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Abstract	

Temporal	control	of	physiology	requires	the	interplay	between	gene	networks	involved	in	

daily	 timekeeping	 and	 tissue	 function	 across	 different	 organs.	 How	 the	 circadian	 clock	

interweaves	with	 tissue-specific	 transcriptional	 programs	 is	 poorly	 understood.	Here	we	

dissected	 temporal	 and	 tissue-specific	 regulation	 at	 multiple	 gene	 regulatory	 layers	 by	

examining	mouse	 tissues	with	an	 intact	or	disrupted	clock	over	 time.	 Integrated	analysis	

uncovered	 two	 distinct	 regulatory	 modes	 underlying	 tissue-specific	 rhythms:	 tissue-

specific	 oscillations	 in	 transcription	 factor	 (TF)	 activity,	 which	 were	 linked	 to	 feeding-

fasting	cycles	in	liver	and	sodium	homeostasis	in	kidney;	and	co-localized	binding	of	clock	

and	 tissue-specific	 transcription	 factors	 at	 distal	 enhancers.	 Chromosome	 conformation	

capture	(4C-Seq)	in	liver	and	kidney	identified	liver-specific	chromatin	loops	that	recruited	

clock-bound	 enhancers	 to	 promoters	 to	 regulate	 liver-specific	 transcriptional	 rhythms.	

Furthermore,	this	 looping	was	remarkably	promoter-specific	on	the	scale	of	 less	than	ten	

kilobases.	 Enhancers	 can	 contact	 a	 rhythmic	 promoter	 while	 looping	 out	 nearby	

nonrhythmic	 alternative	 promoters,	 confining	 rhythmic	 enhancer	 activity	 to	 specific	

promoters.	 These	 findings	 suggest	 that	 chromatin	 folding	 enables	 the	 clock	 to	 regulate	

rhythmic	transcription	of	specific	promoters	to	output	temporal	transcriptional	programs	

tailored	to	different	tissues.	
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Introduction	

A	mammalian	internal	timing	system,	known	as	the	circadian	clock,	orchestrates	temporal	

physiology	 in	 organs	 to	 anticipate	 daily	 environmental	 cycles	 (Dibner	 &	 Schibler	 2015).	

Individual	 cells	within	organs	contain	a	molecular	oscillator	 that,	 together	with	rhythmic	

systemic	 signals	 such	as	hormones,	 temperature,	 and	 feeding	behavior,	 collectively	drive	

diurnal	 oscillations	 in	 gene	 expression	 and	 physiology	 (Lamia	 et	 al.	 2008;	 Reinke	 et	 al.	

2008;	Vollmers	et	al.	2012;	Cho	et	al.	2012).	Remarkably,	the	circadian	clock	impinges	on	

many	 gene	 regulatory	 layers,	 from	 transcriptional	 and	 posttranscriptional	 processes,	

translation	efficiency,	to	translational	and	posttranslational	processes	(Mermet	et	al.	2016).	

Transcriptome	 analysis	 of	 large	 collections	 of	 mammalian	 cell	 types	 and	 tissues	

have	highlighted	the	breadth	of	tissue-specific	transcriptional	regulation	(Yue	et	al.	2014;	

Merkin	et	al.	2012).	However,	many	physiological	processes	are	dynamic	at	the	timescale	of	

hours	and	often	under	circadian	control,	such	as	hormone	secretion,	drug	and	xenobiotic	

metabolism,	 and	 glucose	 homeostasis	 (Takahashi	 et	 al.	 2008).	 Therefore,	 unlocking	 the	

temporal	dimension	to	tissue-specific	gene	regulation	is	needed	for	an	integrated	view	of	

physiological	control.	

Chronobiology	studies	have	shown	that	different	tissues	utilize	the	circadian	clock	

to	 drive	 tissue-specific	 rhythmic	 gene	 expression	 (Storch	 et	 al.	 2002;	 Zhang	 et	 al.	 2014;	

Korenčič	et	al.	2014),	presumably	 to	schedule	physiological	 functions	 to	optimal	 times	of	

day.	Indeed,	genetic	ablation	of	the	circadian	clock	in	different	tissues	can	lead	to	divergent	

pathologies,	 such	 as	 diabetes	 in	 pancreas-specific	 Bmal1	 knockout	 (KO)	 and	 fasting	

hypoglycemia	in	liver-specific	Bmal1	KO,	suggesting	that	the	clock	interweaves	with	tissue-

specific	 transcriptional	 programs	 (Bass	 &	 Lazar	 2016).	 But	 how	 diurnal	 and	 tissue-
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dependent	 regulatory	 landscapes	 interact	 to	 generate	 tissue-specific	 rhythms	 is	 poorly	

understood.	

Results	

Contributions	of	tissue,	daily	time,	and	circadian	clock	to	global	variance	in	mRNA	expression	

To	estimate	the	respective	contributions	of	tissues,	daily	time,	and	circadian	clock	to	global	

variance	 in	 gene	 expression,	 we	 analyzed	 available	 temporal	 transcriptomes	 across	 11	

tissues	in	WT	mice	(Zhang	et	al.	2014),	and	generated	temporal	RNA-Seq	data	of	liver	and	

kidney	 from	Bmal1	KO	mice	and	WT	littermates	(Supplemental	Table	S1	&	Supplemental	

Table	S2,	Methods).	The	Zhang	et	al.	dataset	was	obtained	under	dark-dark	(DD),	ad	libitum	

feeding,	 sampled	 every	 2	 hours.	 The	 liver	 and	 kidney	Bmal1	KO	 and	WT	 datasets	 were	

obtained	under	light-dark,	night-restricted	feeding	(LD)	conditions,	sampled	every	4	hours.		

To	 avoid	 mixing	 different	 experimental	 designs	 (e.g.	 temporal	 resolution	 and	

number	 of	 repeats,	 Deckard	 et	 al.	 2013;	 Li	 et	 al.	 2015),	 we	 analyzed	 these	 datasets	

separately.	 We	 performed	 principal	 component	 analysis	 (PCA)	 on	 the	 entire	 set	 of	

conditions	 (11	 tissues	 times	24	 time	points)	 to	obtain	a	 first	unbiased	overview	 into	 the	

contributions	of	tissue	and	time-specific	variance	in	the	data.	This	showed	that	most	of	the	

variance	concerned	differences	in	expression	between	tissues	(Figure	1A	&	Supplemental	

Figures	 S1A-D).	 Temporal	 variance,	 in	 particular	 24h	 periodicity,	 was	 present	 among	 a	

group	 of	 principle	 components	 carrying	 lower	 amounts	 of	 variance	 (Figure	 1A	 &	

Supplemental	 Figures	 S1E-G).	 Focusing	 on	 genome-wide	 temporal	 variation	within	 each	

tissue,	 we	 found	 that	 24-hour	 rhythms	 constituted	 the	 largest	 contribution	 of	 temporal	

variance,	 followed	by	12-hour	 rhythms,	which	were	 close	 to	background	 levels	 for	many	
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tissues	(Figure	1B)	(Hughes	et	al.	2009).	We	thus	focused	the	rest	of	our	analysis	on	24h	

rhythms.	

We	 analyzed	 the	 peak-to-trough	 amplitudes	 (hereafter	 also	 referred	 to	 as	 fold	

change)	 of	 24h	 rhythmic	 transcripts.	 This	 showed	 that	 metabolic	 tissues,	 notably	 liver,	

brown	 fat,	 and	 skeletal	 muscle	 stand	 out	 as	 exhibiting	 far	 more	 (on	 the	 order	 of	 100	

transcripts)	 intermediate	 to	high	 amplitude	 (between	2	 and	10	 fold)	 transcript	 rhythms.	

Brain	tissues	show	virtually	no	rhythmic	transcripts	above	4	fold	(Figure	1C).	In	liver	and	

kidney	of	Bmal1	KO	mice,	the	number	of	rhythmic	mRNAs	was	reduced	by	3	fold	compared	

to	 WT	 littermates.	 This	 effect	 increased	 for	 larger	 amplitudes.	 Only	 few	 transcripts	 in	

tissues	 of	 Bmal1	 KO	 oscillated	 by	 more	 than	 10	 fold	 (Figure	 1D).	 Thus,	 a	 functional	

circadian	 clock	 is	 required	 for	 high	 amplitude	 transcript	 rhythms	 across	 diverse	 tissues,	

while	 systemic	 signals	 regulate	 lower	 amplitude	 rhythms	 that	 persist	 in	 clock-deficient	

liver	(Hughes	et	al.	2012;	Atger	et	al.	2015;	Sobel	et	al.	2017)	and	kidney	(Nikolaeva	et	al.	

2012).	

Combinatorics	of	rhythmic	transcript	expression	across	tissues	and	genotypes	

We	reasoned	that	 identifying	sets	of	genes	with	shared	rhythms	across	subsets	of	 tissues	

would	allow	finding	underlying	regulatory	mechanisms.	We	therefore	developed	a	model	

selection	 (MS)	 algorithm	 extending	 harmonic	 regression	 (Fisher	 1929)	 to	 classify	 genes	

into	 modules	 sharing	 rhythmic	 mRNA	 profiles	 across	 subsets	 of	 tissues	 (Figure	 2A,	

Methods).	 Phase-amplitude	 relationships	 (phase	 is	 defined	 as	 the	 time	 of	 the	 peak,	 and	

amplitude	 as	 the	 log2	 fold	 change)	 between	 genes	 and	 tissues	 are	 summarized	 using	

complex-valued	singular	value	decomposition	(SVD)	(Figure	2B,	Methods).	We	applied	MS	

to	the	11	tissues,	which	identified	gene	modules	involving	rhythmic	mRNA	accumulation	in	

nearly	all	tissues	(tissue-wide)	(Figure	2C),	in	single	tissues	(tissue-specific),	or	in	several	
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tissues	 (tissue-restricted)	 (examples	 shown	 in	 Figure	 2D	 &	 Supplemental	 Figure	 S2A	 &	

Supplemental	Table	S3).	

The	tissue-wide	module	contained	a	set	of	both	clock-	and	system-driven	rhythmic	

mRNAs,	as	determined	by	comparing	Bmal1	KO	data	 in	 liver	and	kidney	(Figure	2C,	 left).	

Moreover,	 these	 transcripts	oscillated	 in	synchrony	across	all	 tissues	and	peaked	at	 fixed	

times	of	 day,	 albeit	 their	 amplitudes	 varied	between	 tissues,	with	brain	 regions	 showing	

the	 smallest	 amplitudes	 (Figure	 2C,	 right).	 The	 clock	 drove	 synchronized	 oscillations	 at	

high	amplitudes,	notably	clock	genes	(e.g.	Arntl,	Npas2,	Nr1d1,2;	note	that	Arntl	and	Nr1d1,2	

are	also	named	Bmal1	and	Rev-erba,b	respectively),	clock	output	genes	(e.g.	Dbp,	Nfil3),	and	

cell	cycle	regulators	(Cdkn1a	and	Wee1)	(Gréchez-Cassiau	et	al.	2008;	Matsuo	et	al.	2003).	

Interestingly,	 clock	 genes	 Per1,2	 continued	 to	 oscillate	 in	 Bmal1	KO	 in	 multiple	 tissues,	

extending	 previous	 studies	 in	 liver	 (Kornmann	 et	 al.	 2007).	 Other	 clock-independent	

oscillations	 included	 mRNAs	 of	 heat-	 and	 cold-induced	 genes,	 such	 as	 Hspa8	 and	 Cirbp	

(Morf	et	al.	2012;	Gotic	et	al.	2016),	that	peaked	12	hours	apart	near	CT18	and	CT6	(CT:	

circadian	 time;	CT0	corresponds	 to	 subjective	dawn	and	start	of	 the	 resting	phase;	CT12	

corresponds	 to	subjective	dusk	and	start	of	 the	activity	phase),	 concomitantly	with	highs	

and	lows	in	body	temperature	rhythms	(Refinetti	&	Menaker	1992).	

Tissue-restricted	modules	contained	rhythmic	transcripts	that	peaked	in	synchrony,	

such	 as	 in	 liver	 and	 kidney,	 or	 with	 fixed	 offsets,	 such	 as	 the	 nearly	 12	 hours	 shifted	

rhythms	in	brown	fat	and	skeletal	muscle	(Supplemental	Figure	S3A).	Overall,	 transcripts	

with	large	amplitudes	(FC>8)	oscillated	in	either	a	few	tissues	(3	or	less)	or	tissue-wide	(8	

or	more)	(Figure	2E).	

To	 distinguish	 clock-	 and	 system-driven	 mRNA	 rhythms,	 we	 applied	 the	 MS	

algorithm	to	the	liver	and	kidney	transcriptomes	in	WT	and	Bmal1	KO	mice	(Figure	2F	&	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 23, 2017. ; https://doi.org/10.1101/207787doi: bioRxiv preprint 

https://doi.org/10.1101/207787
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 7	

Supplemental	Figure	S3B	&	Supplemental	Table	S4).	This	separation	identified	clock-	and	

system-driven	 modules	 that	 oscillated	 in	 liver	 but	 were	 flat	 in	 kidney	 (Figure	 2F),	 as	

exemplified	 by	 mRNAs	 of	 Lipg	 and	 Lpin1	 (Supplemental	 Figure	 S2B).	 Indeed,	 both	

transcripts	oscillated	in	WT	liver	with	robust	amplitudes,	peaking	near	ZT11,	but	were	flat	

in	kidney	(ZT:	Zeitgeber	time;	ZT0	corresponds	to	onset	of	lights-on;	ZT12	corresponds	to	

onset	of	lights-off).	However,	in	Bmal1	KO,	Lpin1	continued	to	oscillate,	while	Lipg	was	flat.		

Summarizing,	we	 found	 that	shared	clock-driven	mRNA	rhythms,	which	contained	

core	clock	and	clock-controlled	genes,	oscillated	with	significantly	 larger	amplitudes	than	

system-driven	genes	(Figure	2G,	magenta	solid	versus	dotted).	Similarly,	clock-driven	liver-

specific	mRNA	rhythms	also	oscillated	at	higher	amplitudes	compared	with	system-driven	

mRNA	 rhythms	 (Figure	 2G,	 red	 solid	 versus	 dotted).	 On	 the	 other	 hand,	 kidney-specific	

clock-	 and	 system-driven	 transcripts	 oscillated	 with	 comparable	 amplitudes	 (Figure	 2G,	

blue	solid	versus	dotted),	and	were	less	numerous	overall,	which	could	reflect	the	distinct	

cell	 types	constituting	the	kidney	(Lee	et	al.	2015).	The	uncovered	diversity	of	clock-	and	

system-driven	mRNA	rhythms	involving	distinct	combinations	of	tissues	hints	at	complex	

transcriptional	 or	 post-transcriptional	 regulation.	 Below,	 we	 examine	 transcription	

regulators	responsible	for	tissue-specific	mRNA	rhythms.	

Oscillatory	TF	activity	in	one	tissue	but	not	others	can	drive	tissue-specific	mRNA	rhythms	

We	 focused	 on	 WT	 and	 Bmal1	 KO	 liver	 and	 kidney	 to	 identify	 rhythmic	 TF	 activities	

underlying	 clock-	 and	 system-driven	 tissue-specific	 mRNA	 rhythms.	 We	 first	 analyzed	

liver-rhythmic	 genes	 driven	 by	 systemic	 signals	 (n=1395,	 MS;	 Figure	 3A),	 which	 were	

associated	 with	 feeding	 and	 fasting	 rhythms	 (GO	 analysis	 around	 the	 clock,	 Method).	

Indeed,	 ribosome	biogenesis	was	upregulated	most	 strongly	during	 the	 first	 six	 hours	 of	

the	 feeding	 phase	 (from	 ZT12	 to	 ZT18)	 (Jouffe	 et	 al.	 2013;	 Chauvin	 et	 al.	 2014),	 while	
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insulin	signaling	was	downregulated	during	first	six	hours	of	the	fasting	phase	(from	ZT0	to	

ZT6)	 (Ravnskjaer	 et	 al.	 2013),	 consistent	with	daily	 responses	 to	nutrient	 fluctuations	 in	

liver	(Sinturel	et	al.	2017).		

To	infer	rhythmic	TF	activities	that	may	underlie	these	mRNA	rhythms,	we	applied	a	

penalized	regression	model	(MARA)	(Balwierz	et	al.	2014)	that	 integrates	TF	binding	site	

predictions	near	promoters	with	mRNA	accumulation.	TF	analysis	of	 this	module	notably	

identified	 TFs	 related	 to	 insulin	 biosynthesis	 and	 gluconeogenesis,	 such	 as	 MAFB	

(Matsuoka	et	al.	2003)	and	EGR1	(Matsuoka	et	al.	2003;	Shen	et	al.	2015),	whose	activities	

peaked	at	ZT11	and	ZT3,	respectively	(Figure	3B	&	Supplemental	Figure	S4A).	Integrating	

temporal	activities	of	candidate	TFs	with	RNA-Seq	and	our	previously	described	temporal	

nuclear	protein	dataset	(Wang	et	al.	2017),	we	 found	that	rhythmic	activity	of	MAFB	and	

EGR1	was	supported	by	rhythmic	mRNA	abundance	followed	by	rhythmic	nuclear	protein	

abundance	 (Figure	 3B,	 Supplemental	 Figure	 S4B),	 likely	 reflecting	 the	 delayed	 protein	

abundance	after	mRNA	accumulation	(Mermet	et	al.	2016).	

Next,	 we	 analyzed	 clock-driven	 transcripts	 oscillating	 specifically	 in	 the	 kidney	

(n=156,	MS;	Figure	3C),	among	which	sodium	ion	and	organic	anion	transporters	peaked	

near	 ZT12	 and	ZT0,	 respectively.	 The	upregulation	 of	 sodium	 ion	 transporters	 in	 kidney	

during	 the	 behaviorally	 active	 phase	 may	 underlie	 clock-dependent	 increase	 of	 sodium	

excretion	(Nikolaeva	et	al.	2012).	Similarly,	the	upregulation	of	organic	anion	transporters	

during	 the	 resting	 phase	 may	 explain	 increased	 transport	 activity	 for	 precursors	 of	

gluconeogenesis,	such	as	pyruvate	and	lactate,	during	fasting	(Ekberg	et	al.	1999;	Stumvoll	

et	al.	1998).	mRNAs	that	peaked	during	the	resting	phase	may	be	regulated	by	TFCP2,	as	

predicted	by	TF	analysis	(Figure	3D	&	Supplemental	Figure	S4C).	In	addition,	the	predicted	

TFCP2	 activity	 was	 anti-phasic	 with	 Tfcp2	mRNA	 abundance,	 suggestive	 of	 a	 repressive	
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activity,	consistent	with	the	ability	of	TFCP2	to	recruit	histone	deacetylase	HDAC1	(Kim	et	

al.	2016).	

Finally,	 liver-specific	 clock-driven	 rhythmic	 transcripts	 (n=991,	 MS)	 were	

comprised	 of	 genes	 associated	with	 glucose	metabolism	 (enriched	 at	 ZT18),	 such	 as	Gck	

and	 Ppp1r3b	 (Kelsall	 et	 al.	 2009;	 Oosterveer	 &	 Schoonjans	 2014),	 as	 well	 as	 lipid,	

cholesterol,	 and	 bile	 acid	 metabolism	 genes	 (enriched	 at	 ZT2),	 such	 as	 Elovl3,	 Insig2,	

Hsd3b7,	and	Cyp8b1	(Guillou	et	al.	2010;	Le	Martelot	et	al.	2009;	Sayin	et	al.	2013;	Shea	et	

al.	2007)	(Figure	3E).	Predicted	activity	of	ELF	oscillated	and	peaked	near	ZT3	in	WT	liver	

but	 was	 flat	 in	 Bmal1	 KO	 (Fang	 et	 al.	 2014)	 (Figure	 3F	 &	 Supplemental	 Figure	 S4D).	

Interestingly,	 mRNA	 abundance	 of	 Elf1	 as	 well	 as	 its	 nuclear	 protein	 abundance	 also	

oscillated	 in	 WT,	 supporting	 Elf1	 as	 a	 potential	 regulator	 of	 oscillating	 transcriptions	

peaking	near	midday.	Thus,	the	MS	algorithm	separated	genes	into	physiologically	relevant	

modules,	 allowing	 reliable	 prediction	 of	 rhythmically	 active	 TFs	 regulating	 temporal	

physiology	of	respective	tissues.	

Co-localized	binding	of	clock	and	liver-specific	TFs	drives	liver-specific	mRNA	rhythms	

To	 further	 dissect	 liver-specific	 clock-driven	 rhythms,	 we	 reasoned	 that	 accessible	

chromatin	 regions	 specific	 to	 the	 liver	 could	harbor	 regulatory	 sites	 for	 clock	TFs,	which	

could	 then	 regulate	mRNA	 rhythms	 liver-specifically.	 Comparing	 DNase	 I	 hypersensitive	

sites	(DHSs)	in	liver	and	kidney	(DNase-Seq	data	from	ENCODE)	(Yue	et	al.	2014),	we	found	

that	liver-specific	clock-driven	genes	were	enriched	with	liver-specific	DHSs	(within	40	kb	

from	promoters),	 compared	 to	 system-driven	 as	well	 as	 nonrhythmic	 genes	 (Figure	 4A).	

Using	TF	binding	site	predictions	underlying	these	liver-specific	DHSs,	we	applied	MARA	to	

predict	rhythmic	TF	activities	 that	explain	gene	expression	of	 this	module	(Supplemental	

Figure	S5A).	In	WT	liver,	the	predicted	activity	of	RORE	oscillated	with	robust	amplitudes	
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and	peaked	near	ZT21.	RORE	activity	became	high	and	 flat	 in	Bmal1	KO	 liver,	 consistent	

with	loss	of	REV-ERB	expression	and	consequently	derepression	of	REV-ERB	target	genes	

(Bugge	et	al.	2012)	(Figure	4B,	top).	Activity	of	E-box	in	WT	liver	peaked	at	ZT7,	consistent	

with	BMAL1:CLOCK	activity	(Rey	et	al.	2011),	albeit	with	weaker	amplitudes	compared	to	

RORE	activity,	likely	reflecting	fewer	E-box	target	genes	compared	to	RORE	in	this	module.	

In	Bmal1	KO	mice;	E-box	activity	was	low	and	flat	in	liver,	as	expected.	

We	hypothesized	 that	 cooperativity	of	 liver-specific	 and	 clock	TFs	at	 liver-specific	

DHSs	 can	 regulate	 liver-specific	mRNA	 rhythms.	 Pairwise	 analysis	 of	 TF	 binding	 sites	 at	

liver-specific	DHSs	found	enrichment	of	co-occurrence	between	RORE	and	liver-specific	TF	

motifs,	 FOXA2,	 ONECUT,	 and	 CUX2	 (Figure	 4C).	 Enrichment	 of	 both	 CUX2	 and	 ONECUT	

(also	named	HNF6)	is	consistent	with	ONECUT1	binding	to	both	ONECUT	and	CUX2	motifs	

(Conforto	et	al.	2015).	mRNAs	of	genes	with	co-occurrence	of	RORE	and	 liver-specific	TF	

motifs	 peaked	 near	 ZT0-ZT2,	 consistent	with	 peak	 RORE	 activity	 (near	 ZT21)	 preceding	

peak	mRNA	abundance	of	REV-ERB	 targets	 (Supplemental	Figure	S5B).	Analysis	of	ChIP-

exo	datasets	targeting	FOXA2,	ONECUT1,	and	REV-ERBa	in	liver	(Iwafuchi-Doi	et	al.	2016;	

Wang	 et	 al.	 2014;	 Zhang	 et	 al.	 2015)	 confirmed	 co-localized	 TF	 binding	 at	 liver-specific	

DHSs	distal	from	clock-driven	liver	mRNAs	such	as	Insig2	and	Slc4a4	(Figure	4D).	Thus,	co-

localized	binding	of	 liver-specific	and	clock	TFs	at	distal	 liver-specific	DHSs	may	regulate	

liver-specific	mRNA	rhythms.	

Liver-specific	chromatin	loops	regulate	liver-specific	mRNA	rhythms	

To	test	whether	distally	located	liver-specific	DHSs	can	contact	promoters	of	clock-driven	

liver-rhythmic	genes,	we	selected	the	promoters	of	Mreg,	Pik3ap1,	and	Slc44a1	as	baits	for	

4C-Seq	experiments	in	liver	and	kidney	harvested	at	the	time	of	peak	mRNA	accumulation	

for	 the	 selected	 genes	 (Methods,	 Figure	 5A	 &	 Supplemental	 Figure	 S6A	 &	 Supplemental	
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Figure	S7A).	Upstream	of	Mreg,	the	4C-Seq	signal,	which	measures	frequency	of	promoter-

enhancer	contacts	(van	de	Werken	et	al.	2012),	decayed	rapidly	to	background	level	in	both	

liver	and	kidney	(Figure	5B	top).	Downstream	of	Mreg,	however,	the	4C-Seq	signal	showed	

a	 tissue-dependent	 pattern,	 decaying	 slowly	 in	 the	 liver	 but	more	 rapidly	 in	 the	 kidney.	

This	 difference	 in	 decay	 suggests	 increased	 frequency	 of	 promoter-enhancer	 contacts	 in	

the	 liver	 compared	 to	 the	 kidney.	 Indeed,	 differential	 analysis	 identified	 liver-specific	

chromatin	contacts	40	kb	downstream	of	the	promoter	(Figure	5B	bottom).	Overlaying	the	

contact	data	with	DNase-Seq,	we	found	that	liver-specific	chromatin	contacts	downstream	

of	Mreg	connected	 liver-specific	DHSs	with	 the	Mreg	promoter	 (Figure	5C).	Furthermore,	

ChIP-exo	 showed	 co-localization	 of	 REV-ERBa	 and	 FOXA2	 binding	 at	 liver-specific	 DHSs	

contacting	the	promoters	(Figure	5C).	By	contrast,	accessible	regions	upstream	of	the	Mreg	

promoter	did	not	show	liver-specific	chromatin	contacts.	The	4C-Seq	data	thus	suggest	that	

liver-specific	 chromatin	 loops	 can	 recruit	 clock-bound	 distal	 elements	 to	 promoters	 to	

regulate	 liver-specific	 transcriptional	 rhythms.	 Other	 liver-specific	 rhythmic	 transcripts,	

Pik3ap1	and	Slc44a1,	also	displayed	liver-specific	chromatin	loops	between	promoter	and	

liver-specific	open	chromatin	regions	(Supplemental	Figure	S6	&	Supplemental	Figure	S7),	

corroborating	that	such	tissue-specific	looping	drives	tissue-specific	mRNA	rhythms.	

Precise	promoter-enhancer	contacts	underlie	liver-specific	mRNA	rhythms	

To	test	whether	distinct	chromatin	loops	would	form	at	alternative	nearby	gene	promoters	

with	 distinct	 temporal	 mRNA	 profiles,	 we	 searched	 for	 candidate	 genes	 where	 one	

promoter	 was	 rhythmically	 transcribed	 while	 the	 alternative	 one	 was	 nonrhythmic	

(Supplemental	 Figure	 S8).	 Slc45a3	has	 two	 alternative	 transcripts	 using	 promoters	 8	 kb	

apart,	with	the	shorter	oscillating	in	the	liver	(rhythmic	promoter,	Slc45a3-short),	while	the	

longer	not	(flat	promoter,	Slc45a3-long).	In	kidney,	neither	Slc45a3-short	nor	Slc45a3-long	
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showed	robust	 transcript	rhythms	(Supplemental	Figure	S9).	Targeting	 the	Slc45a3-short	

promoter	with	4C-Seq	 in	 liver	and	kidney	showed	 liver-specific	 chromatin	 loops	at	 three	

distal	 regions	 (two	 upstream,	 one	 downstream)	 (Figure	 6A).	 Remarkably,	 these	 same	

regions	did	not	form	liver-specific	chromatin	loops	with	the	Slc45a3-long	promoter	(Figure	

6B),	 suggesting	 that	promoters	8	kb	apart	can	contact	distinct	enhancers.	Overlaying	4C-

Seq	 with	 DNase-Seq,	 we	 found	 that	 these	 chromatin	 loops	 link	 liver-specific	 DHSs	

specifically	to	the	Slc45a3-short	promoter	(Figure	6C).	These	liver-specific	DHSs	are	bound	

by	liver-specific	TFs,	FOXA2	and	ONECUT1,	and	clock	TF,	REV-ERBa,	as	shown	in	ChIP-Seq.	

Taken	 together,	 the	 4C	 experiments	 suggest	 that	 enhancers	 can	 contact	 a	 rhythmic	

promoter	while	looping	out	nearby	nonrhythmic	alternative	promoters,	confining	rhythmic	

enhancer	 activity	 to	 specific	 promoters	 (Figure	 6D).	 Furthermore,	 rhythmically	 active	

enhancers	can	contact	promoters	in	a	tissue-specific	manner.	Thus,	chromatin	folding	not	

only	 regulates	 tissue-specific	 rhythms,	 but	 also	 differentiates	 between	 closely	 spaced	

promoters	to	control	rhythmic	transcription	with	spatial	precision.	
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Discussion	

The	mammalian	genome	encodes	transcriptional	programs	that	allow	the	molecular	clock	

to	 robustly	 oscillate	 across	 diverse	 tissue	 transcriptomes	while	maintaining	 flexibility	 to	

regulate	distinct	clock	outputs	in	different	combinations	of	tissues.	Here	we	identified	two	

regulatory	modes	underlying	tissue-specific	 transcript	rhythms:	(1)	regulatory	sequences	

can	recruit	 individual	TFs	bearing	rhythmic	activity;	(2)	coordinated	binding	of	clock	and	

tissue-specific	TFs	can	generate	tissue-specific	rhythms.	Moreover,	we	found	that	clock	and	

tissue-specific	 TFs	 bound	 at	 distal	 enhancers	 can	 be	 recruited	 to	 promoters	 through	

remarkably	precise	chromatin	loops.	

	 Several	 of	 our	 predictions	 of	 transcription	 regulators	 and	 regulated	 genes	 (e.g.	

EGR1,	Por,	Upp2)	corroborated	with	previous	analyses	of	independent	datasets	(Yan	et	al.	

2008;	Bozek	et	al.	2009;	Bhargava	et	al.	2015).	Further	analysis	 incorporating	outputs	of	

enhancer	activity,	 such	as	eRNAs	(Fang	et	al.	2014),	across	multiple	 tissues	may	uncover	

additional	rhythmically	active	regulators.	

Co-localized	 binding	 of	 clock	 and	 tissue-specific	 TFs	 at	 enhancers	 provides	 a	

putative	 mechanism	 for	 the	 clock	 to	 regulate	 clock	 output	 genes	 in	 a	 tissue-specific	

manner.	 In	mouse	 liver,	clock	TFs	can	co-localize	with	multiple	 liver-specific	TFs,	such	as	

FOXA2	 and	 ONECUT1,	 consistent	 with	 multiple	 liver	 TFs	 associating	 with	 liver-specific	

DHSs	(Iwafuchi-Doi	et	al.	2016).	Our	findings	are	currently	based	on	sequence-specific	DNA	

binding	of	TFs,	comparison	of	tissues,	and	ChIP-Seq	datasets.	Further	mechanistic	basis	for	

the	 functional	 significance	 of	 co-localization	 could	 be	 gained,	 for	 example	 by	 using	

inducible	 knockout	 models	 for	 tissue-specific	 regulators.	 Moreover,	 the	 observed	 co-

localization	 do	 not	 exclude	 other	 cooperative	 modes,	 such	 as	 tethering	 of	 REV-ERBa	 to	

ONECUT1	through	protein-protein	interactions	(Zhang	et	al.	2015).	
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Our	4C	analysis	showed	that	chromatin	looping	might	mediate	interaction	between	

clock	 and	 tissue-specific	 transcriptional	 programs,	 by	 recruiting	 clock-bound	 distal	

elements	to	promoters	 in	a	tissue-specific	manner.	Remarkably,	such	 loops	can	surgically	

discriminate	 between	 nearby	 promoters	 as	 close	 as	 8	 kb	 apart,	 suggesting	 a	 way	 to	

separate	the	temporal	regulation	of	neighboring	promoters.		A	previous	study	applying	4C	

techniques	 to	 probe	 the	 contact	 landscape	 of	 a	 core	 clock	 gene	 enhancer	 proposed	 that	

cohesion-mediated	 promoter-enhancer	 looping	 can	 compartmentalize	 rhythmic	 gene	

expression	 within	 genomic	 regions	 spanning	 150	 kb	 (Xu	 et	 al.	 2016).	 Here,	 chromatin	

interactions	 that	 differed	 between	 tissues	 were	 localized	 to	 a	 relatively	 small	 genomic	

region	(<10	kb)	proximal	to	the	promoters	(<100	kb).	Future	studies	integrating	temporal	

data	 across	 tissues	with	 large-scale	 promoter-enhancer	 networks	may	 reveal	 regulatory	

sequences	 that	 encode	 promoter-enhancer	 compatibility	 and	 elucidate	 whether	 this	

compatibility	is	tissue-specific	(Li	&	Noll	1994;	Merli	et	al.	1996;	Zabidi	et	al.	2014;	Nguyen	

et	al.	2016).	

Overall,	 this	 work	 proposed	 a	 role	 for	 newly	 identified	 rhythmic	 transcription	

factors	 and	 tissue-specific	 chromatin	 interactions	 in	 regulating	 tissue-specific	 rhythmic	

gene	expression.	While	our	work	focused	on	transcriptional	mechanisms,	studying	others	

mechanisms	 such	 as	 posttranscriptional,	 translational,	 and	 posttranslational	 processes	

using	PRO-Seq,	Ribo-Seq,	and	proteomics	data	may	provide	additional	insights.	Expanding	

our	 24-hour	 analysis	 to	 12-hour	 or	 other	 harmonics	 would	 broaden	 the	 view	 of	 tissue-

specific	 temporal	 gene	 expression,	 but	 may	 require	 experimental	 designs	 of	 higher	

temporal	resolution	(Hughes	et	al.	2009;	Krishnaiah	et	al.	2017).	Tissues	regulate	dynamic	

physiological	 processes	 such	 as	 glucose	 homeostasis,	 lipid	 metabolism,	 and	 sodium	

homeostasis	 at	 different	 times	 of	 day.	 Thus,	 integrating	 the	 temporal	 axis	 into	 tissue-
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specific	 gene	 regulation	 offers	 an	 integrated	 understanding	 of	 how	 tissue	 physiology	

resonates	with	daily	cycles	in	the	environment.	

Materials	and	Methods	

Animal	experiments	

8-14	weeks	old	C57Bl/6	mice	have	been	purchased	from	Charles	River	Laboratory.	Bmal1	

KO	mice	have	been	previously	described	(Jouffe	et	al.	2013).	Without	 further	 indications,	

mice	 are	 kept	 under	 12	 hours	 light/12	 hours	 dark	 regimen	 and	 ad	 libitum	 feeding.	 All	

animal	care	and	handling	was	performed	according	to	the	Canton	de	Vaud	(Fred	Gachon,	

authorization	no	VD	2720)	laws	for	animal	protection.	

	

RNA-Seq	experiments	and	analysis	

Processing	

To	complement	the	mouse	liver	WT	and	Bmal1	KO	RNA-Seq	data	(GSE73554)	(Atger	et	al.	

2015),	 transcriptomes	of	 kidneys	 from	Bmal1	KO	and	WT	 littermates	 (12	hours	 light/12	

hours	regimen;	night-restricted	feeding)	were	measured	following	the	same	protocol	as	in	

(Atger	 et	 al.	 2015).	 mRNA	 levels	 were	 quantified	 using	 kallisto	 version	 0.42.4	 (mm10)	

(Bray	et	al.	2015)	.	

Global	Temporal	Variance	

For	each	tissue,	we	estimated	the	contribution	of	temporal	variance	for	each	gene,	broken	

down	by	its	Fourier	components.	We	calculated	the	background	level	assuming	temporally	

unstructured	 data	 (white	 noise),	 whose	 magnitude	 (strength	 of	 the	 white	 noise)	 was	
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estimated	 from	 the	 mean	 of	 squared	 magnitudes	 of	 Fourier	 coefficients	 that	 were	 not	

submultiples	of	24	hours	(i.e.,	the	mean	of	48,	16,	9.6,	6.9,	5.3,	4.4	hour	components).	

Model	Selection	

We	 fitted	 harmonic	 regression	 models	 that	 integrated	 temporal	 gene	 expression	 across	

different	 combinations	 of	 rhythms	 in	 different	 conditions	 (Atger	 et	 al.	 2015).	 One	

difference	 from	previous	methods	was	 that	 for	comparing	different	models,	we	used	a	g-

prior	for	the	rhythmic	parameters	𝛽	rather	than	BIC	(Liang	et	al.	2008),	

β~ N(0, gσ! X!X!! .	

The	 hyperparameter	 g	 controls	 the	 spread	 of	 the	 prior	 over	 the	models;	 as	 g	 increases,	

simpler	models	(such	as	tissue-wide	model)	are	favored	over	more	complex	models	(such	

as	 model	 with	 many	 divergent	 rhythms).	 We	 set	 g=1000,	 which	 we	 found	 to	 maximize	

temporal	 variations	 captured	 in	 the	 shared	 rhythms	 model	 while	 minimizing	 temporal	

variations	captured	in	the	flat	model.	The	number	of	rhythmic	combinations	k	scales	as	a	

function	of	the	number	of	conditions	n	as	𝑘(𝑛) = 𝐵!!!	where	B	is	the	Bell	number	used	in	

combinatorial	mathematics.	See	supplemental	methods	for	details.		

Complex	singular	value	decomposition	(SVD)	representation	of	gene	and	tissue	module	

Gene	expression	over	time	and	across	tissues	can	be	represented	as	a	3-dimensional	array.	

However,	since	SVD	of	a	tensor	does	not	have	all	 the	properties	of	a	matrix	SVD,	we	first	

transformed	the	time	domain	to	the	frequency	domain	corresponding	to	24-hour	rhythms	

for	all	genes	g	and	conditions	c:	

 𝐸!,! = 𝐸!,!,!𝑒!"#

!∈!

	

where	𝐸!,! 	is	a	complex	value	representing	the	amplitude	and	phase	of	expression	for	gene	

g	in	condition	c	and 𝜔 = 2𝜋/24.	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 23, 2017. ; https://doi.org/10.1101/207787doi: bioRxiv preprint 

https://doi.org/10.1101/207787
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 17	

The	 resulting	 matrix	 was	 decomposed	 using	 SVD	 and	 the	 first	 left	 -and	 right-singular	

values	were	 visualized	 in	 separate	 polar	 plots.	 To	 ensure	 the	 first	 component	 recovered	

most	of	the	original	signal,	the	SVD	representation	was	performed	separately	for	each	gene	

module	identified	by	model	selection.		

Predicting	Activities	of	Transcriptional	Regulators	

Predictions	of	transcription	factor	binding	site	(TFBS)	

For	TFBS	predictions	near	promoters,	we	used	motevo	version	1.03	(Arnold	et	al.	2012)	to	

scan	 +/-	 500	 bp	 around	 the	 promoter.	 We	 used	 promoters	 (Balwierz	 et	 al.	 2009)	 and	

weight	 matrices	 of	 transcription	 factors	 defined	 by	 SwissRegulon	 (Pachkov	 et	 al.	 2013)	

(http://swissregulon.unibas.ch/fcgi/sr/downloads).For	 distal	 regions,	 we	 scanned	 the	

genome	 for	 TFBSs	 in	 500	bp	windows	 in	 genomic	 regions	within	 40	 kb	 of	 an	 annotated	

gene.	

Penalized	regression	model	

We	 applied	 a	 penalized	 regression	model	 as	 previously	 described	 (Balwierz	 et	 al.	 2014)	

using	 an	 L2	 penalty	 for	 penalization,	 which	 allows	 a	 direct	 estimate	 of	 the	 standard	

deviation.	 Rhythmic	 activities	 of	 transcription	 factor	 motifs	 were	 summarized	 using	

complex-valued	singular	value	decomposition.	We	projected	the	activities	to	an	amplitude	

and	phase	and	calculated	the	zscore	of	the	amplitude.	We	considered	activities	with	zscore	

>	1.25	as	 rhythmic	TF	activities.	Time	of	peak	 temporal	activities	of	 transcription	 factors	

were	 subtracted	 by	 3	 hours,	 to	 account	 for	 an	 average	 3	 hour	 shift	 between	 peak	

transcription	and	peak	mRNA	accumulation	(Le	Martelot	et	al.	2012).	

Enrichment	of	pairs	of	motifs	

We	 applied	 log-linear	 models	 to	 test	 for	 statistical	 significance	 between	 pairs	 of	 motifs	

across	rhythmic	versus	nonrhythmic	modules.	For	each	motif,	we	ordered	DHS	sites	by	the	
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posterior	sitecount	of	the	motif	(decreasing	order)	and	considered	the	motif	to	be	present	

in	the	DHS	site	if	the	sitecount	was	in	the	top	300	(Myšičková	et	al.	2012).	We	considered	

liver-specific	DHS	sites	that	were	annotated	to	a	clock-dependent	liver-rhythmic	gene	or	to	

a	nonrhythmic	gene.	For	each	annotated	label	and	for	each	pair	of	motifs,	we	constructed	a	

2	 by	 2	 contingency	 table	 by	 counting	 the	 number	 of	 DHS	 sites	 that	 contain	 one	 of	 the	

motifs,	both	motifs,	or	none,	resulting	 in	a	3-way	contingency	table	(motif	1,	motif	2,	and	

annotated	 label).	 We	 assessed	 whether	 the	 resulting	 contingency	 table	 was	 statistically	

significant	 to	 a	 null	model,	where	 the	 null	model	was	 the	 expected	 counts	 if	 the	 pair	 of	

motifs	were	jointly	independent	on	the	rhythmicity.	

	

Chromatin	conformation	experiments	and	analysis	

C57Bl/6	mice	were	 sacrificed	 at	 ZT08	 and	 ZT20	 to	 extract	 liver	 and	 kidneys.	 Liver	 and	

kidney	 nuclei	 were	 prepared	 as	 previously	 described	 (Ripperger	 &	 Schibler	 2006)	 with	

some	 minor	 changes.	 4C-Seq	 assays	 were	 performed	 as	 in	 (Gheldof	 et	 al.	 2012).	 See	

supplemental	methods	for	details.		

	

Raw	read	counts	for	each	sample	were	normalized	by	library	size	by	the	sum	of	the	read	

counts	on	the	cis-chromosome	(excluding	10	fragments	around	the	bait).	Read	counts	were	

log-transformed	using	the	formula:	

Y = log!"
c
p+ 1 	

where	p=500,	the	pseudocount.		
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The	 weighted	 linear	 model	 was	 fit	 locally	 around	 each	 fragment	 f.	 A	 Gaussian	 window	

centered	 on	 f	 was	 used	 to	 incorporate	 signal	 from	 neighboring	 fragments.	 The	 4C-Seq	

fragment	counts	was	modeled	by	the	fragment	effect	i	and	tissue	effect	j.	

	

Y!,!  = a! + b! + ϵ!	,	

	

Where	the	weights	of	the	linear	model	is	defined	as:	

W = w!w!,	

Where:	

	

w! is	a	Gaussian	smoothing	kernel	(width	σ! = 2500	bp,	centered	on	fragment	f).	

w!	is	 the	 sample	weight	 based	 on	 the	 number	 of	 non-zero	 values	 counts	 on	 fragment	 i,	

specifically,	we	used	w! = (0.5, 1.5, 2.5)	for	fragments	with	(0, 1, 2)	finite	counts	out	of	the	

two	replicates.	

	

Differential	contacts	were	estimated	using	t-statistics:	

Z =
∆b
σ
	

Where	σ!	stands	for	the	regularized	sample	variance:	

	

 σ!
! =σ!

! +σ!"#
! exp −

b
b!

	

Where:		

b	=	the	estimated	signal	across	samples	

b!  = log!"(2)	
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Data	Access	

Raw	 and	 processed	 data	 generated	 in	 this	 study	 are	 available	 in	 the	 Gene	 Expression	

Omnibus	(GEO)	database	under	accession	number	GSE100457.		
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Figure	1	–	Contribution	of	tissue,	daily	time,	and	circadian	clock	to	global	variance	in	

mRNA	expression	

(A)	Principal	component	(PC)	analysis	of	two	days	temporal	transcriptomes	across	

11	 WT	 tissues.	 PC1	 and	 PC2	 show	 clustering	 of	 samples	 by	 tissues;	 each	 point	

represents	a	tissue	sample	(see	legend)	at	a	specific	time	point	(not	labeled).	Inset:	

Loadings	for	PC13	and	PC17	for	the	liver	samples	labeled	with	circadian	time	(CT),	

showing	 temporal	 variation	along	an	elliptic	path.	Colors:	CT;	CT0	 corresponds	 to	

subjective	dawn;	CT12	corresponds	to	subjective	dusk.	

(B)	 Fractions	 of	 temporal	 variance	 in	 each	 tissue	 explained	 by	 24-	 and	 12-hour	

periods,	obtained	by	applying	spectral	analysis	genome-wide	for	each	tissue.	Dotted	

horizontal	lines	represent	the	expected	background	level,	assuming	white	noise.	

(C,D)	 Cumulative	 number	 of	 rhythmic	 genes	 (p<0.01,	 harmonic	 regression)	 with	

log2	fold	change	larger	than	the	value	on	the	x-axis.	(C)	Analysis	on	11	WT	tissues.	

(D)	Analysis	on	4	conditions:	Bmal1	KO	mice	and	WT	littermates	in	liver	and	kidney.	
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Figure	 2	 –	 Combinatorics	 of	 rhythmic	 transcript	 expression	 across	 tissues	 and	

genotypes	

(A)	 Schema	 for	 the	 model	 selection	 (MS)	 algorithm	 to	 identify	 rhythmic	 gene	

expression	 modules	 across	 tissues.	 Temporal	 transcriptomes	 of	 different	 tissues	

represented	 as	 a	 3-dimensional	 array	 (left).	 Gene	 modules	 are	 probabilistically	

assigned	 amongst	 different	 combinations	 of	 24-hour	 rhythms	 across	 tissues	 (e.g.	

tissue-specific	or	tissue-wide	rhythms	schematically	shown	on	right).		

(B)	 Gene	 modules	 are	 summarized	 by	 the	 first	 component	 of	 complex-valued	

singular	 value	 decomposition	 (SVD)	 to	 highlight	 phase	 (peak	 time	 shown	 as	 the	

clockwise	 angle)	 and	 amplitude	 (log2	 fold	 change	 shown	 as	 the	 radial	 distance)	

relationships	between	genes	(gene	space)	and	between	tissues	(tissue	space).	SVD	

representation	 is	 scaled	 such	 that	 the	 genes	 show	 log2	 fold	 changes,	while	 tissue	

vectors	are	scaled	such	that	the	highest	amplitude	tissue	has	length	of	1	and	a	phase	

offset	of	0	hours.	

(C-E)	MS	applied	to	11	WT	tissues.	

(F,G)	MS	applied	to	Bmal1	KO	and	WT	littermates	in	liver	and	kidney.	

(C)	SVD	representation	of	tissue-wide	mRNA	rhythms	from	the	11	tissues.	Genes	are	

labeled	as	system-driven	(blue)	or	clock-driven	(red)	according	to	the	comparison	

of	the	corresponding	temporal	profiles	in	Bmal1	KO	and	WT	littermates	(Methods).	

(D)	 Examples	 of	 anti-phasic	 rhythms	 (brown	 fat	 and	 muscle,	 n=20,	 first	 SVD	

component	 explains	 81%	 of	 variance),	 and	 tissue-specific	 rhythms	 (liver,	 n=846,	

first	 SVD	 component	 explains	 59%	 of	 variance).	 Representative	 genes	 with	 large	

amplitudes	are	labeled.	
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(E)	Number	of	 transcripts	showing	rhythms	(p-value	<	0.01,	harmonic	regression)	

in	different	numbers	of	tissues,	in	function	of	increasing	peak	to	trough	amplitudes	

on	 the	 x-axis.	 X-axis:	 average	 log2	 fold	 change	 calculated	 from	 the	 identified	

rhythmic	tissues.	

(F)	SVD	representation	of	clock-	 (top,	n=991,	83%	of	variance)	and	system-driven	

(bottom,	n=1395,	84%	of	variance)	liver-specific	rhythms.		

(G)	Number	of	transcripts	showing	clock-	(solid)	or	system-driven	(dotted)	rhythms	

(p-value	 <	 0.01,	 harmonic	 regression)	 in	 liver	 (red),	 kidney	 (blue),	 or	 both	

(magenta).		
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Figure	3	-	Oscillatory	TF	activity	 in	one	tissue	but	not	others	can	drive	tissue-specific	

rhythms	

(A)	 Module	 describing	 system-driven	 liver-specific	 rhythms	 (n=1395,	 first	 SVD	

component	 explains	 84%	 of	 variance).	 Radial	 coordinate	 of	 the	 colored	 polygons	

represent	 enrichment	 of	 the	 indicated	 GO	 terms	 at	 each	 time	 point,	 obtained	 by	

comparing	the	genes	falling	in	a	sliding	window	of	+/-	3	hours	to	the	background	set	

of	all	1395	genes	assigned	to	module	(p-value	computed	from	Fisher’s	exact	test).	

(B)	MAFB	is	a	candidate	TF	for	the	module	in	A.	Predicted	MAFB	activity	(solid	line),	

nuclear	protein	abundance	(triangles),	and	mRNA	accumulation	(dotted)	oscillate	in	

WT	and	Bmal1	KO,	with	peak	mRNA	preceding	peak	nuclear	protein	and	TF	activity.	

Error	bars	in	nuclear	protein,	mRNA,	and	TF	activity	show	SEM	(n=2).	

(C)	Clock-driven	kidney-specific	module	(n=156,	first	SVD	component	explains	80%	

of	variance).	Colored	polygons	as	in	(A).		

(D)	TFCP2	is	a	candidate	TF	for	the	module	in	C.	The	temporal	profile	of	predicted	

TFCP2	activity	(solid	line)	is	anti-phasic	with	Tfcp2	mRNA	accumulation	(dotted)	in	

WT,	and	both	are	flat	 in	Bmal1	KO.	Error	bars	 in	mRNA	and	TF	activity	show	SEM	

(n=2).	

(E)	Clock-driven	liver-specific	module	(n=991,	first	SVD	explains	83%	of	variance).	

(F)	ELF	is	a	candidate	TF	for	the	module	in	E.	The	temporal	profile	of	predicted	ELF	

activity	 (solid	 line)	 in	 WT	 matches	 that	 of	 nuclear	 protein	 abundance	 in	 liver	

(triangles),	and	both	are	delayed	compared	to	Elf1	mRNA	accumulation	(dotted).	In	

Bmal1	 KO,	 ELF	 activity	 and	 Elf1	mRNA	 are	 nonrhythmic.	 Error	 bars	 in	 nuclear	

protein,	mRNA,	and	TF	activity	show	SEM	(n=2).	
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Figure	 4	 –	 Co-localized	 binding	 of	 clock	 and	 liver-specific	 TFs	 underlies	 liver-specific	

mRNA	rhythms	

(A)	 The	 fraction	 of	 genes	 containing	 liver-specific	 DNase-I	 hypersensitive	 sites	

(DHSs)	 in	 the	 clock-driven	 liver-specific	 module	 is	 higher	 compared	 with	 both	

nonrhythmic	 and	 system-driven	 liver-specific	 modules.	 Error	 bars	 and	 p-values	

calculated	from	10000	bootstrap	iterations.	

(B)	 Predicted	 temporal	 activities	 of	 RORE	 (top)	 and	 E-box	 (bottom)	 TF	 motifs	

located	 within	 liver-specific	 DHSs.	 Error	 bars	 show	 standard	 deviation	 of	 the	

estimated	activities.		

(C)	Co-occurrence	of	RORE	with	all	other	TFs	in	the	SwissRegulon	database	(189	TF	

motifs).	Positive	 log10	odds	ratios	 (ORs)	 represent	pairs	of	motifs	enriched	 in	 the	

clock-driven	 liver-specific	 module	 compared	 to	 the	 flat	 module.	 P-values	 for	 the	

motif	 pairs	 were	 calculated	 from	 chi-square	 tests	 applied	 to	 3-way	 contingency	

tables	(Myšičková	et	al.	2012).	Selected	pairs	are	in	bold.	

(D)	 DNase-I	 hypersensitivity	 in	 liver,	 kidney,	 and	 the	 corresponding	 differential	

signal	 (in	 log2	 fold	 change)	 near	 two	 representative	 genes	 (top:	 Insig2;	 bottom:	

Slc4a4).	RORE,	ONECUT1,	and	FOXA	TF	binding	motifs	(posterior	probability	>	0.5,	

MotEvo)	 co-occur	 at	 liver	 specific	 DHSs	 (red	 boxes).	 Predicted	 TF	 binding	 sites	

correspond	 to	 experimentally	 observed	 TF	 binding	 in	 publicly	 available	 ChIP-exo	

datasets	for	REV-ERBa,	ONECUT1,	and	FOXA2	(bottom).	
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Figure	5	–	Liver-specific	chromatin	loops	regulate	liver-specific	mRNA	rhythms	

(A)	Temporal	mRNA	profile	for	Mreg,	a	clock-driven	liver-rhythmic	gene.	Error	bars	

are	SEM	(n=2).	

(B)	4C-Seq	profiles	(summary	from	2	replicates,	each	pooling	2	different	mice)	using	

the	Mreg	 promoter	 as	 a	 bait	 in	 liver	 and	 kidney	 at	 ZT20.	 Data	 are	 shown	 in	 a	

window	of	+/-	250	kb	from	the	bait	(top).	Profiles	of	differential	contacts	between	

liver	 and	 kidney	 (bottom)	 represented	 as	 signed	 log	 p-values	 (regularized	 t-test,	

positive	values	denote	liver-enriched	4C	contacts).	

(C)	 Tracks	 of	 differential	 4C	 contacts	 (signed	 log	 p-values),	 log2	 fold	 change	 of	

DNase-I	hypersensitivity	between	liver	and	kidney,	and	ChIP-exo	of	REV-ERBa	and	

FOXA2.	 Regions	 of	 significant	 differential	 4C	 contacts	 correspond	 to	 liver-specific	

DNase-I	hypersensitive	regions	and	REV-ERBa	binding	sites.		
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Figure	6	-	Precise	promoter-enhancer	contacts	underlie	liver-specific	mRNA	rhythms	

(A,B)	4C-Seq	profiles	for	the	(A)	Slc45a3-short	and	(B)	Slc45a3-long	isoforms	within	

+/-	 250	 kb	 around	 baits	 targeting	 the	 two	 TSSs	 (top).	 Signed	 log	 p-values	 for	

differential	 contacts	 between	 liver	 and	 kidney	 (bottom)	 as	 in	 Figure	 5B.	 TSSs	 for	

Slc45a3-short	and	Slc45a3-long	are	8	kb	apart.	Yellow	arrows	denote	 liver-specific	

distal	contacts	found	at	the	Slc45a3-short	but	absent	at	the	Slc45a3-long	TSS.		

(C)	 Differential	 4C	 contacts	 (signed	 log	 p-values),	 log2	 fold	 change	 of	 DNase-I	

hypersensitivity	 between	 liver	 and	 kidney,	 and	 ChIP-exo	 signal	 of	 REV-ERBa,	

FOXA2,	 and	ONECUT1.	Regions	of	 significant	differential	 contacts	 in	Slc45a3-short	

correspond	to	liver-specific	DNase-I	hypersensitive	regions.		

(D)	 Schematic	 model	 illustrating	 enhancer-promoter	 interactions	 in	 liver	 and	

kidney	that	may	generate	liver-specific	rhythms.	Yellow	circles	illustrate	liver-active	

enhancers	 contacting	 the	 rhythmic	 promoter	 (red	 arrow)	 but	 not	 the	 alternative	

nonrhythmic	 promoter	 (grey).	 In	 kidney,	 the	 enhancer	 is	 not	 accessible	 and	 both	

promoters	are	nonrhythmic.	
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