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Abstract

Genome-wide association studies (GWAS) have discovered thousands of variants involved in
common human diseases. In these studies, frequencies of genetic variants are compared between
a cohort of individuals with a disease (cases) and a cohort of healthy individuals (controls). Any
variant that has a significantly different frequency between the two cohorts is considered an as-
sociated variant. A challenge in the analysis of GWAS studies is the fact that human population
history causes nearby genetic variants in the genome to be correlated with each other. In this
review, we demonstrate how to utilize the multivariate normal (MVN) distribution to explicitly
take into account the correlation between genetic variants in a comprehensive framework for
analysis of GWAS. We show how the MVN framework can be applied to perform association
testing, correct for multiple hypothesis testing, estimate statistical power, and perform fine
mapping and imputation.

1 Introduction

In the last decade, genome-wide association studies (GWAS) have discovered thousands of com-
mon variants implicated in genetic diseases [31]. Technological developments in microarray and
sequencing technologies fueled these discoveries, which paved the way for cost-effective collection of
genetic information in large amounts [32, 10]. Specifically, these technologies enabled the collection
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of genetic information at the scale of half a million variants spread throughout the genome. Fur-
ther, the affordable cost of these technologies made feasible the study of thousands of individuals
simultaneously. The initial GWAS studies [42] established essential groundwork for subsequent
larger studies, which have identified the majority of today’s known common variants implicated in
diseases [43].

While collecting genetic information on half a million variants is a technical marvel in itself,
the actual amount of common variants present in the human genome is an order of magnitude
larger. Fortunately, the correlation structure between genetic variants, referred to as “linkage-
disequilibrium” (LD) in the genetics literature [36], makes the half million variants sufficient for
GWAS [5]. The first large scale maps of human genetic variation [39, 13] partly aimed to identify
this correlation structure. In fact, foundational literature enabling GWAS focused on identifying
approaches to select the subset of variants that should be collected in a GWAS [5]. Even if a
disease-causing variant is not collected in a GWAS, the locus (region of the genome) would be
identified as associated given that a correlated variant is collected, which is referred to as a tag.

However, there are two sides of the coin with respect to LD. While the correlation structure of
the human genome enabled important GWAS discoveries, the same correlation structure compli-
cates GWAS analyses. Hypothesis tests of association at each variant are not independent due to
this structure. Implications of LD include complicating multiple testing, complicating estimating
statistical power, and introducing ambiguities to interpretation of association study results. This
complication will only be exacerbated with the advance of next generation sequencing, which will
enable future studies to collect virtually all of the genetic variants in the genome that are tightly
correlated [38].

In this review, we describe a comprehensive approach to analyzing GWAS that uses the mul-
tivariate normal (MVN) distribution to model correlations in the genome. This approach offers
an advantageous ability to model the effect of LD on all of the statistics simultaneously. The ap-
proach presented here provides a framework encompassing many different types of analyses related
to GWAS, including multiple testing correction [3, 11, 19], estimation of statistical power [11],
statistical fine mapping [16, 15, 24], and imputation [26, 34, 44] while taking into account the LD
structure of the human genome.

2 GWAS at One SNP and Hypothesis Testing

2.1 Association Testing for Case/Control Studies

We first consider GWAS with case/control study design where information on genetic variants is
collected from a dataset containing individuals with the disease (cases) and healthy individuals
(controls). In this case, a hypothesis test is performed for each collected variant. This hypoth-
esis test compares the frequency of a variant between the cases and controls in order to identify
associated variants.

Here, we consider a GWAS study with a total of n individuals that are genotyped at m SNPs.
In order to simplify notation, we assume a balanced case-control study where we have n

2 cases and
n
2 controls. Since each individual has two chromosomes, we have a total of n case chromosomes
and n control chromosomes.

For each group and each SNP, we count the number of times that the minor allele appears and
calculate the corresponding frequencies. Let p̂+i and p̂−i be the observed case and control frequencies,
respectively, of SNP i. The true frequencies will be denoted as p+i and p−i . Assuming that n is
large enough, the observed frequencies follow a Gaussian distribution p̂+i ∼ N (p+i , p

+
i (1− p+i )/n)

and p̂−i ∼ N (p−i , p
−
i (1− p−i )/n) where N (µ, σ2) is a normal distribution with mean µ and variance
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σ2. We can then convert the observed frequencies into the following statistic

si =
(p̂+i − p̂

−
i )√

2/n
√
p̂i(1− p̂i)

(1)

where p̂i = (p̂+i + p̂−i )/2. The statistic will follow the normal distribution

si ∼ N

(
(p+i − p

−
i )√

2/n
√
pi(1− pi)

, 1

)
(2)

We denote the mean of this distribution as the non-centrality parameter λ
√
n where

(p+i − p
−
i )√

2pi(1− pi)
√
n = λ

√
n

The probability density function of the normal distribution at point x for mean zero and variance
σ2 is

f(x;µ, σ2) =
1√
2π

exp

(
−1

2

(x− µ)2

σ2

)
(3)

The statistic si takes into account the difference between the observed frequencies. When this
difference is significantly high, we will assume an association between the SNP i and the disease.
In GWAS, this is done under the framework of hypothesis testing. This framework allows us to
control for Type I errors or quantify the error we can commit while implicating SNPs.

2.2 Association Testing for Continuous Phenotypes

The same framework can also be applied to continuous phenotypes such as cholesterol levels. We
assume that our genetic study collects n individuals and the continuous phenotype of individual
j is denoted as yj . We assume that the study collects m variants. We denote the frequency of
variant i in the population as pi. We denote the genotype of the ith variant in the jth individual as
gij ∈ {0, 1, 2}, which encodes the number of minor alleles for that variant present in the individual.
In order to simplify the formulas and without loss of generality, we standardize the genotype values
such that xij ≡ gij−2pi√

2pi(1−pi)
∈ { −2pi√

2pi(1−pi)
, 1−2pi√

2pi(1−pi)
, 2−2pi√

2pi(1−pi)
} since the mean and variance of the

column vector of genotype (gi) is 2pi and 2pi(1− pi), respectively. Due to the standardization, the
sample mean and sample variance of the vector of genotypes at a specific variant i denoted as Xi

are 0 and 1, respectively.
For the association at SNP i, the following model for the effect of SNP i on the phenotype is

utilized
yj = µ+ βixij + εj (4)

where µ is the population mean of the phenotype, βi is the effect size of the SNP and εj ∼ N (0, σ2e)
is the contribution of the environment to the phenotype for individual j. σ2e is referred to as the
environmental variance. In vector notation, this model is

Y = µ1 + βiXi + e (5)

where Xi is a column vector of standardized genotypes for variant i and e ∼ N (0, σ2eI), where I is
the identity matrix of dimension n.

Using equation (5), we can obtain an estimate of βi with the observed data. This reduces
the equation to a simple regression problem where the resulting estimates are µ̂ = 1

n1
TY , β̂i =
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(XT
i Xi)

−1XT
i Y =

XT
i Y
n since Xi is standardized so XT

i Xi = n. The estimated residuals ê =

Y − µ̂1− β̂iXi can be used to estimate the standard error σ̂ =
√

êT ê
n−2 . Since these studies are often

quite large, the association statistic will approximately follow a normal distribution such that

si =
β̂i
σ̂

√
n ∼ N

(
βi
σe

√
n, 1

)
(6)

where the non-centrality parameter λ
√
n = βi

σe

√
n.

2.3 Hypothesis Testing

If we assume that SNP i is not involved in the disease, referred to as the null hypothesis, then
p+i = p−i , and therefore si follows a standard normal distribution N (0, 1). Typically, a false positive
rate α (called type I error) is determined in advance (common values are 0.05 or 0.001 for a single
hypothesis and 5 × 10−8 for a GWAS). From α, a threshold is calculated using the inverse of
the standard normal cumulative distribution function Φ−1, i.e. θα = Φ−1(1 − α/2). A SNP i is
declared as associated if |si| > θα. In this framework, α is the probability that si is in the tails of
the standard Gaussian distribution under the assumption that the null hypothesis is true and the
mean value of si is 0 (see Figure 1).

Often, a p-value is reported as the result of a statistical test. In this case, the p-value of a SNP
i is the probability of observing si or a more extreme value assuming that SNP i is not associated.
This value can be calculated using p = 2(1 − Φ−1(si)) in case of si > 0 or p = 2Φ−1(si) in case
si < 0. Comparing si with the threshold is equivalent to comparing the p-value with α. If p < α
then we declare the SNP as associated.

2.4 Statistical Power

When performing association testing, the null hypothesis assumes that the SNP is not associated
with the disease. However, our objective is to discover the SNPs that are involved in the disease.
In order to discover a SNP involved in the disease, when we perform the statistical test on collected
data, we must reject the null hypothesis and declare the association as significant. We are interested
in computing the probability of rejecting the null hypothesis for the SNPs which actually affect
the disease. Intuitively, this is a measure of how likely an association study will succeed in finding
the true disease causing variants. This quantity is referred to as the statistical power and can be
calculated using the hypothesis testing framework. The power is a function of the effect size, which
measures the effect of the SNP on the disease and the significance threshold. If SNP i is associated
then p+i − p

−
i 6= 0 or βi 6= 0 and si is normally distributed with mean λ

√
n (the non-centrality

parameter) which is non-zero, and unit variance.
In order to declare a SNP i as associated, it has to happen that |si| > θα, so to know the

probability of detecting it we have to calculate Pr(|si| > θα). However, in contrast with the case
where SNP i was not associated and si followed a standard normal distribution, now si follows the
Gaussian distribution N (λ

√
n, 1). The power is visualized as the green area shown in the graphics

presented in Figure 1. The power is a function of α and the non-centrality parameter λ
√
n and can

be computed using the following formula

P (α, λ
√
n) = Φ

(
Φ−1(α/2)− λ

√
n
)

+ 1− Φ
(
−Φ−1(α/2)− λ

√
n
)

(7)

Implicitly, the power depends on factors such as the significance threshold, effect size, the minor
allele frequency, and the number of individuals. Furthermore, a higher non-centrality parameter
produces a higher power.

4

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 28, 2017. ; https://doi.org/10.1101/208199doi: bioRxiv preprint 

https://doi.org/10.1101/208199


Figure 1: (a) A standard normal distribution with the reject region for an error α. (b) A N (1, 1)
for an associated SNP with λ = 0.1 and n = 100. (c) A N (2, 1) for an associated SNP where
λ = 0.2 and n = 100. (d) A N (3, 1) for an associated SNP where λ = 0.2 and n = 325

3 GWAS for Multiple SNPs

3.1 Correlated SNPs– Multivariate Normal Distribution Model

In a region of the genome that is involved in a disease, some of the variants will have a direct
effect on the disease. We refer to these variants as causal variants. However, due to the correlation
between the variants, many more of the variants will be associated and have non-zero non-centrality
parameters. Association studies perform an association test at each SNP. Resulting statistics are
dependent due to the underlying correlation structure, referred to as Linkage Disequilibrium (LD),
of the SNPs themselves. A natural measure of the correlation between two SNPs (i and j) is simply
their correlation coefficient, which can be calculated as follows

rij =
pij − pipj√

pi(1− pi)pj(1− pj)

where pij , pi, and pj are the joint minor allele frequency of SNPs i and j, and the minor allele
frequency of SNPs i and j, respectively.

Obviously, if two SNPs i and j are correlated then the probability distributions of the SNPs
statistics, si and sj , should also be related. In fact, the correlation coefficient plays a central role
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in the joint distribution of the statistics of the m SNPs, ST = (s1, s2, . . . , sm), which follows a
multivariate normal distribution (MVN) [11, 25, 34, 15, 14, 17, 19, 44, 18]

S ∼ N (Λ,Σ) (8)

where Λ = (λ1
√
n, λ2

√
n, . . . , λm

√
n) is the vector of non-centrality parameters and Σ is the

variance-covariance matrix with σ2ii = 1 and σij = rij for all i 6= j. Σ is referred to as the
LD matrix. The probability density function of the MVN at point X for mean vector µ and
variance-covariance matrix Σ is

f(X;µ,Σ) =
1√

(2π)m|Σ|
exp

(
−1

2
(X − µ)TΣ−1(X − µ)

)
(9)

A derivation of the covariance is provided in Appendix A.
The non-centrality parameters for the SNPs depend on which SNPs are causal, the SNP effect

sizes, and the correlation between the SNPs. If we consider two SNPs (i and j) where SNP j is
a causal SNP with non-centrality parameter λc

√
n, the non-centrality parameter of another SNP

statistic i, λi
√
n is

λi
√
n = rijλ

c√n (10)

The previous equality has important implications for GWAS. Given that SNP j is a causal SNP,
then λc

√
n 6= 0 and, therefore, for each SNP i correlated with SNP j its non-centrality parameter

λi
√
n = rijλj

√
n is also non-zero. This means that a GWAS study has a high probability of

discovering both causal SNPs and highly correlated SNPs among the identified associated SNPs.
Thus, not all SNPs must be collected in a GWAS for the purpose of identifying an associated region;
only a subset of the SNPs (referred to as tag SNPs) need to be collected that are correlated with
the remaining uncollected SNPs.

When we consider more than one SNP at a time in order to identify responsibility for the
association, a distinction arises between the effect of the variants and the variants themselves.
Observed effects of these variants can simply be due to the correlation between the effects and the
causal variants. This distinction parallels the distinction between direct and indirect effects in the
causal inference literature [35] and has been discussed at length in the genetics literature [36]. We
use the notation λcj and the term effect size to denote the actual causal effect of SNP j. We note
that the correlated SNP i has a non-centrality parameter rijλ

c
j due to the correlation. We also note

that if SNP j is causal, the actual non-centrality parameter at SNP j may differ from λcj
√
n due

to the effect of other variants in the region.
In general, where we can assume that the SNPs j1, j2, . . . , jk are causal with individual effect

size λcjr for r = 1, . . . , k, we can consider a vector CT = (c1, c2, . . . , cm) such that

ci =

{
0 if SNP i is not a causal
λci if SNP i is causal

. Accounting for all this information, the multivariate normal can be written as

(s1, s2, . . . , sn)T ∼ N (ΣC
√
n,Σ) (11)

We note that
√
n is scalar in the above equation that multiplies each entry in the mean vector,

and we use the notation above for clarity. For example, suppose we have four SNPs where SNPs
2 and 4 are causal with effect sizes λc2 and λc4 respectively. In this case vector C is as follows:
CT = (0, λc2, 0, λ

c
4) and the distribution of the statistics is
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s1
s2
s3
s4

 ∼ N



r21λ
c
2 + r41λ

c
4

λc2 + r42λ
c
4

r23λ
c
2 + r43λ

c
4

r24λ
c
2 + λc4

√n,


1 r12 r13 r14
r21 1 r23 r24
r31 r32 1 r34
r41 r42 r43 1




where we can see how the non-centrality parameter of each SNP is affected by the causal SNPs.
We note that many association studies today utilize linear mixed models for computing the

assication statistics to take into account population structure or relatedness in the sample [21, 28,
29, 46, 45, 30]. When linear mixed models are utilized, the correlation between statistics is affected
[20] and a derivation of the correlation when applying mixed models is shown in Appendix B.

3.2 Multiple Hypotheses Testing under the MVN Model

In a GWAS study, we carry out a hypothesis test for each SNP i. Although each of these hypotheses
tests has associated a particular false positive rate αs, we would like to account for the overall false
positive rate of the whole process of testing m non-associated SNPs. In the case of two SNPs i and
j, the false positive rate can be viewed as the probability under the distribution

N
([

0
0

]
,

[
1 rij
rij 1

])
of the external part of a rectangle defined by the points (−θαs ,−θαs) and (θαs , θαs) where

θαs = −Φ−1(αs/2) is the per-maker threshold associated to the SNPs (Figure 2). In the case
of multiple SNPs, this region, which is the external part of a hypercube, is denoted as Rαs . This
region is the rejection region, where we reject at least one of the null hypotheses if our vector of
statistics falls inside it. In the case of m SNPs, and a given per SNP threshold αs, the overall false
positive rate of the study can be written as follows

α =

∫
Rαs

f(X; 0,Σ)dx (12)

and the per SNP threshold αs can be set so that the overall false positive rate of the study is at
the desired level. From the equation it is clear that the false positive rate depends on the per SNP
threshold, the number of SNPs and the variance-covariance matrix. When applied to a GWAS,
equation (12) requires an integration in a space that may have over a million dimensions. An
efficient method for computing this integration is described in Han et al., (2009)[11].

3.3 Power under the MVN Model

In order to calculate power under the MVN model, we assume that we know the vector of true
effect sizes C. Therefore, the statistics (s1, s2, . . . , sm)T follow a multivariate normal distribution
N (ΣC

√
n,Σ) with C and Σ as in (11). Therefore, the power is the probability of the rejection

region, Rαs , under the previously defined distribution. Specifically, the power then generalizes
equation (7) to multiple SNPs

P (αs, C
√
n,Σ) =

∫
Rαs

f(X; ΣC
√
n,Σ)dx (13)

For example, in the case of two SNPs where the first SNP is the causal SNP with non-centrality
parameter λc1, the correlation between the two SNPs is r12, and the per SNP significance threshold
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is αs, then the power of the association study testing both SNPs is∫
Rαs

f

(
X;

[
λc1

r12λ
c
1

]√
n,

[
1 r12
r12 1

])
dx (14)

where Rαs is the region defined outside of the square defined by the points (−θαs ,−θαs) and
(θαs , θαs). See Figure 2 for an example.

The traditional notion of statistical power assumes a specific alternative hypothesis, which
defines which variants are causal and makes an assumption on their effect sizes. However, in
practice, we are interested in the concept of ”average power” which is the average of the statistical
power computed for each variant given a specific effect size.

In order to estimate the power of GWAS, we typically assume that each SNP has equal chance
of being causal. We then compute the power for each SNP and report the average value over all
the SNPs. This approach assumes a probability model over the causal vectors C where each SNP
has equal chance of being the causal variant. A simple probability model is to assume that at most
1 SNP is causal and each SNP i has a probability of ci (with

∑m
i=1 ci < 1) of being causal, all

with the same effect size of λc. In this scenario there are m + 1 possible models. We can define
this set of possible models as C1. This set contains m+ 1 vectors that can be denoted as C(i) with
i = 0, . . . ,m, where C(0) = (0, . . . , 0) represents the situation in which no SNP is causal (and has
probability 1−

∑m
i=1 ci < 1) and C(i), for i = 1, . . . ,m is such that all the elements are 0 except the

ith component that is λc. The power of an association study in the case of using this probability
model is

P (α, C1,
√
n,Σ) =

1∑m
i=1 ci

m∑
i=1

P (α,C(i)√n,Σ)ci (15)

We note that each variant can be assigned a different prior probability based on additional data
such as functional genomic data. We can then modify our association testing approach to maximize
the statistical power in equation (15) as described in Eskin (2008) [7] and related publications [4, 6].

Figure 2: An illustration of the multivariate normal model (a) Type I Error (b) Power
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4 Statistical Fine Mapping

A central problem in GWAS is identifying the actual causal variants responsible for the association.
This approach is referred to as statistical fine mapping. In this problem, we observe the results of
an association study represented as a vector of observed statistics S, and we aim to obtain some
information about the actual causal vector C. This requires assuming a distribution over possible
values of C. We then define the prior over possible values of C as P (C). Given the value of C, we
can then define the probably over the statistics as decribed above and we denote this as P (S|C).

The simplest formulation of fine mapping is to consider the set of probability models in C1. In
this case, the posterior for each model C(i), given the value of the statistics S = Ŝ, is

P (C(i)|Ŝ) =
P (Ŝ|C(i))ci∑

C(j)∈C1 P (Ŝ|C(j))cj

It can be noted that the ranking of P (C(i)|Ŝ) is the same as the one provided by the p-values of
association statistics.

We can use these posteriors to define a “confidence set”. A confidence set is the set of possible
causal variants that capture a sufficient fraction of the posterior distribution. Intuitively, this is the
set of variants that has a high probability of containing the causal variant. We define the posterior
for a set of k SNPs j1, j2, . . . , jk as the sum of the posteriors

∑k
i=1 P (C(ji)|Ŝ). A typical “confidence

set” is defined as a set that accounts for a posterior probability higher than .95. A confidence set
computed for a GWAS locus intuitively is the set of SNPs that, with high probability, contains the
causal variants responsible for the association at the locus.

Since the posterior computation requires assumptions, the interpretation of the ”confidence sets”
assumes that the priors over the causal vector C are consistent with what is actually occurring at
the locus. In this sense, the model for statistical fine mapping C1 above is unrealistic for two
reasons.

First, there are often multiple causal variants in the same locus, and our previous model only
considers the scenario where one SNP affects the trait at a given locus. In general, this model is
a good approximation if the causal variants are not in LD with each other. Secondly, it assumes
that all the causal SNPs have the same effect size λc.

Hormozdiari et al.,(2014)[16] introduced a hierarchical model based on the multivariate normal
model which allows for multiple variants with effect sizes drawn from a normal distribution. Most
recently developed fine mapping methods build upon this model[23, 2, 22, 1, 27]. In this case, we
assume that each SNP has a probability ci of being causal independently of the rest of SNPs. Here,
the set of models, denoted as Cm contains 2m elements. If we define a binary variable γi that takes
a value of 1 when SNP i is causal, and otherwise takes a value of 0, then the prior probability for
a casual status is as follows

m∏
i=1

cγii (1− ci)1−γi (16)

Once we know which SNPs are causal, we use a Gaussian model inspired by the classic Fisher’s
polygenic model to get the effect sizes of the causal SNPs. The vector C is drawn from the
distribution

C ∼ N (0,ΣC) (17)
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where ΣC has elements

sigmaij =


0 if i 6= j
σg if SNP i is causal
ε otherwise

Under this model, the fine-mapping is carried out as follows. Given a set of SNPs K, we denote
the set of causal SNP configurations rendered by K with CK, which accounts for all possible models
with causal SNPs in K. These are 2|K| models, and the posterior probability of CK can be calculated
as follows

P (CK|Ŝ) =
∑
C∈CK

P (C|Ŝ)

where to compute P (C|Ŝ), we utilize the Bayse’s rule and compute P (Ŝ|C) which is the likelihood
of observed statistics given the vector of causal status. The details for this calculation is provided
in Appendix C.

The fine-mapping consists in given a threshold ρ find the smallest subset of SNPs K∗ such that
P (CK∗ |Ŝ) ≥ ρ. An algorithm to compute such a set is presented in Hormozdiari et al.,(2014) [16].
We can also incorporate functional genomics data to set the prior probabilities (ci) in the fine
mapping model [24].

5 Inference about Uncollected SNPs

In the context of GWAS, one of the advantages of this multivariate framework is that it allows us
to carry out inference about uncollected SNPs (i.e., given a non-collected SNP u we can use the
statistics from correlated SNPs to obtain some information about the statistic of SNP u).

Given an non-collected or unobserved SNP u, we consider its O most strongly correlated col-
lected SNPs (this information can be obtained from a database of SNPs such as the HapMap).
Let RuO denote the O × 1 vector of the correlation coefficients between u and the O tag SNPs.
Similarly, let SO and C, respectively, be the O × 1 vectors of the association statistics; let effect
sizes of the tag SNPs and ΣO be the O × O matrix of their pairwise correlation coefficients. The
joint distribution of the association statistics of the unobserved SNP u and the O tag SNPs follows
a multivariate normal distribution, which can be obtained by developing equation 11 and expressed
as follows (

su
SO

)
∼ N

((
1 RTuO

RuO ΣO

)(
Cu
C

)√
n ,

(
1 RTuO

RuO ΣO

))
The previous joint distribution allows us to make inference about the statistic of the unobserved

SNP u. Departing from that distribution, we can calculate the distribution of the statistic of the
uncollected SNP u given the statistic of the collected SNPs ŜO

su|SO = ŝO ∼ N
(
(cu +RTuOC)

√
n+RTuOΣ−1O (ŝO − ΣOC

√
n) , 1−RTuOΣ−1O RuO

)
This distribution can be used in different ways. This approach can be thought of as a method for
imputation [26, 34]. For example, we could fill the value of su with the mean value of the previous
distribution. A second application is to calculate the probability of that SNP being causal given
the value of the collected SNPs [25, 44].
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6 Discussion

We have presented how the multivariate normal distribution can be utilized to explicitly model
the correlation between variants in the analysis of GWAS studies. We have demonstrated how the
MVN framework can be applied to correct for multiple testing, estimate the statistical power of an
association study, and perform fine mapping and imputation.
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Michael Bilow, Jae Hoon Sul, Sriram Sankararaman, Bogdan Pasaniuc, and Eleazar Eskin.
Colocalization of GWAS and eQTL signals detects target genes. The American Journal of
Human Genetics, 99(6):1245–1260, dec 2016.

[18] Farhad Hormozdiari, Anthony Zhu, Gleb Kichaev, Chelsea J.-T. Ju, Ayellet V. Segrè, Jong
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A Derivation of covariance of association statistics

In this section, we show the derivation of the covariance between association statistics. Let m
be the number of SNPs, si be a statistic for the ith SNP, and Σ = {Cov(si, sj)} be the m × m
covariance matrix between the statistics.

For the association at SNP i, the following model for the effect of SNP i on the kth individual
is utilized

yk = µ+ βixik + εk

and in vector notation
Y = µ1 + βiXi + e

Here, Xi is a column vector of normalized genotypes for variant i and e ∼ N (0, σ2eI), where I is
the identity matrix of dimension n and 1 is a column vector of 1’s. Then, the phenotype follows a
MVN with a mean and variance as follows:

Y ∼ N (µ1 +Xiβi, σ
2
eI)

The ordinary least-squares solutions of β for SNP i and SNP j are as follows:

β̂i =(XT
i Xi)

−1XT
i Y ∼ N

(
βi,

σ2e
XT
i Xi

)
β̂j =(XT

j Xj)
−1XT

j Y ∼ N

(
βj ,

σ2e
XT
j Xj

)
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The association statistics of the two SNPs are computed as follows:

si =
β̂i
σ̂e

√
XT
i Xi ∼ N

βi
√
XT
i Xi

σe
, 1


sj =

β̂j
σ̂e

√
XT
j Xj ∼ N

βj
√
XT
j Xj

σe
, 1



Here, the estimated values for µ, e, and σ for the SNP i are as follows: µ̂ =
1TXi

XT
i Xi

, ê = Y −µ̂1−Xβ̂

and σ̂ =
√

êT ê
n−2 . Then, we can prove that the covariance of the two statistics, Cov(si, sj), is equal

to the correlation between the genotypes, rij , as follows:

Cov(si, sj) =Cov

(
β̂i
σe

√
XT
i Xi,

β̂j
σe

√
XT
j Xj

)

=
1

σ2e
Cov

 XT
i Y√
XT
i Xi

,
XT
j Y√
XT
j Xj


=

XT
i Xj√

XT
i Xi

√
XT
j Xj

=Cor(Xi, Xj) ≡ rij

(S1)

This relationship between genotype correlation and MVN covariance holds for case/control studies
as well [37, 11].

B Covariance of association statistics taking into account for pop-
ulation structure

Because of each population’s own genetic and social history, allele frequencies are known to vary
widely from population to population. This creates genetic similarity between individuals in the
study population, referred to as “population structure”. Individuals within a population have
more similar phenotype values than individuals in distant populations. Population structure, along
with this correlation of a phenotype with its populations, may cause spurious correlations between
genotypes and a phenotype and induce an inflation of the values of association statistics leading
to false positives [33, 9, 40, 12, 41, 8]. Linear mixed model (LMM) has emerged as a general
approach to address this problem by explicitly modeling population structure in its association
statistic [21, 28, 29, 46, 45, 30, 20].

For LMM, equation (S1) is no longer valid. That is, we cannot use the genotype correlation
matrix as the covariance matrix of association statistics for mixed model. To derive the covariance
matrix of association statistics under structured population, we assume a mixed model instead of
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the linear model equation shown in the previous section. For the association at SNP i, the following
LMM for the effect of SNP i on the kth individual is utilized

yk = µ+ βMi xik + uk + εk

and in vector notation
Y = µ1 + βMi Xi + u + e

Here, Xi is a column vector of normalized genotypes for variant i, u ∼ N (0, σ2gK) is a column vector
modeling population structure effects, where K is the genetic relative matrix, referred to as “kinship
matrix”, that explains the correlation between the individuals induced by population structure.
Since the genotypes are normalized, the kinship matrix can be expressed as K = XXT /m, where
m is the number of genotypes and X is the n×m matrix of the normalized genotypes. e ∼ N (0, σ2eI)
is a column vector modeling residual errors, where I is the identity matrix of dimension n.

Under this model, the phenotype follows a MVN with a mean and variance as follows:

Y ∼ N (µ1 +Xiβ
M
i , σ

2
gK + σ2eI)

Given the observed data, it is straightforward to fit a LMM and estimate the parameters σ2g and

σ2e using standard strategies, which define the covariance matrix of phenotypes, Cov(Y ) = V̂ =
σ̂2gK,+σ̂

2
eI. Now we utilize the fact that after obtaining V̂ , the remaining regression procedure is

equivalent to performing ordinary least-squares in the transformed space,

V̂ −1/2Y ∼ N (V̂ −1/2µ1 + V̂ −1/2Xiβ
M
i , I)

where both genotypes and phenotypes are transformed by a factor V̂ −1/2. Assuming that V̂ −1/2Xi

and V̂ −1/2Y are normalized as mean 0 and variance 1 (without loss of generality), the ordinary
least-squares solution of βMi for ith SNP and jth SNP are as follows:

β̂Mi =(XT
i V̂
−1Xi)

−1XT
i V̂
−1Y ∼ N

(
βMi , (X

T
i V̂
−1Xi)

−1
)

β̂Mj =(XT
j V̂
−1Xj)

−1XT
j V̂
−1Y ∼ N

(
βMj , (X

T
j V̂
−1Xj)

−1
)

The statistics are computed as follows:

sMi =β̂Mi

√
XT
i V̂
−1Xi ∼ N

(
βMi

√
XT
i V̂
−1Xi, 1

)
sMj =β̂Mj

√
XT
j V̂
−1Xj ∼ N

(
βMi

√
XT
j V̂
−1Xj , 1

)
Accordingly, the correlation between the statistics changes from Equation (S1) to the following and
the correlation between the statistics are equal to the correlation between the SNP transformed by
the inverse square root of V̂ ,

Cov(sMi , s
M
j ) =Cov

 XT
i V̂
−1Y√

XT
i V̂
−1Xi

,
XT
j V̂
−1Y√

XT
j V̂
−1Xj


=

XT
i V̂
−1/2(V̂ −1/2)TXj√

XT
i (V̂ −1/2)T V̂ −1/2Xi

√
XT
j (V̂ −1/2)T V̂ −1/2Xj

=Cor(V̂ −1/2Xi, V̂
−1/2Xj) = rMij

Thus, we can account for population structure in analyses related to GWAS, including multiple
testing correction [3, 11, 19], estimation of statistical power [11], statistical fine mapping [16, 15, 24],
and imputation [26, 34].
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C Efficient likelihood computation

We show in Equation (11) that the joint distribution of marginal statistics given the causal status
is as follows:

(S|C) ∼ N (ΣC
√
n,Σ)

In addition, we use Equation (17) that is inspired by the classic Fisher’s polygenic model to get
the effect sizes of the causal SNPs. This distribution is as follows:

C ∼ N (0,ΣC).

Utilizing the MVN conjugate prior and applying it to Equations (11) and (17), we can obtain the
joint distribution of marginal statistics as follows:

S ∼ N (0,Σ + nΣΣCΣ) (S2)

To compute the likelihood of the casual status, we utilize the probability density function of
the MVN as shown in Equation (9). Unfortunately, a naive method to compute the likelihood is
computationally intensive. In the naive method, we need to compute ST (Σ + nΣΣCΣ)−1S and
|Σ + nΣΣCΣ| that both require O(m3) operations. We use Woodbury matrix identity formula
to speedup the computation of ST (Σ + nΣΣCΣ)−1S and use Sylvester’s determinant identity to
speedup the computation of |Σ + nΣΣCΣ|.

We reduce the time complexity by only computing the values that change with matrix C. We
can factor out the Σ matrix as follows:

ST (Σ + nΣΣCΣ)−1S = STΣ−1(I + nΣCΣ)−1S

|Σ + nΣΣCΣ| = |Σ||I + nΣCΣ|

where |Σ| and STΣ−1 can be computed once and can be used many times. Thus, we need to
compute (I + nΣCΣ)−1 and |I + nΣCΣ| for every causal status. It is worth mentioning that we
require Σ to be full rank. Unfortunately, in some loci, Σ, can be low rank. In this section, we
assume that the LD matrix is full rank and in Appendix D we deal with low rank LD matrices. To
ease the notation, we introduce two matrices U and V where U has (m × k) elements and V has
(k ×m) elements. We set elements of U and V such that nΣCΣ = UV . Let αi indicate the index
of ith causal variant. We set elements of V as follows: V (i, j) = rαi,j . We set U(αi, i) to nσ while
the rest of elements in U are set to zero.

We use the Woodbury matrix identity formula to compute (I + nΣCΣ)−1. The Woodbury
matrix identity formula is as follows:

(A+ UEV )−1 = A−1 −A−1U(E−1 + V A−1U)−1V A−1

where we set A to Im×m and E to Ik×k. As a result, we have:

(Im×m + nΣCΣ)−1 = (Im×m + UV )−1

= I−1m×m − I−1m×mU(I−1k×k + V I−1k×kU)−1V Im×m

= Im×m − U(Ik×k + V U)−1V
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Interestingly, to compute (Ik×k + V U)−1 we need to inverse a k × k matrix that is much smaller
than inverting a m ×m matrix. Thus, we reduce the computation of ST (Σ + nΣΣCΣ)−1S from
O(m3) to O(m2k) where k is the number of causal variants for a given causal status (k << m).

We use the Sylvester’s determinant identity to speedup |I+nΣCΣ| computation. The Sylvester’s
determinant identity formula is as follows:

|Im×m + UV | = |Ik×k + V U |
Thus, instead of computing the determinate of a n×n matrix, we can compute the determinate of a
k×k matrix. We set matrices U and V such that UV = nΣCΣ. Thus, we can compute |I +nΣCΣ|
in O(k3) operations [18].

D Handling Low Rank LD Matrices

As mentioned in the above section, we assume that the LD matrix, Σ, is full rank. However, in
some loci the LD matrix can be low rank due to linear dependency between different variants (e.g.,
two variants that are in perfect LD). We recall that we use Equation (S2) to compute the likelihood
of each causal status. The LD matrix is computed from genotype data (Σ = XTX), thus the LD
matrix is semi-positive definite. Using the fact that the LD matrix is semi-positive definite, we can
use the eigenvalue decomposition of the LD matrix which is as follows:

Σ = QΩQT

where Q is the matrix of eigenvectors and the ith column of Q is the i-th eigenvector of matrix Σ.
Matrix Q is an orthogonal matrix (QTQ = QQT = I). Let Ω be a diagonal matrix that consists of
eigenvalues of Σ where the ith diagonal element of Ω is the ith eigenvalue of matrix Σ. We introduce
a new set of marginal statistics S′ = Ω−1/2QTS such that the joint distribution is computed as
follows:

S′ = Ω−1/2QTS ∼ N (0,Ω−1/2QTΣQΩ−1/2 + nΩ−1/2QTΣΣCΣQΩ−1/2)

where we can simplify Ω−1/2QTΣQΩ−1/2 to I and nΩ−1/2QTΣΣCΣQΩ−1/2 to nΩ1/2QTΣCQΩ1/2

which can be shown as follows:

Ω−1/2QTΣQΩ−1/2 = Ω−1/2QTQΩQTQΩ−1/2 = Ω−1/2ΩΩ−1/2 = I

Similarly, we have:

nΩ−1/2QTΣΣCΣQΩ−1/2 = nΩ−1/2QTQΩQTΣCQΩQTQΩ−1/2

= nΩ−1/2ΩQTΣCQΩΩ−1/2

= nΩ1/2QTΣCQΩ1/2

Thus, the joint distribution of S′ is as follows:

S′ = Ω−1/2QTS ∼ N (0, I + nBΣCB
T ) (S3)

where B = Ω1/2QT . It is worth mentioning that I + nBΣCB
T is full rank. Thus, we can compute

the likelihood of causal status for a locus where the LD matrix is not full rank.
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