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 Core ideas: 12 
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• Two methods for analysis are provided: QTL-seq and G’ 14 

• The QTLseqr package is quick and produces publication quality figures and tables 15 
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 18 

1 Abstract 19 

Next Generation Sequencing Bulk Segregant Analysis (NGS-BSA) is efficient in detecting quantitative trait 20 

loci (QTL). Despite the popularity of NGS-BSA and the R statistical platform, no R packages are currently 21 

available for NGS-BSA. We present QTLseqr, an R package for NGS-BSA that identifies QTL using two 22 

statistical approaches: QTL-seq and G’. These approaches use a simulation method and a tricube 23 

smoothed G statistic, respectively, to identify and assess statistical significance of QTL. QTLseqr, can 24 

import and filter SNP data, calculate SNP distributions, relative allele frequencies, G’ values, and log10(p-25 

values), enabling identification and plotting of QTL. The source code is available at 26 

https://github.com/bmansfeld/QTLseqr. 27 

28 
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2 Introduction 29 

Since the early 1990’s, Bulk Segregant Analysis (BSA) has been a valuable tool for rapidly identifying 30 

markers in a genomic region associated with a trait of interest (Giovannoni et al., 1991; Michelmore et 31 

al., 1991). BSA is amenable to any type of codominant markers, including single nucleotide 32 

polymorphism (SNP) markers. This has allowed for the adaptation of this technology for use with next-33 

generation sequencing (NGS) reads. The recent reduction in cost of NGS has further contributed to the 34 

increased use and development of this and similar methods [thoroughly reviewed by Schneeberger, 35 

(2014)].  36 

The NGS-BSA procedure is performed by establishing and phenotyping a segregating population and 37 

selecting individuals with high and low values for the trait of interest. DNA from these individuals is 38 

pooled into high and low bulks which are subject to sequencing and single nucleotide polymorphism 39 

(SNP) calling, thus mitigating a need to develop markers in advance. In bulks selected from F2 40 

populations, SNPs detected in reads derived from regions not linked to the trait of interest should be 41 

present in ~50% of the reads. However, SNPs in reads aligning to genomic regions closely linked to the 42 

trait should be over- or under-represented depending on the bulk. Thus, comparing relative allele 43 

depths, or SNP-indices (defined as the number of reads containing a SNP divided by the total sequencing 44 

depth at that SNP) between the bulks can allow quantitative trait loci (QTL) identification (Takagi et al., 45 

2013). 46 

In plant breeding research, the main pipeline used for BSA, termed QTL-seq, was developed by Takagi et 47 

al. (2013) and has been widely used in several crops for many traits (e.g. Das et al., 2014; Lu et al., 2014; 48 

Win et al., 2016; and many others). Takagi and colleagues define the ∆(SNP-index) for each SNP as the 49 

difference of the low value bulk SNP-index from the high value bulk SNP-index. They suggest averaging 50 

and plotting ∆(SNP-indices) over a sliding window. Regions with a ∆(SNP-index) that pass a confidence 51 
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interval threshold, as calculated by a statistical simulation, should contain QTL. The algorithm described 52 

by Takagi et al. was released as a pipeline written in a combination of bash, pearl and R, meant to 53 

perform all tasks from trimming, processing and cleaning raw reads to plotting ∆(SNP-index) plots.  54 

An alternate analytical pipeline to evaluate statistical significance of QTL from NGS-BSA was proposed by 55 

Magwene et al. (2011). A modified G statistic is calculated for each SNP based on the observed and 56 

expected allele depths and smoothing this value using a Nadaraya-Watson, or tricube smoothing kernel 57 

(Nadaraya, 1964; Watson, 1964). This smoothing method weights neighboring SNPs’ G statistic by their 58 

relative distance from the focal SNP such that closer SNPs receive higher weights. Using the smoothed G 59 

statistic, or G’, Magwene et al. allow for noise reduction while also addressing linkage disequilibrium 60 

(LD) between SNPs. One advantage to this method is that p-values can be estimated for each SNP using 61 

non-parametric estimation of the null distribution of G’. This provides a clear and easy-to-interpret 62 

result as well as the option for multiple testing corrections.  63 

Due to its general ease-of-use, multi-system compatibility, open-source nature, and ease of package 64 

distribution, the statistical programming language R (https://www.r-project.org/) has rapidly established 65 

its status as the tool-of-choice for computational biology analyses (Tippmann, 2014). As no scripts were 66 

released to facilitate G’ analysis, and no R packages were available for performing NGS-BSA, we 67 

developed the QTLseqr package with the goal of making both QTL-seq and G’ methods accessible to 68 

plant breeders and geneticists. QTLseqr can be easily installed and is highly configurable, allowing the 69 

user control of many parameters and the type of analysis performed. QTLseqr rapidly performs genome-70 

wide calculations and simulations required for either method, and produces publication ready plots and 71 

tables, allowing for easy identification of putative QTL regions. The full source code is available at 72 

https://github.com/bmansfeld/QTLseqr.  73 
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3 Features and methods 74 

3.1 Overview 75 

A straight forward pipeline for analysis was designed with the plant breeder and geneticist in mind: 1) 76 

Import SNP data, 2) Filter SNPs that may complicate analysis, 3) perform bulk segregant analyses, 4) plot 77 

results and 5) export the data. A vignette with a step-by-step guide is available at 78 

https://github.com/bmansfeld/QTLseqr/vingettes. 79 

3.2 Data import and filtering 80 

QTLseqr imports SNP data, from GATK’s VariantsToTable function (Van der Auwera et al., 2013), as a 81 

data frame where each row is a SNP and each column is a descriptive field. For each SNP, the total 82 

reference allele frequency, per bulk SNP-index, and ∆(SNP-index) are calculated. To help reduce noise 83 

and improve results, the filterSNPs() function offers options for filtering SNPs based on reference allele 84 

frequency, total read depth, per bulk read depth and genotype quality score. Filtering by read depth can 85 

help eliminate SNPs with low confidence due to low coverage, or SNPs that may be in repetitive regions 86 

and thus have inflated read depth. The initial number of SNPs, number of SNPs filtered per step, total 87 

number of SNPs filtered, and remaining number are reported. 88 

3.3 Bulk segregant analyses 89 

Both methods, QTL-seq or G’ methods, are comparable in their ability to detect QTL, but differ in 90 

sensitivity based on their different defined thresholds. The methods are somewhat complimentary and 91 

calculating ∆(SNP-index) is informative in both analyses, as the contributing parent of the QTL may be 92 

inferred by the ∆(SNP-index) value in the region. QTLseqr can perform NGS-BSA using either or both 93 

methods and results may be compared to confirm identified QTL. 94 
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3.3.1 The QTL-seq approach 95 

QTL-seq analysis is performed using the runQTLseqAnalysis() function, which first counts the number of 96 

SNPs within the set window bandwidth. The subsequent analysis is derived from the original pipeline of 97 

Takagi et al. (2013) with some minor changes. 1) Instead of using a uniform or “rectangular” window as 98 

originally suggested, we opt for a tricube-smoothed ∆(SNP-index) calculated similarly to G’, which 99 

smooths-out noise, while accounting for LD between SNPs (Supplemental equations 1-4). 2) To fully take 100 

advantage of R’s rapid vectorized calculations, scripts have been rewritten to perform the simulations 101 

that define read-depth-based confidence intervals at each SNP position (Supplemental Fig. S1).  Several 102 

simulation parameters are user-configurable including: the population type (F2 or RIL), simulated read 103 

depth, number of bootstrapped replications, and a filter threshold for simulated reads. The user can 104 

then extract QTL, defined as contiguous genomic regions whose absolute tricube-smoothed ∆(SNP-105 

index) values are higher than the simulated intervals, using the getSigRegions() and getQTLTable() 106 

functions, described below. 107 

3.3.2 The G’ approach 108 

For the G’ approach, the primary analysis steps are performed by runGprimeAnalysis() which initially 109 

calculates the G statistic (Supplemental equations 5-9) for each SNP. It then counts the number of SNPs 110 

within the set window bandwidth and estimates the tricube-smoothed G’ and ∆(SNP-index) values of 111 

each SNP within that window (Supplemental equations 4, 10).  112 

One benefit of the G’ method is that p-values and genome-wide Benjamini-Hochberg (Benjamini and 113 

Hochberg, 1995) false discovery rate (FDR), adjusted p-values are calculated for each SNP. As it is close 114 

to being log-normally distributed, p-values can be estimated from the null distribution of G’, which 115 

assumes no QTL. To this end, G’ values from QTL regions are temporarily removed from the full set, so 116 

that mean and variance of the null distribution of G’ may be estimated. Magwene et al. (2011) suggest 117 
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using Hampel’s rule (an outlier filtering approach, [Davies and Gather, 1993]) to filter out these regions. 118 

However, with the data we tested (Yang et al., 2013) this method failed to filter any values 119 

(Supplemental Fig. S2). Alternatively, filtering G’ values in regions of high absolute ∆(SNP-index) is a data 120 

driven method effective in identifying and filtering potential QTL. We find that this approach is 121 

successful for estimating p-values and offer it, alongside Hampel’s rule, as an option for p-value 122 

calculation.   123 

3.4 Plotting and exporting result 124 

QTLseqr has two main plotting functions for quality control and data visualization. The plotGprimeDist() 125 

function can be used to plot the G’ distribution as a check to assess the validity of the analysis 126 

(Supplemental Fig. S2). The plotQTLStats() function is used for plotting the number of SNPs/window, the 127 

tricube-weighted ∆(SNP-index) and G’ values, or the -log10(p-value) (Fig. 1). 128 

QTLseqr functions are available for extracting, summarizing and reporting of significant QTL regions. The 129 

getSigRegions() function will produce a list in which each element represents a QTL region. The 130 

elements are subsets of the original data frame supplied. Any contiguous region with a q-value above 131 

the set alpha (G’ method), or absolute ∆(SNP-index) above the requested confidence interval (QTL-seq 132 

method) will be returned. If there is a dip below the threshold the region will be split to two elements. 133 

The getQTLTable will summarize those results in a table and can output a comma-separated value file, if 134 

requested (e.g. Table 1). 135 

4 Implementation and results 136 

As a test of the validity and efficacy of our package functions, and to compare the two analysis methods, 137 

we tested QTLseqr’s ability to reproduce results described by Yang et al. (2013), a BSA study which 138 

utilized the G’ approach to identify loci for seedling cold tolerance in rice. Raw reads were downloaded 139 
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from the NCBI Short Read Archive, aligned to the v7 Nipponbare genome 140 

(http://rice.plantbiology.msu.edu/) and SNPs were called as described in the GATK “Best Practices” 141 

(https://software.broadinstitute.org/gatk/best-practices/). Detailed methods are available in 142 

Supplemental Material.  143 

QTLseqr was successful at reproducing the analysis performed by Yang and colleagues, confirming QTL 144 

on chromosomes 1, 2, 8, and 10 using either analysis method. Figure 1 shows the putative QTL 145 

identified, as output by the plotQTLStats() function. The results of our analyses are summarized in Table 146 

1 as provided by the exportQTLTable() function in QTLseqr. While both methods were successful in 147 

identifying the same regions as QTL, the boundaries of each region largely depended on the confidence 148 

interval or FDR rate that was chosen. Using a confidence interval of 99% with the QTL-seq method was 149 

not as stringent as using a FDR of 0.01 in the G’ method. As such, the QTL-seq method detected a 150 

second narrow region on Chromosome 2, as well as a region on Chromosome 5, which was also 151 

originally reported by Yang et al. (2013). 152 

5 Conclusion 153 

The QTLseqr package provides a fast and straightforward tool for plant breeders and other scientists to 154 

perform NGS-BSA using either QTL-seq or G’ analysis methods. Data from the identified QTL can be 155 

exported for downstream analysis and summarized in publication ready figures and tables.  156 
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Table 1. Quantitative trait loci (QTL) identified by QTLseqr in test data (Yang et al., 2013). QTL were defined as regions with a q-value above the 164 

false discovery rate of 0.01 or a ∆(SNP-index) above a confidence interval of 99% for G’ or QTL-seq, respectively. 165 

Method Chromosome 
QTL 

id 
Start End Length 

No. 

SNPs 

Mean No. 

SNP/Mb 

Peak 

∆(SNP-index) 

Mean 

∆(SNP-index) 

Max 

G’ 

Mean 

G’ 

G’ 

Std. Dev. 

Mean 

p-value 

Mean 

q-value 

   --------------- (Mb) -------------          

G’ Chr1 1 25.8 34.5 8.7 20263 2325 -0.36 -0.33 24.8 21.2 2.6 0.0002 0.005 

 Chr2 1 9.5 19.4 9.9 24267 2467 -0.30 -0.30 17.8 16.4 0.6 0.0006 0.007 

 Chr8 1 17.4 27.1 9.7 20529 2101 0.40 0.32 29.7 18.8 4.6 0.0005 0.006 

 Chr10 1 18.6 19.7 1.1 3590 3059 -0.29 -0.28 14.9 14.6 0.2 0.0011 0.008 

QTL-seq Chr1 1 24.2 35.2 11 25359 2305 -0.36 -0.31      

 Chr2 1 4.19 4.25 0.06 11 189 -0.21 -0.21      

 Chr2 2 9.5 19.8 10.3 24420 2375 -0.30 -0.30      

 Chr5 1 26.4 29.6 3.2 5144 1636 0.27 0.26      

 Chr8 1 16 27.5 11.5 23794 2066 0.40 0.31      

 Chr10 1 16.2 20.8 4.6 13614 2982 -0.29 -0.26      

.
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Figure 1. Quantitative trait loci for rice seedling cold tolerance identified by QTLseqr. Plots produced 166 
by the plotQTLStats() function with a 1 Mb sliding window: Distribution of SNPs in each smoothing 167 
window (a). The tricube-smoothed ∆(SNP-index) and corresponding two-sided confidence intervals: 95% 168 
(red), 99% (green), and 99.9% (blue) (b). The tricube-smoothed G’ value (c). Another, more familiar way 169 
to display QTL, is using the -log10(p-value) which is derived from the G’ value. (d). In (c) and (d) the 170 
genome-wide false discovery rate of 0.01 indicated by the red line.171 
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