + β̂elev × elevg + ̂RandomSpatialg . (8)

Again, the uncorrelated random effect is not apparent because its prediction is zero for any new
locations ( ̂RandomUncorrg = 0). This computation is done by a second call to the spaMM function
predict():

predict1 <- predict(meanfit1, newdata = datapred,

variances = list(predVar = TRUE, residVar = TRUE))

In addition to the point prediction for each prediction location, this second call to predict

uses the information obtained from the first call (i.e. datapred$disp) to compute the prediction
variance of the mean model.

We finally extract the point predictions, the prediction variance and the residual variance, and
store them within a single R object denoted pred1 which also contains the prediction locations
(see table 3 for content):

pred1 <- datapred[, c("lat", "long")]

pred1$pred <- predict1[, 1]

pred1$predVar <- attr(predict1, "predVar")

pred1$residVar <- attr(predict1, "residVar")

Once we have the point prediction, the prediction variance and residual variance for each
prediction location, we can then turn the isoscape data we want to represent (pred, predVar or
residVar) into a raster and plot the raster for visualization using an R function dedicated for
plotting rasters, such as levelplot() from the package rasterVis (see Supplementary material
for R code). We will show these plots as well as plots corresponding to the following section in
Results.

2.4.3 Predicting the annual isoscapes

We obtain a total of 12 pairs of fitted mixed models by repeating the fitting procedure of the mean
model and of the residual dispersion model on the subsets of GNIPdataEU corresponding to all
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lat long pred predVar residVar

69.42 -29.58 -123.10 396.24 166.96
69.42 -28.75 -123.41 387.81 167.39
69.42 -27.92 -122.32 378.89 167.83
69.42 -27.08 -118.45 368.83 168.29
69.42 -26.25 -113.88 359.37 168.76
69.42 -25.42 -105.52 349.92 169.24

Table 3. First six rows of the object pred1, which contains the predictions for the month of January. The columns provide the
coordinates of the prediction locations, i.e. latitude (lat) & longitude (long), as well as the predicted isotope composition (pred), the
prediction variance (predVar) and the residual variance (residVar) associated to these locations.

months of a year (GNIPdataEU1 to GNIPdataEU12). Each pair of mixed models can readily be used
to produce the point prediction, prediction variance, or residual variance, for a given month as
we have just explained it for January. This leads to the construction of tables pred1 to pred12,
analogously to the one shown in table 3. Then the isoscapes for each month can easily be derived
from these tables, as mentioned above.

We can also use all 12 obtained tables to compute the annual averaged point prediction, pre-
diction variance and residual variance for each prediction location. Under the assumption that
the observations collected for each month are independent, at each location the point predic-
tion for a complete year is simply the average of the 12 point predictions (one for each month).
Accordingly, at each prediction location the prediction variance for the annual average becomes
the sum of the prediction variances for the 12 months divided by 122 and similarly the residual
variance for the annual average becomes the sum of the 12 residual variances divided by 122.

It is also possible to assign a different weight to each monthly isoscape before combining
them. As an illustration, we will compute the annual average weighted by the estimated amount
of precipitation that fell in each month at each prediction location. We chose this example because
the use of such annual average weighted by precipitation amounts is common in the isoscape
literature (Bowen, 2010). For this we need to derive weight for each month from precipitation
data at each prediction location. These precipitation data can be obtained freely from WorldClim
1.4 (Hijmans et al., 2005), which provides such information as a set of 12 rasters (one for each
month) at a resolution of ca. one value per square kilometre. After downloading these rasters, we
use the function extract() from the package raster to extract the precipitation amount for the
12 months at each prediction location. Then, if we call precipm,g the precipitation amount for a
month m at location g, the weight wm,g for the month m is directly the relative precipitation during
this month, that is wm,g = precipm,g/ ∑12

i=1 precipi,g. We finally obtain the point prediction of the
precipitation-amount weighted annual average as ∑12

m=1 wm,g predm,g, the prediction variance as

∑12
m=1 w2

m,g predVarm,g and the corresponding residual variance as ∑12
m=1 w2

m,g residVarm,g.
Other work have produced isoscapes of (precipitation-amount weighted) annual averages dif-

ferently. Instead of combining predictions per month as we propose, the common approach is
to first compute annual averages directly on the data and then fit the model on the averaged
data. We chose a different approach because we wanted to avoid two main limitations charac-
terizing such an alternative approach. First, the traditional approach implies to only retain years
for which all (or most) months have been sampled. This would imply to discard many data from
our dataset and thus information would be lost. Second, the traditional approach does not illus-
trate temporal variation underlying the annual pattern, while our approach allows the creation
of different isoscapes for each month.
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2.5 Model comparison and model selection

In contrast to mechanistic dynamical models (Noone and Sturm, 2010), the statistical modelling
of isotope composition is not dependent on a precise knowledge of physical or chemical laws.
Instead, it is driven by linear approximation of the unknown relationships between proxies that
are easy to measure and the observed isotope composition. Two interconnected questions thus
emerge: which predictors should we consider (latitude, longitude, elevation, rainfall, tempera-
ture. . . ) and under which form should we consider them (identity, squared, logarithm. . . )? There
is no universal answer to these questions and several model structures have been proposed in
the literature (see table 1 in Bowen, 2010). Importantly, the answers are likely to depend on the
amount and nature of the data used to fit the models. For example, Terzer et al. (2013) suggested
that different model structures should be used to model the isotope composition of precipitation
water for different world regions.

The general solution employed to identify the appropriate predictors and choose their forms
when building statistical models is to constitute a small set of candidate models with varying
predictors and/or form for these predictors. Then, these models are fitted and their predictive
power compared.

Users may decide to perform a model selection based on this model comparison. A common
practice is to select the model which is best according to some criterion. This practice is contro-
versial because when combined with null hypothesis testing it leads to an increase in the rate of
false positives beyond the nominal level (Claeskens and Hjort, 2008, chapter 7 section 4; Mundry
and Nunn, 2008). That being said, if the goal is not to identify whether a given predictor has a sig-
nificant impact on the outcome or not, but merely to obtain a model with high predictive power,
selecting the model with the highest predictive power is legitimate. An interesting alternative to
model selection is to opt for a multi-model inference in which different models are retained but
contribute to future predictions to a degree dependent on how good each model is. However, it is
not always clear how to weight the models (Claeskens, 2016; Claeskens and Hjort, 2008, chapter
7).

The R-squared statistic has often been used to compare models. However, this is never a
good measure of the ability of a model to predict new observations, even for simple linear mod-
els (e.g., Faraway, 2014, p. 127). Alternative methods to estimate such predictive power have
been developed for model selection, including cross-validation and the computation of various
information criteria such as the Akaike Information Criterion (AIC). We now focus on two such
methods, suitable in a mixed model context: the leave-one-out cross-validation (Shao, 1993) and
the computation of the conditional Akaike Information Criterion (cAIC) (Vaida and Blanchard,
2005).

2.5.1 Leave-one-out cross-validation

A general method to assess the predictive power of any model is to perform a cross-validation
procedure where the model is used to predict data that have been observed but that have not
been considered for fitting the model. When a single dataset is available, it is possible to apply
a so-called leave-one-out cross-validation. In this case, one observation is excluded from the
dataset (called out-of-bag observation) before fitting the model, then a prediction is generated
by taking the predictors values attached to the out-of-bag observation, and this prediction is
finally compared to the actual observation. This last operation is repeated by considering in turn
all observations as out-of-bag observations and a metric is used to measure how close out-of-
bag predictions are from their corresponding actual values (e.g. the mean squared error). This
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solution is very general and has already been used to compare other statistical approaches used
to fit isoscapes 4.

2.5.2 The cAIC

The fact that our methodology is based on mixed models offers an appealing alternative to com-
pare different models. Indeed, likelihood-based metrics called information criteria exist for such
models. Information criteria have been specifically developed to allow for the comparison of the
predictive power of alternative candidate models. The higher the predictive power of a given
model is, the smaller the numerical values of the information criterion should be. Compared to
any cross-validation procedure, the computation of an information criterion does not require to
refit the models and is thus not computationally intensive.

The most famous information criterion is the AIC, which can be defined as an estimator the
Kullback-Leibler divergence, i.e. a measure of distance between two probability distributions,
the fitted model and the true unobserved reality (i.e., the distribution of new observations to be
predicted) (Akaike, 1973).

In the context of isoscapes, the relevant metric to compute is the conditional AIC (cAIC) (Vaida
and Blanchard, 2005). It is so-called because it measures the predictive power of new observations
drawn conditionally to the realization of the random effects that subtends the data, while the
original AIC (also called marginal AIC) would measure the power of the fitted model to predict
new response values drawn for new realizations of the random effects. Importantly, the cAIC
asymptotically selects the same model than the one that selected by leave-one-out cross-validation
in the context of LMM (Fang, 2011).

2.5.3 An example for model comparison

As an illustration, we use our data from January (i.e. GNIPdataEU1) and compare the ability for
several pairs of fitted mean and residual dispersion models to predict accurately the observed
mean isotope values. We will do so using both the leave-one-out cross-validation and the cAIC.
We consider three possible fixed-effect structures for the mean model and for the residual disper-
sion model. Specifically, we consider a fixed-effect structure defined by i) an intercept only; ii) an
intercept, a linear effect of the latitude and a linear effect of the elevation; or iii) an intercept, both
a linear and a quadratic effect of the latitude and a linear effect of the elevation. For the intercept-
only models, we also consider two alternative random-effect structures. The first random-effect
structure consists in omitting all random effects, and the second is the one introduced above (i.e.
with the spatial and the uncorrelated random effects). For the models with more complex fixed-
effect structures, we always consider the two random effects. Using these four possible model
structures for each model, we will fit all 16 possible pairs of models and compare their predictive
power.

For each pair of models, we proceed to the measurement of the predictive power by leave-
one-out cross-validation as follows: i) we exclude a monitoring station; ii) we fit the given pair of
models (i.e. we fit the residual dispersion model, predict the residual dispersion variance, and fit
the mean model); iii) we predict the mean isotope value at the out-of-bag location; iv) we compare
this value to the corresponding empirical estimate; v) we extract the squared difference, as well as
the absolute difference, between these values. We repeat these five steps for each station. When
this is done, we then compute the root of the average of the squared differences we obtained, as
well as the average of the absolute differences, over all leave-one-out samples. We call these two

4The method is sometimes referred as estimating prediction errors in “N-1 jackknife” (Bowen and Revenaugh, 2003).
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averages the Root Mean Squared Error (RMSE) and the Mean Absolute Error (MAE), respectively.
The smaller these error terms are, the better the predictive power.

To compute the information criterion, we fit the 16 pairs of models aforementioned to the
entire dataset GNIPdataEU1. We then use the cAIC estimate provided by the function AIC from the
package spaMM for the mean fit. Because this cAIC value is computed given the predictions of the
residual dispersion fit, we need to penalized it by adding twice the number of parameters of the
latter fit to the initial cAIC value (see eq. 6 in Overholser and Xu, 2014). The number of parameters
is here computed as the sum of the number of parameters estimated for the fixed effects, plus the
number of variances estimated for the random effects, plus the number of parameters estimated
for the Matérn correlation function. The cAIC thereby corrected provides a measure of the joint
fit to predict the response of the mean fit model.

2.6 Comparison with the BWR method

Many applications rely on isoscapes produced by the fitting procedure introduced by Bowen and
Wilkinson (2002) and refined by Bowen and Revenaugh (2003). We call this procedure the BWR
method. The BWR method is similar to ours in that it contains fixed effects accounting for the
influence of covariates upon the response, but it differs from our approach in three important
ways.

First, instead of estimating this spatial structure jointly with fixed effects as it is done during
the fit of a mixed model, the authors proposed to fit the spatial structure on the residuals of the
fit of the linear model they used to estimate fixed effects. This bears no simple relationship to
likelihood estimates obtained by a joint estimation of fixed and random effects, as is apparent
from the following differences.

Second, the estimation of the fixed effects is not dependent on the estimates of the random-
effect parameters in the BWR method, and thus estimates are not updated iteratively during the
fitting procedure, in contrast to mixed model fits. Cressie (1993, p. 22) showed that, although
the estimates of the fixed-effect parameters obtained in this way remain unbiased, the standard
error of these parameters are biased downwards. Because of this, tests and confidence intervals
are invalid and this potentially affects prediction variance in unknown ways. A partial patch to
this problem, not widely used in the isoscape literature, is to refit the fixed effects using weights
derived from the spatial model (e.g. Zimmerman and Stein, 2010). In contrast to this patch, the
full-likelihood approach we use performs such refitting until convergence of the joint estimates.

Third, a fundamental difference stems from how the spatial structure is modeled. The BWR
method approximate the spatial structure by an interpolation method based on an inverse dis-
tance weighting. More precisely, in Bowen and Revenaugh (2003), the spatial component of the
prediction in some given location g′ is computed from the vector r of the observed residuals rg in
all fitted locations, according to

r̂g′ = ∑
g

rgwg′g where wg′g = cg′g

/
∑
g

cg′g (9)

where the sum computed is other all original locations, cg′g = exp(−ρdg′g) where dg′g is geo-
graphical distance between the focal location g′ and a given location g, and ρ is a scale parameter
(denoted 1/β in the original paper). ρ was estimated jointly with the regression parameters by
minimizing the mean squared distance between isoscape response and isoscape predictions in
the original locations. In contrast, in the mixed model the prediction of the random effect in some
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location g′ is (e.g. Cressie, 1993, p. 100)

r̂g′ = cg′C−1r (10)

where cg′ is a vector of (Matérn) correlations cM
g′g , of the spatial random effect, between the

focal position g′ and the original positions, and C is the full covariance matrix of the random
part of the model, including both the random effects (spatial or uncorrelated) and the residual
error. Each cM

g′g is a correlation given by the Matérn model, which becomes identical to the above
exponential term cg′g if the Matérn smoothness parameter is 0.5. However, the matrix C−1, which
does not depend on new locations x, cannot be equivalent to the scalar 1/ ∑g cg′g. As a concrete
implication of this difference, the mixed-model r̂′g may be higher or lower than all the rg values
(“non-convex” prediction), which is not the case for prediction according to eq. 9 (because all
wg′gs are between 0 and 1).

There is no definitive argument proving that the mixed-model procedure will always be bet-
ter than the BWR approach. The mixed-model prediction according to eq. 10 is the best (i.e.,
minimum-variance and unbiased) linear prediction under the assumptions of the underlying
probability model embodied in the concept of a Gaussian random field, but the random field
model may not be suitable in all applications. However, in most applications, the maximum of
the response surface must be above observed values, so a non-convex prediction method seems
appropriate. That mixed models explicitly account for residual error during the smoothing pro-
cedure should also be an advantage.

To compare the methods in practice, we implemented the BWR method as described in Bowen
and Revenaugh (2003) and measured its predictive power on GNIPdataEU1. Here, only the leave-
one-out analysis can be applied as the absence of likelihood from the BWR method prevents the
computation of an information criterion.

3 RESULTS

3.1 The fitted models

To illustrate how to model the spatial distribution in isotope composition using mixed-models, we
have fitted the mean model meanfit1 and the residual dispersion model dispfit1 on a aggregated
dataset containing the estimated mean and inter-annual variance in δ2H found in precipitation
water across Europe for the month of January (GNIPdataEU1). In this first section, we explain how
to interpret the estimates obtained for such models.

3.1.1 The mean model

The mean model we chose only contains three terms to model the fixed effect Fix – the intercept,
the slope for the effect of latitude and the slope for the effect of the elevation – which were
estimated as β̂0 = 80, β̂lat = −2.99 and β̂elev = −0.0132, respectively (the estimates for all twelve
months are provided in table 4). The intercept represents the point prediction in unit of δ2H for
a zero latitude, zero elevation and a realization of random effects equal to zero. As such, it is not
easily related to an observed feature of the predicted isoscape. In contrast, the slope estimates
represent trends that can be perceived from the fitted isoscape, although they are blurred in any
location by the random effects. Precisely, the estimates β̂lat and β̂elev predict the change in the
mean isotope composition associated with an increase in one degree of latitude and an increase
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in one meter of elevation, respectively. For example, an increase in elevation of 1000 meters is
predicted to shift the mean isotope value by -13.2 δ2H.

Model Month Nobs Nstation β̂0 β̂lat β̂elev λ̂RS λ̂RU ρ̂ ν̂

meanfit1 January 2759 313 79.99 -2.99 -0.0132 5415.5 9.02e-11 2.26e-05 0.384
meanfit2 February 2697 308 84.15 -2.88 -0.0154 1547.9 6.67e-11 6.60e-05 0.306
meanfit3 March 2702 308 85.89 -2.85 -0.0150 1088.1 9.31e-11 9.54e-05 0.346
meanfit4 April 2583 291 83.17 -2.53 -0.0141 552.5 1.12e-10 1.00e-04 0.322
meanfit5 May 2494 272 66.82 -2.12 -0.0126 220.1 1.70e-10 2.08e-04 0.371
meanfit6 June 2322 236 65.54 -2.07 -0.0088 102.8 4.80e+00 4.73e-04 0.500
meanfit7 July 2203 225 65.55 -1.98 -0.0068 107.0 2.25e-10 4.58e-04 0.372
meanfit8 August 2226 238 78.54 -2.29 -0.0077 143.3 2.71e-10 4.06e-04 0.471
meanfit9 September 2453 251 70.81 -2.28 -0.0109 221.7 1.99e+00 4.10e-04 0.491
meanfit10 October 2635 265 83.26 -2.67 -0.0117 530.7 1.78e-10 2.44e-04 0.498
meanfit11 November 2692 293 79.24 -2.85 -0.0134 2092.8 8.66e-11 3.39e-05 0.333
meanfit12 December 2780 313 70.25 -2.78 -0.0132 4197.0 1.21e-04 1.48e-05 0.324
MEAN 76.10 -2.52 -0.0119 1351.6 5.67e-01 2.11e-04 0.393
SD 7.44 0.34 0.0027 1676.0 1.39e+00 1.73e-04 0.072

Table 4. Sample sizes and parameter estimates for all 12 fitted mean models. The columns Nobs and Nstation provide the total number
of observations used in each model and the total number of measuring stations, respectively. Different observations per station
always correspond to different years. The meaning of the other columns is discussed in the text. The last two rows provide the direct
mean and standard deviation for each parameter estimate.

The variances for the two random effects of the mean model are estimated to λ̂RS = 5420 [δ2H]2

and λ̂RU ≈ 0 [δ2H]2, for RandomSpatial and RandomUncorr, respectively. The estimate λ̂RU is
negligible, which suggests that there is no particular bias in the measurements introduced by
the measuring stations. The different water samples collected at a given station can thus be
considered as independent once the effect of the location of the station is accounted for. In
contrast, the value of λ̂RS is not negligible. The spatial covariances also depend on the spatial
correlation parameters, and the best way to study spatial covariation in an isoscape is thus to
directly visualise the predictions of the random effects as we will do below.

3.1.2 The residual dispersion model

The residual dispersion model we chose only contains a single term to model the fixed effect FixD

– the intercept βD
0 – which was fitted to 5.26 (the estimates for all twelve models are provided in

table 5). As explained above, the intercept is not particularly meaningful in the present context.
The variances for the two random effects of the residual dispersion model are estimated to

λ̂D
RS = 5.32 and λ̂D

RU ≈ 0, for RandomSpatialD and RandomUncorrD, respectively5. As for the
mean model, the estimate of the uncorrelated random term (λ̂D

RU) is negligible and the estimate
of the spatial random term (λ̂D

RS) should be investigated jointly with the estimates of the Matérn
parameters by simple visualisation of the predictions of the random effects.

3.2 Isoscapes

In fig. 1, we show three isoscapes that can be built from mixed model fits, which are relevant
for interpreting the spatial variation in isotope composition. The coarse resolution of the maps

5Here, we do not provide units as the variation in estimates represent variations in logarithm of expected response,
and such variations are dimensionless.
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Model Month Nobs Nstation β̂D
0 λ̂D

RS λ̂D
RU ρ̂D ν̂D

dispfit1 January 2696 250 5.26 4.61 1.00e-06 1.85e-05 0.328
dispfit2 February 2631 242 5.46 0.47 1.00e-06 4.01e-04 0.309
dispfit3 March 2627 233 5.47 0.88 9.99e-04 4.11e-05 0.236
dispfit4 April 2517 225 5.49 0.77 1.00e-06 1.89e-05 0.163
dispfit5 May 2426 204 5.73 5.30 1.00e-06 1.48e-05 0.399
dispfit6 June 2287 201 5.62 7.49 1.00e-06 1.99e-05 0.488
dispfit7 July 2163 185 5.34 3.30 1.00e-06 1.48e-05 0.343
dispfit8 August 2184 196 5.04 0.21 1.00e-06 3.07e-03 0.500
dispfit9 September 2409 207 5.16 2.78 1.00e-06 1.48e-05 0.322
dispfit10 October 2600 230 5.21 0.96 1.00e-06 9.88e-05 0.288
dispfit11 November 2637 238 5.47 2.45 1.00e-06 1.49e-05 0.300
dispfit12 December 2719 252 5.46 0.53 3.09e-02 2.72e-04 0.500
MEAN 5.39 2.48 2.66e-03 3.33e-04 0.348
SD 0.19 2.22 8.51e-03 8.33e-04 0.101

Table 5. Sample sizes and parameter estimates for all 12 fitted residual dispersion models. See table 4 for legend. Note that the sample
sizes presented here are slightly lower than those of the mean models (table 4). This is because the month-location combinations
only available for a single year do not yield to variance estimates variso and are thus not used while fitting the residual dispersion
models. Once the residual dispersion models are fitted, it is however possible to predict the residual dispersion for these particular
combinations, which is why they are being considered during the fit of the mean models.

produced here is only stemming from the coarse elevation raster we used and it is possible to use
high resolution elevation rasters to produce very detailed isoscapes. In this figure, the isoscapes
associated with the fitted models for January (i.e. based on meanfit1 and dispfit1, see table 4 &
5) are shown in the first row of fig. 1a-c. The second row provides corresponding isoscapes for
the month of July (i.e. based on meanfit7 and dispfit7) and thus illustrates seasonal variation.
The last row of fig. 1 shows the three isoscapes for the precipitation-amount weighted annual
averages which we built using precipitation data from WorldClim 1.4 (Hijmans et al., 2005). We
will limit our description to the first three isoscapes, as other can be interpreted similarly.

The first isoscape (fig. 1a) represents the point predictions for δ2H in Europe for the month of
January. The isoscape of point predictions is usually the one of main interest as it describes how
the isotope composition varies in space. Here, the patterns of the δ2H value looks similar to what
has been documented by others when using alternative approaches: δ2H values decrease along
the axis SW/NE and they also decrease with elevation. The second isoscape (fig. 1b) represents
the prediction variances associated to the point predictions. This isoscape shows where point
predictions are most unreliable. Here, North Africa and the South-East corner of the studied geo-
graphic area are associated to high prediction variances, which is not surprising as these regions
are disjunct from the rest by large bodies of water which impact on the isotope composition and
they are simultaneously associated with few observations. The third isoscape (fig. 1c) represents
the residual variances associated to the first isoscape. This isoscape shows where δ2H values
varies the most between year. Here, we see that more inter-annual variation in δ2H values occurs
in Russia and around the Caspian sea during January.
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(a) Point predictions (fixed effects only)
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(b) Point predictions (random effects only)
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Fig. 2. Decomposition of the predictions for meanfit1 in terms of fixed (a) and random effects (b). The sum of these two maps gives
the isoscape for point predictions shown in fig. 1a. The colours depict δ2H values and oranges crosses depict sampling locations.

3.2.1 Isoscapes for the fixed and random effects separately

The previous isoscapes represent joint predictions stemming from both fixed and random effects.
It is however possible to visualise predictions for the fixed and for the random effects separately.
We illustrate this possibility for the mean model in fig. 2. The sum of these two isoscapes equates
the isoscape for point predictions shown in fig. 1a. Visualising the fixed effects predictions in
isolation reveals the geographical patterns captured by predictors even in the presence of strong
spatial autocorrelation. Here, the isoscape for the mean model confirms what we discussed
above: the δ2H values decrease with latitude and elevation (fig. 2a). In turns, visualising the
mean of the conditional realizations for the random effects reveals the geographical patterns of
the spatial autocorrelation. Here, it shows that spatial autocorrelation spans over large distances
(fig. 2b), resulting in an increase in δ2H values close to the Atlantic ocean (except in Africa) and
a decrease in values when the distance to the Atlantic increases. We find this latter isoscape
particularly useful as no numerical output from our fitted models would have allowed us to
reach this conclusion efficiently. In contrast, the visualisation of the fixed effects in isolation
merely offers a simple alternative to the interpretation of the numerical values of the fixed effect
estimates. Importantly, while we can represent separately the contribution to point predictions
from fixed effects and random effects, we recall that the fit of the mean model is a joint fit of the
fixed and random effects: both components were thus fitted simultaneously and not separately.

3.3 Model comparison and model selection

We compared the predictive power associated with the fits of 16 different pairs of mean and
residual dispersion models (table 6). To assess the predictive power we used three different
metrics: the root mean squared error (RMSE) and the mean absolute error (MAE) which we
computed by leave-one-out cross-validation, and the cAIC which is analytically derived from
single fits. Two main results emerged. First, results show that considering random effects largely
improves the predictive power of the fits. Indeed, all fits considering a mean model with random
effects show a predictive power higher than the those associated with a mean model without any
random effects. For the fits in which the mean model considered random effects (i.e. B, C & D; see
table 6 for notation), the predictive power is similarly improved when these models have been
fitted given a residual dispersion model also considering random effects. The estimates of the
variance of the uncorrelated random effect are generally low. Therefore, the gain in predictive
power triggered by the random effects results from the spatially autocorrelated random effect.
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Fig. 3. Assessment of predictive power by leave-one-out cross-validation for January. The first two plots compare predictions and
observations for out-of-bag observations when predictions have been generated by the best fits Cb selected in table 6 (a), and by the
BWR fit (b). The last plot (c) compares prediction errors between our best fits and the BWR fit. In the plots produced by mixed models
(a & c), the diameter of the circles is proportional to the logarithm of the prior weight used during the fit. The outlier corresponding
to a sampling location in Iceland (see text for details) is represented by an asterisk. The black dashed line represents the identity
relationship, so points falling on this line correspond to locations where the predicted and the observed values are identical (a & b)
or to locations where the prediction error is the same for our approach and for the one by Bowen and colleagues (c). The horizontal
and vertical blues lines represent the raw mean of the data along each axis.

Second, within the subset of pairs of models considering random effects (i.e. Bb, Bc, Bd, Cb, Cb,
Cd, Db, Dc, Dd), the fits involving environmental predictors for the mean model (models C or
D) show the highest predictive power. In sum, our model comparison shows that the best fits of
isotope values are obtained when we consider both environmental predictors as fixed effects and
spatial autocorrelation as random effects.

Among the mean models considering environmental predictors, all metrics (i.e. RMSE, MAE &
cAIC) identify the mean model C as best. The exact ranking of the predictive power for the pairs
of fits involving the mean model C differs between MAE and the two other metrics. However, the
two best models (Cb and Cc) have practically identical RMSE and MAE (see table 6) and cAIC
then retains the most parsimonious of these two models. The pair Cb is the one we presented in
the introduction.

That all metrics support the same general findings and that they all lead to select the same
model suggests that one could solely rely on cAIC to select the best models. This would allow
one to avoid the computational cost of a cross-validation which is particularly large in the context
of mixed models. Here for example, we obtained cAIC values in around an hour for each fit,
but the computation of the RMSE and the MAE required several thousands CPU hours. The
empirical equivalence we found between the cAIC and the cross-validation is expected to hold
asymptotically for LMMs (Fang, 2011), but remains to be formally established for GLMMs.

3.4 Comparison with the BWR method

We now compare the prediction errors measured during the leave-one-out cross-validation be-
tween our mixed-models based approach and the BWR method (fig. 3 & 4). Table 6 shows that
the BWR method leads to lower prediction accuracy than any pair of mixed models accounting
for environmental covariates (Ca, Cb, Cc, Cd, Da, Db, Dc, Dd). For either approaches, there is no
obvious spatial structure in the distribution of the errors (fig. 4a & 4b). Yet, the prediction errors
between the two approaches appear highly correlated (fig. 3c), which means that both approaches
tend to produce overestimate (or underestimate) the δ2H values at the same measuring stations.

One notable exception is the point represented by an asterisk in fig. 3c which seems much
better predicted by the BWR method than by mixed models. This outlier illustrates a fundamental
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(a) Prediction errors from mixed models [δ2H]
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(b) Prediction errors from the BWR's method [δ2H]
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(c) Standardized prediction errors from mixed models
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(d) Difference in absolute prediction errors
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Fig. 4. Spatial distribution of the prediction errors during the leave-one-out cross-validation for January. We show the prediction errors
(i.e. observed-predicted value at the out-of-bag observation) for the mixed models based approach (a) and for the approach followed
by Bowen and colleagues (b). The plot (c) represents the same data as plot (a) but here the predictions errors have been divided
by the square root of the prediction variance computed at the corresponding out-of-bag locations. The last plot (d) represents the
differences in absolute prediction errors between the mixed models and those from the approach followed by Bowen and colleagues.
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models Kmean Kdisp cAICuncorrected cAIC RMSE MAE rankcAIC rankRMSE rankMAE

Aa 1 1 9287.00 9289.00 32.99 28.10 13 14 17
Ab 1 5 11584.52 11594.52 33.57 26.80 14 15 14
Ac 1 7 11597.63 11611.63 33.59 26.81 15 16 15
Ad 1 8 11616.67 11632.67 33.59 26.81 16 17 16
Ba 5 1 2365.43 2367.43 13.71 9.49 12 13 13
Bb 5 5 2292.65 2302.65 13.69 9.48 7 10 11
Bc 5 7 2291.89 2305.89 13.69 9.48 8 11 10
Bd 5 8 2292.30 2308.30 13.70 9.49 9 12 12
Ca 7 1 2346.76 2348.76 12.76 8.78 10 7 7
Cb 7 5 2273.36 2283.36 12.70 8.68 1 1 2
Cc 7 7 2272.93 2286.93 12.70 8.68 3 2 1
Cd 7 8 2273.28 2289.28 12.70 8.68 5 3 3
Da 8 1 2346.93 2348.93 12.79 8.79 11 8 8
Db 8 5 2273.41 2283.41 12.72 8.69 2 4 5
Dc 8 7 2272.98 2286.98 12.72 8.69 4 5 4
Dd 8 8 2273.33 2289.33 12.73 8.69 6 6 6
BWR 5 0 13.05 9.20 9 9

Table 6. Model comparison between four different fixed-effect parametrizations used for the fit of the mean model and the residual
dispersion model on the January data. The first column provides a two-letters code which refers to the formula used for fitting the
mean model (upper case) and the residual dispersion model (lower case). For the mean model, we consider the following formulas:
A = β0, B = β0 + R, C = β0 + βlat × latg + βelev × elevg + R, and D = β0 + βlat × latg + β

lat2 × lat2
g + βelev × elevg + R. For

the residual dispersion models, we similarly considered: a = βD
0 , b = βD

0 + RD, c = βD
0 + βD

lat
× latg + βD

elev
× elevg + RD, and d

= βD
0 + βD

lat
× latg + βD

lat2 × lat2
g + βD

elev
× elevg + RD. R and RD refer to the spatial and uncorrelated random terms for the mean

models and for the residual dispersion models, respectively. We also included the model fitted according to Bowen and Revenaugh
(2003) for comparison and call this model BWR. The second and third columns give the number of parameters estimated in the mean
model (Kmean) and in the residual dispersion model (Kdisp). The fourth column gives the conditional Akaike Information Criterion
(cAIC) before correcting it by Kdisp. The fifth column gives such corrected cAIC value. The sixth and seventh columns give the
Root Mean Squared Errors (RMSE) and the Mean Absolute Error (MAE), respectively. These two measurements of the prediction
errors were computed by leave-one-out cross-validation. The last three columns give the model ranks according to each metric used
for model comparison (the smaller the rank, the better the predictive power). Note that ranks may differ between RMSE and MAE
although values for these metrics appear identical because the ranks are influenced by further decimal places than those displayed.
We do not provide information criterion for the BWR model due to the absence of likelihood associated to this method.

difference between the two approaches. The point corresponds to measurement from Iceland,
which is a location distant from all other observations (fig. 4d). During the leave-one-out cross-
validation the models are refitted without this point and thus the prediction associated to this
point represents an extrapolation. Here, the observation turns out to have a δ2H value close to
the mean of all the over observation (fig. 3), but due to spatial autocorrelation our method predict
a large positive value for the realization of the random effect in this location (fig. 2b). In contrast,
the BWR method predicts mean values at location far from observations. As a consequence,
the BWR method turns out to predict this out-of-bag observation very well and our approach
does not. Had the observed value for Iceland been quite different from the mean of all other
observations, the BWR would have made a large prediction error for this observation too.

In contrast to the BWR method, our approach quantifies the uncertainty associated with pre-
dictions. In fact, the prediction variance at the location of the measuring station in Iceland (in
the fit considering this location as out-of-bag) is 487.3 [δ2H]2, which is the highest prediction
variances we obtained during the cross-validation (it is higher than the second largest prediction
variance by 158.7 [δ2H]2). This illustrates that our method allows for the identification of locations
where prediction errors are likely to happen. Once the prediction variance is accounted for, the
prediction errors do not seem to present any strong spatial structure (compare fig. 4a and 4c).
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4 DISCUSSION

In this paper we explained how the spatial distribution of the isotope composition can be fitted
using mixed models. We have illustrated this by constructing isoscapes of the isotope composition
of hydrogen (δ2H) for precipitation water in Europe by the mean of a general mixed model
R package (spaMM: Rousset and Ferdy, 2014). We will now discuss the potential benefits and
constraints associated to this novel approach.

4.1 Mixed model vs the BWR method

We have compared our mixed model approach to one of the most widely used approach in the
field: the BWR method (Bowen and Revenaugh, 2003; Bowen and Wilkinson, 2002). We have
detailed theoretical reasons for the mixed model approach to be better. Accordingly, we found
that, at least on the dataset we used, the mixed models approach predicts better unobserved
isotope measurements.

The mixed model approach is much slower to fit than the BWR fitting procedure. In our
example, the BWR fitting procedure was up to 3 orders of magnitude faster than the mixed
model approach. This is however not a major practical limitation since the aggregation scheme
we propose still allows for a complete fit in a few hours maximum on a personal computer. Most
users are likely to rely on dataset smaller than the one we used, bringing the time cost down. In
addition, although the fitting procedure is slow, because mixed models provide a measure of the
likelihood, a single fit is necessary to assess the prediction accuracy of such a fit. We have indeed
shown that an information criterion such as the cAIC could be used for such purpose. In contrast,
the prediction accuracy of a BWR fit must be assessed by cross-validation which requires to refit
the model multiple times.

Another small caveat of a mixed-model based approach is that it may poorly extrapolate, as
we have seen it for the case of Iceland. However, we have shown that this problem is directly
diagnosed by the quantification of the prediction errors that mixed models makes possible. We
have also illustrated that mixed models allow also for a quantification of the temporal variation in
isotope composition through the fit of the residual variance. We will now detail why the ability
for the mixed model to produce isoscapes representing such prediction variance and residual
variance is a strong argument in favour of the method.

4.2 The utility of isoscapes for prediction variance and residual variance

That our method produces isoscapes of both the prediction and residual variances presents sev-
eral interests in terms of applications. First, the isoscape representing prediction variance is
informative about the sampling design: it directly informs where predictions are associated with
the highest uncertainty, and therefore where to collect data in order to reduce such uncertainty.
It also reflects the overall level of uncertainty for an isoscape. Here for example, it shows that
monthly isoscapes are much more inaccurate than annual isoscapes. Thus, practical implications
directly follows from the examination of isoscapes representing the prediction variance. Author-
ities such as the Global Network of Isotopes in Precipitation (IAEA/WMO, 2017) could use them
to establish priorities for the extention of their existing network. Moreover, annual isoscapes and
not monthly isoscapes should probably be used for application where precision is paramount,
such as infering location of migratory organisms.

Second, the isoscape representing residual variances is informative about temporal variation
in isotope composition. In our study, the response variable of the residual dispersion model
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(variso) corresponds to inter-annual variation in δ2H and thus the isoscape of the residual vari-
ance shows this variation. Modifying the response variable would thus allow for the study of vari-
ation in δ2H (or other isotopes) at other time scales. Our study revealed that the inter-annual vari-
ation is strongly spatially structured. We captured such spatial structure of the temporal variation
by means of random effects. The consideration of suitable predictors for fixed-effects could refine
further the accuracy of the fit for this spatial structure. Here, the fixed-effect parametrizations we
tried did not improve noticeably the quality of the fit, compared to the mere consideration of an
intercept. Other parametrizations should thus be attempted, guided by the understanding of the
determinants of isotope composition and the availability of data.

Our approach also allows for the computation and display of a third kind of isoscape that
directly derives from the isoscapes for prediction variance and the one for residual variance: the
isoscape of the response variance. The response variance is simply the sum of the prediction
variance and of the residual variance. Computing the response variance is especially interesting
with respect to the inference of the origin of environmental materials based on isotope composi-
tion (Hobson and Wassenaar, 2008). For example, environmental materials originating from area
with low δ2H values do not necessary come from locations where the point prediction is low.
Such organisms may also come from locations where the δ2H values are only sometimes low; so
from locations with a mean that is not necessarily low but with a high residual variance. They
may also come from locations where point predictions are overestimated; so from locations with
high prediction variance. These two possibilities are captured by the computation of the response
variance. It is crucial not to neglect either sources of variance as it would lead to rule out possible
origin locations, which may lead to erroneous inference, which may in turn lead to wrong deci-
sion making. That such decisions impact on areas such as conservation practices in biology or
criminal investigation in forensic sciences should be a strong motivation to also study isoscapes
of the response variance. We have already implemented such an approach in our package IsoriX

(Courtiol et al., 2016) and we will explain how to perform geographical assignments accounting
for both the prediction and the response variance using mixed models in a future publication.

4.3 Assumptions of the current approach and possible extensions

Different statistical approaches differ in the assumptions they make. It is important to make
explicit these assumptions in order to anticipate in which conditions a given approach may or
may not be adequate. That our approach is based on mixed models make this exercise easier than
for methods that are not based on explicit assumptions. We will now discuss the assumptions
that seem the most relevant in the context of isoscapes.

First of all, following a standard assumption of linear models, mixed models consider that
each of the covariate values used to model fixed effects has been measured without error. This
assumption is also implicitly made in alternative approaches, but it is often violated in practice
because there is often measurement errors in the predictors. In particular, raster values (here, the
elevation values) are often the outcome of some smoothing procedures which generate errors.
The raster values do not correspond, in general, to the real value at the prediction location, as
its coordinates would suggests, but to the result of a function applied on all the data measured
within the cell surrounding the prediction location (often the mean). We therefore recommend
for user to pay a particular attention to the source of data for their covariates and to select the
rasters with the highest available resolution and most precise measurement available. Here, we
used a very coarse elevation raster in order to be able to provide this raster as Supplementary
material. However, our toy raster has been derived from a high resolution raster that could be
used instead for real applications. This raster is the Global Multi-resolution Terrain Elevation
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Data 2010. It has a resolution of 7.5 arc seconds (i.e. 232m along the equator and 102m along the
Arctic circle) and a standard deviation of the prediction error for the elevation of only 6 meters
(based on comparison with control points)6.

A second assumption is that the environmental predictors are assumed to exert a linear effect
on the response. Again, this assumption also concerns alternatives (e.g. Bowen and Revenaugh,
2003; Bowen and Wilkinson, 2002) and transformation of the predictors can be made as long as
the transformed predictors are still considered as linear in their effects. For example, the predic-
tors can be expressed as polynomials (as we have seen for latitude) or they can be logarithmic
transformed. Nonetheless, the reliance on linearity precludes the implementation of some model
structures (e.g. the one used by Van der Veer et al., 2009).

Third, our approach also makes specific assumptions about the random effects. We have
considered all random effects to be normally distributed. It is easy to consider alternative distri-
butions (e.g. Gamma) for the random effects whose realizations are not spatially autocorrelated
(here RandomUncorr & RandomUncorrD) and the package spaMM we used to fit the mixed models
offers this possibility. However, because random effects that present autocorrelated random ef-
fects must be described in terms of mean and covariances, using alternative distributions is not
currently possible for the spatial random effect (unless one considers other elliptical distributions
closely related to the Gaussian; Embrechts et al., 2002). Other Kriging approaches for which
assumptions have been made explicit also assume normality (Van der Veer et al., 2009).

Fourth, we also made assumptions during the computation of the prediction variance and
the residual variance. For the prediction variance, the fitting procedure we used considers the
estimates for the uncertainty of the estimates for fixed effects, as well as the uncertainty of the
realization of the random effects. However, it does not yet allow one to account for the uncer-
tainty stemming from the estimation of the correlation parameters and the uncertainty associated
with the estimation of the variances of the random effect is only partially accounted for. Again,
the same is true for other Kriging approaches which usually do not consider uncertainty in the
Kriging parameters. Some bootstrap methods have been discussed in the mixed-model literature
to account for these neglected sources of uncertainty (Booth and Hobert, 1998), and can be per-
formed using spaMM and little additional programming, but these methods are computationally
intensive.

Moreover, for the residual variance, all sources of uncertainty are being neglected as only point
predictions are being used from this model in order to fit the mean model. That implies that we
consider that the residual variance is exactly known. Many alternative Kriging approaches also
make this assumption and we do not know of any study have relaxed such assumptions in the
context of isoscapes. A considerable improvement other alternative approaches, however, is that
our method do not assume such known variance to be constant. Indeed, in other works the
residual variance is at worse assumed to be null and at best considered to be constant. Here, we
have employed a model-based approach for the residual variance that we have modelled both
using fixed effects and random effects. In particular, we have included a random effect for which
realizations are spatially autocorrelated. That means that we have considered that the mean δ2H
values and that the inter-annual variance in these δ2H values follow two distinct spatial processes.
To compare our approach to one that would assume that the residual variance does not vary in
space, we included in our models comparison a fit of the residual dispersion model considering
only an intercept and no random effect (models Xa in table 6, with X = A, B, C or D). Doing
this we obtained a cAIC value considerably higher than any of our residual dispersion models
considering random effects. Considering that the residual variance varies in space is thus fully

6http://topotools.cr.usgs.gov/gmted_viewer/
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justified in our context.
Fifth, we have considered that the distribution of the isotope composition is independent be-

tween between different months and also independent between different years. This is obviously
not realistic as strong temporal autocorrelation may exist. Most other statistical approaches to
isoscapes also neglect this temporal autocorrelation (but see Klaus et al., 2015) and further devel-
opment should be made to alleviate this strong assumption. Correlation functions allowing to
account for both spatial and temporal correlation exist for mixed models and could thus be used
within our formalism (but this is not implemented in the current version of spaMM). Account-
ing for the autocorrelation should lead to reduction in the prediction variance and thus to more
precise inference.

With this caveat in mind we showed that our approach provides information about different
time scales simultaneously. In our example, one could study month-to-month variation by com-
paring monthly isoscapes, and year-to-year variation by looking at the isoscape of the residual
variance. Nonetheless, both time scales are treated differently. While it is possible to visualize
the realization of the spatial process for a given month, it is not possible to compute an isoscape
corresponding to a given year. To do the latter, we do not recommend to fit a new model con-
sidering the data from a single year, as it would prevent the estimation of the residual variance
which is required to compute the prediction variance. Instead, an alternative allowing for the
examination of yearly isoscape would be to invert both time scales; that is, to split the data per
year (instead of per month) during the aggregation process and to use as the response variable
for the dispersion model the observed estimates of the inter-month variation within year for each
measuring station. For such estimate to be reliable only stations from which samples are avail-
able for the same months should be retained (e.g. we could consider the station that have records
for all months), which imply to lose some data. Here, we chose to aggregate the data accross
years and not accross months because there is stronger temporal structure between months than
between years.

Sixth, instead of fitting the mean and residual dispersion simultaneously, we fitted sequen-
tially the residual dispersion model and then the mean model. We did so to allow for a consid-
erable gain in computation time, which may be required as spatial mixed models are generally
slow to fit. The gain in computation time is present for two reasons. First, our sequential pro-
cedure allows to aggregate the data and to directly work on the mean and variance estimates
of each month-location combination, rather than working on the total number of water samples.
Second, our procedure provides dispersion estimates which converge immediately, because the
response of the dispersion model does not depend on the results of fitting the mean model for
given residual variance.

Our sequential fitting approach thus differs from the full-likelihood method described by Lee
and Nelder (2006, p. 327) which is iterative because therein the estimation of residual dispersion
parameters depends on the results of the mean fit. They call their approach a Double Hierarchical
GLM (DHGLM; Lee and Nelder, 2006). This latter approach requires to work on non-aggregated
data. The package spaMM offers the possibility to fit DHGLMs, but such fits are extremely com-
puter intensive for joint spatial models. The estimates by our sequential approach should differ
from those obtained by a DHGLM. Indeed, estimates of the residual variance parameters gener-
ally differ between a sequential and a joint fitting procedure, even in the simpler case when the
residual variance is fitted only by an intercept term, and Searle et al. (2006, Section 4.7) showed
that differences are more generally expected for mixed models. That being said, we only expect
slight differences in estimates when the parameters of the mean model and the residual disper-
sion models are fitted simultaneously or not. Making sure that this is the case would require to
fit our mean model and residual dispersion models as a DHGLM.
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4.4 Conclusion

The application of likelihood methods for mixed models to build and study isoscapes has been
under-developed so far. In this paper we have introduced this approach to unfamiliar readers,
but we have also detailed lesser known aspects and unusual adjustments of these methods to
the present problems. As we have shown, our approach can be used to analysed the very large
public dataset of the isotope composition of precipitation water provided by the Global Network
for Isotopes in Precipitation (IAEA/WMO, 2017), but it can also be used to analyse other sources
of data (e.g. the isotope composition of oceanic water data). For easier access to the methods, we
have provided both a small R package called ModellingIsoscapesUsingMixedModels (included as
Supplementary material) illustrating how to code the approach using the more general package
spaMM, and the package IsoriX (Courtiol et al., 2016), which also uses spaMM internally, but
which is dedicated to performing isoscape analyses and designed to be very simple to use. The
latter package also allows for the inference of origin location of environmental materials using
mixed models. All these packages are free and open source, similarly to the R environment
required to run them. By providing our approach in such a way, we allow for an efficient and
objective comparison of different methods. We thus encourage other authors to make their code
available and to compare alternative methodology for building isoscapes to ours. We also invite
anyone interested to contribute to the development of IsoriX using GitHub (https://github.
com/courtiol/IsoriX_project).
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Glossary

• Fixed effects describe the effects of known predictor variables and random effects describe
the effects of unknown predictor variables. In the latter case, these effects are supposed to
follow some probability distribution, which parameters are estimated.

• The residual error in a model is the difference between the response value and the expected
value, given the realized value of the random effects. The estimates of the residuals are the
difference between the response value and the predicted value. By construction, estimated
residuals sum to zero in a linear model.

• LM, LMM: A function f is linear with respect to a vector-valued argument, β, if f (β =
β1 + β2) = f (β = β1) + f (β = β2). A linear model (LM) is so called because the expected
value of the response is linear with respect to the vector of fixed-effect coefficients. By
definition, the distribution of the residual error in a LM is Gaussian. A linear mixed-effects
model (LMM) is a model where the response, conditional on the realized values of the
random effects, follows a LM, and the random effects have a Gaussian distribution.

• GLM, GLMM: A GLM is a model where the distribution of the residual error is not nec-
essarily Gaussian, but rather belongs to the so-called exponential family of distributions,
including the Gamma family considered in this work. In a GLM the expected value of
the response may be a non-linear function of the estimated parameters, but is defined as
a transformation (e.g. exponential) of a linear function (the linear predictor) of these param-
eters. This transformation is standardly specified by its inverse, the link (e.g. the log link
for the exponential transformation). A GLM is fully specified by its linear predictor, family,
link, and prior weights (see GLM specification). A generalized linear mixed-effect models
(GLMM) is a model where the response, conditional on the realized values of the random
effects, follows a GLM, and the random effects have a Gaussian distribution.

• GLM specification: Each distribution in the Gaussian and Gamma families is identified by
its mean µ and its dispersion parameter φ. The model for the mean is determined by the
linear predictor and the link. The linear predictor is specified by the formula argument.
The family and link are jointly specified by the family argument of the form family(link),
in particular family=Gamma(link=log) and family=gaussian(link=identity) (which can
be entered as family=gaussian()). The model for φ is by default a single estimated value
for all levels of the response, but it can be modified by the prior weights: a vector of prior
weights (wj) allows one to specify different variances for different levels of the response
variable: for a given φ the variance of the jth response is φ/wj. Prior weights are given by
the prior.weight argument in spaMM, which corresponds to the weight argument for glm().
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