
3D Cell Nuclear Morphology: Microscopy Imaging Dataset and Voxel-Based
Morphometry Classification Results

Alexandr A. Kalinin1,2, Ari Allyn-Feuer1, Alex Ade1, Gordon-Victor Fon1, Walter Meixner1,
David Dilworth1, Jeffrey R. de Wet1, Gerald A. Higgins1, Gen Zheng3, Amy Creekmore3,

John W. Wiley3, James E. Verdone4, Robert W. Veltri4, Kenneth J. Pienta4,
Donald S. Coffey4, Brian D. Athey1,5, Ivo D. Dinov1,2,5

1Department of Computational Medicine and Bioinformatics,
University of Michigan Medical School, Ann Arbor, MI 48109

2Statistics Online Computational Resource (SOCR), Health Behavior and Biological Sciences,
University of Michigan School of Nursing, Ann Arbor, MI 48109
3Division of Gastroenterology, Department of Internal Medicine,
University of Michigan Medical School, Ann Arbor, MI 48109

4Department of Urology, The James Buchanan Brady Urological Institute,
Johns Hopkins University, Baltimore, MD 21218
5Michigan Institute for Data Science (MIDAS),
University of Michigan, Ann Arbor, MI 48109

{akalinin,ariallyn,asade,gordonvi,meixner}@umich.edu
{dilworth,jrdewet,gehiggin,zhenggen,creekmoa,jwiley}@umich.edu

{jverdon1,rveltri1,kpienta1,dcoffey}@jhmi.edu
{bleu,dinov}@umich.edu

Abstract

Cell deformation is regulated by complex underlying bi-
ological mechanisms associated with spatial and tempo-
ral morphological changes in the nucleus that are related
to cell differentiation, development, proliferation, and dis-
ease. Thus, quantitative analysis of changes in size and
shape of nuclear structures in 3D microscopic images is im-
portant not only for investigating nuclear organization, but
also for detecting and treating pathological conditions such
as cancer. While many efforts have been made to develop
cell and nuclear shape characteristics in 2D or pseudo-3D,
several studies have suggested that 3D morphometric mea-
sures provide better results for nuclear shape description
and discrimination. A few methods have been proposed to
classify cell and nuclear morphological phenotypes in 3D,
however, there is a lack of publicly available 3D data for
the evaluation and comparison of such algorithms. This
limitation becomes of great importance when the ability to
evaluate different approaches on benchmark data is needed
for better dissemination of the current state of the art meth-
ods for bioimage analysis. To address this problem, we

present a dataset containing two different cell collections,
including original 3D microscopic images of cell nuclei
and nucleoli. In addition, we perform a baseline evalua-
tion of a number of popular classification algorithms using
2D and 3D voxel-based morphometric measures. To ac-
count for batch effects, while enabling calculations of AU-
ROC and AUPR performance metrics, we propose a specific
cross-validation scheme that we compare with commonly
used k-fold cross-validation. Original and derived imag-
ing data are made publicly available on the project web-
page: http://www.socr.umich.edu/projects/
3d-cell-morphometry/data.html.

1. Introduction

Morphology of a cell nucleus and its compartments is
regulated by complex biological mechanisms related to
cell differentiation, development, proliferation, and disease
[14, 34, 37]. Changes in nuclear morphology are associated
with reorganization of chromatin architecture and related to
altered functional properties such as gene regulation and ex-
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pression. Conversely, studies in mechanobiology show that
external geometric constraints and mechanical forces that
deform the cell nucleus affect chromatin dynamics and gene
and pathway activation [32]. Thus, nuclear morphological
quantification becomes of major relevance as the studies of
the reorganization of the chromatin and DNA architecture
in the spatial and temporal framework, known as the 4D
nucleome, emerge [11, 36]. Cellular structures of interest
in the context of the 4D nucleome include not only the nu-
cleus itself, but also the nucleolus and nucleolar-associating
domains, chromosome territories, topologically associating
domains, lamina-associating domains, and loop domains in
transcription factories [10]. Quantitative analyses of nuclear
and nucleolar morphological changes also have medical im-
plications, for example, in detection and treatment of patho-
logical conditions such as cancer [22, 34, 37].

While many efforts have been made to develop cell and
nuclear morphological characteristics in 2D or pseudo-3D
[12, 25], several studies have suggested that 3D measures
provide better results for nuclear morphometry description
and discrimination [6, 21]. Although a number of signal
processing and computer vision algorithms have been pro-
posed to analyze cell and nuclear morphological pheno-
types using 3D representations [8], there is a lack of pub-
licly available 3D cell imaging datasets that could serve for
the evaluation of various tools and methods. This limitation
becomes of great importance in the modern reality of big
data microscopy, when the ability to evaluate different ap-
proaches on publicly available data is needed for better dis-
semination of the current state of the art methods for bioim-
age analysis [4, 20].

In order to enable objective evaluation of the methods
for nuclear morphometric analysis, we create a 3D cell nu-
clear morphology dataset. The dataset includes 3D fluo-
rescence microscopy volumetric images of cell nuclei and
nucleoli of two different cell collections: primary human
fibroblast cells and human prostate cancer cells (PC3). In
turn, each collection contains images of cells in two dif-
ferent phenotypic states that have previously been shown
to exhibit quantifiable changes in nuclear morphology. This
allows to evaluate methods for morphological quantification
on two binary classification problems.

We also provide a baseline evaluation of simple voxel-
based morphometric analysis methods. First, we use au-
tomatic segmentation methods to extract individual nuclear
and nucleolar binary masks in 3D. We then extract com-
mon 2D and 3D voxel-based measures of binary mask mor-
phology and combine them into per-nucleus feature vectors.
These feature vectors then used to evaluate a number of ma-
chine learning algorithms to provide morphology classifi-
cation performance baselines. To account for batch effects,
while enabling calculations of the Area under the Precision-
Recall curve (AUPR) and the Area Under the Receiver Op-

erating Characteristic curve (AUROC) performance met-
rics, we propose a specific cross-validation (CV) scheme.

To promote the reproducibility of results, facilitate open-
scientific development, and enable collaborative valida-
tion we will make our workflows, together with underly-
ing source code, documentation, and all derived data from
this study available online. Original and derived imag-
ing data are made publicly available on the project web-
page: http://www.socr.umich.edu/projects/
3d-cell-morphometry/data.html. Additionally,
extracted morphometric features are made available for in-
teractive exploration and analysis online via our visual ana-
lytics platform SOCRAT [16].

2. Dataset preparation
2.1. Sample preparation

The dataset is composed of two different cell collections.
Each collection includes 3D volumetric images of cells in
two phenotypic states that have been shown to exhibit dif-
ferent nuclear and/or nucleolar morphology.

The first collection includes images of primary human
fibroblast cells (newborn male) that were purchased from
ATCC (BJ Fibroblasts CRL-2522 normal). In order to in-
troduce morphology changes, a part of this collection was
subjected to a G0/G1 Serum Starvation Protocol [17]. This
protocol is used for cell cycle synchronization and has pre-
viously been shown to cause morphology changes in human
fibroblasts, affecting nuclear size and shape [31]. As a re-
sult, the first collection contains 3D volumetric images of
cells in the following phenotypic classes: (1) proliferating
fibroblasts (PROLIF), and (2) cell cycle synchronized by the
serum-starvation protocol (SS). These classes serve as two
categories in a binary morphology classification setting.

The second collection contains images of human prostate
cancer cells (PC3). Through the course of progression to
metastasis, malignant cancer cells undergo a series of re-
versible transitions between intermediate phenotypic states
bounded by pure epithelium and pure mesenchyme [34].
These transitions in prostate cancer are associated with
quantifiable changes in both nuclear and nucleolar structure
[22, 35]. Microscope slides of prostate cancer cell line PC3
were cultured in: (1) epithelial (EPI), and (2) mesenchymal
transition (EMT) phenotypic states, as described in [35].
Thus, this setting can also be treated as a binary classifi-
cation task.

2.2. Image acquisition

Cells in both collections are labeled with 3 different flu-
orophores: DAPI (4’,6-diamidino-2-phenylindole), a com-
mon stain for the nuclei, fibrillarin antibody (anti-fibrillarin)
and ethidium bromide (EtBr), both used for nucleoli stain-
ing. Although anti-fibrillarin is a commonly used nucleolar
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Figure 1. An exemplar 3D visualization of a data sub-volume from the fibroblast cell collection: (A) DAPI channel; (B) EtBr channel;
(C) anti-fibrillarin channel; (D) a composite image. Images are thresholded by 25% the for the clarity of visual appearance and visualized
using ClearVolume [27].

label, we find it to be too specific, which makes the extrac-
tion of a shape mask problematic. It has been shown that
EtBr can be used for staining dense chromatin, nucleoli, and
ribosomes [3]. We find that it provides better overall repre-
sentation of nucleolar shape. Anti-fibrillarin is combined
with EtBr by co-localization to confirm correct detection of
nucleoli locations as described below. 3D imaging used a
Zeiss LSM 710 laser scanning confocal microscope with a
63x PLAN/Apochromat 1.4NA DIC objective.

For multichannel vendor data, the channels are separated
and saved as individual volumes labeled as c0, c1, c2, rep-
resenting the DAPI, anti-fibrillarin, and EtBr channels, re-
spectively, Fig. 1. Each channel-specific volume is then re-
sliced into a 1, 024 × 1, 024 × Z lattice (Z = {30, 50}),
where regional sub-volumes facilitate the alignment with
the native tile size of the microscope. All sub-volumes
are saved as multi-image 3D TIFF volumes. For every
sub-volume, accompanying vendor meta-data are extracted
from the original data.

As a result, the fibroblasts collection includes the total
of 178 sub-volumes (64 PROLIF and 112 SS), see Table. 1.
The PC3 collection includes the total of 101 sub-volumes
(50 EPI and 51 EMT), see Table. 2.

3. Methods
To establish baseline morphometry classification results,

we first segment nuclei and nucleoli from the original data

Class Sub-volumes GBs
PROLIF 64 10.6
SS 112 19.2
TOTAL 178 29.8

Table 1. The size of the fibroblast cell collection. Sub-volumes
column shows the number of 1024 × 1024 × Z sub-volumes per
channel.

Class Sub-volumes GBs
EPI 50 15.7
EMT 51 21.3
TOTAL 101 37.0

Table 2. The size of the PC3 cell collection. Sub-volumes column
shows the number of 1024× 1024× Z sub-volumes per channel.

sub-volumes. Then, we extract multiple voxel-based mor-
phometric characteristics from 3D binary masks and their
2D projections (2D masks). We use these features to eval-
uate the performance of a number of widely used classi-
fication algorithms. We also assess possible batch effects
in data by comparing two different cross-validation tech-
niques.
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Figure 2. A schematic view of the dataset segmentation protocol and exemplar 2D slices of fibroblast data: (A) steps for the DAPI segmen-
tation process that produces nuclear masks after hole-filling (color-coded by quality control filter); (B) steps for EtBr segmentation that
outputs nucleolar masks (colored by connected component labeling); (C) co-localization nucleolar segmented masks with the segmented
anti-fibrillarin channel; (D) the composite image of segmented data.

3.1. Nuclear segmentation

Model-based cell segmentation approaches are the most
common in bioimage analysis and typically perform well
for fluorescence microscopy images of cultured cells [4].
Moreover, they allow to avoid a very labor-intensive pro-
cess of manual pixel-level expert annotation of large 3D
volumetric imaging data. After testing a number of im-
plementations of 3D thresholding-based and watershed-like
methods in commonly used bioimage analysis packages, we
perform the automatic 3D segmentation of nuclei using Nu-
clear Segmentation algorithm from the Farsight toolkit [1].
This tool was created specifically to segment DAPI-stained
nuclei in 2D or 3D, it does not require a labeled training set,
has a convenient command line interface, and demonstrated
stable results on these data. The algorithm implements mul-
tiple steps which include a graph-cut algorithm to binarize
the sub-volumes, a multi-scale Laplacian of Gaussian fil-
ter to convert the nuclei to blob masks, fast clustering to
delineate the nuclei, and nuclear contour refinement using
graph-cuts with alpha-expansions.

After segmentation of the DAPI channel sub-volumes,
Fig. 2A, data were converted to 16-bit 3D TIFF files, each

segmented nucleus was represented as a binary mask, and
given a unique index value. Post-segmentation processing
of nuclear masks included 3D hole filling and a filtering step
that removed the objects if they span the edge of a tile, are
connected to other objects, or their compactness or voxel
count values were outside of the empirically estimated in-
terval. This quality control protocol allowed to remove most
of the artifacts, as confirmed by visual inspection.

3.2. Nucleolar segmentation

Since nucleolar labels are not very specific and produce
strong background, see Fig. 1, segmentation of nucleoli us-
ing model-based approaches did not demonstrate acceptable
results. Therefore, segmentation of objects within the nu-
cleus was performed using the Trainable Weka Segmenta-
tion [2], a machine learning tool for microscopy pixel clas-
sification bundled with Fiji [29], a commonly used bioim-
age analysis framework. The Trainable Weka Segmenta-
tion plugin is the most popular segmentation tool in ImageJ
ecosystem [30], and it is convenient to use for labeling bi-
ological structures in 3D images, since it does not require
the exact mask contour tracing. Instead, it allows the ex-
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traction of a number of features from scarcely labeled pixel
groups from both classes, which then are used train a clas-
sification algorithm from the WEKA Data Mining software
package [9]. Intra-nuclear segmentation was independently
performed on EtBr and anti-fibrillarin stained nucleoli. Nu-
clear masks were used to isolate sub-nuclear segmentations
in the EtBr and anti-fibrillarin channels to objects within a
nucleus. An individual Random Forest classifier model [18]
was created for each channel by using a random selection
of 10% of the sub-volumes within that channel for train-
ing. Trained models were then applied to all sub-volumes
and nucleolar masks were created from the resulting proba-
bility maps and labeled as connected components, Fig. 2B.
Finally, both EtBr and anti-fibrillarin segmented volumes
were used as input to a co-localization algorithm to validate
the segmented EtBr-stained nucleoli based on the presence
of anti-fibrillarin, Fig. 2C.

The quality control protocol for nucleolar masks was
similar to that for the nuclear masks. Since uneven staining
can cause occasional segmentation artifacts, filtering step
also measured spherical compactness of identified objects
[23] and removed the masks if their compactness were out-
side of the empirically estimated interval.

3.3. Voxel-based morphometry

We measure 2D and 3D voxel-based morphometric fea-
tures of both nuclear and nucleolar binary masks, see
Fig. 2D, using image processing library, scikit-image [33].

The 2D feature set includes: area of the object, area of
the 2D bounding box, diameter of a circle with the same
area as the object, ratio of the object area to the bounding
box area, convex hull area, eccentricity, two biggest eigen-
values of the inertia tensor of the region, major and minor
axis of an ellipse fitted to the region, the angle between the
X-axis and the major axis of the fitted ellipse, perimeter of
an object which approximates the contour of the region, the
ratio of the region area to the convex hull area.

The set of 3D morphometry features includes: object
volume, volume of the 3D bounding box, diameter of a
sphere with the same volume as the object, and ratio of the
object volume to the bounding box volume.

In oder to aggregate the nucleolar features per nucleus
we compute median, minimum, maximum, and standard
deviation for each morphometry measure across the nucle-
oli within one nucleus. Correspondingly, nuclei that do not
have any internally positioned nucleoli are excluded from
the further analysis. The number of detected nucleoli per
nucleus is included as an individual feature. Thus, the total
number of features per nucleus is 5 × N + 1, where N is
the number of either 2D or 3D morphometric measures.

We perform exploratory visual analysis of extracted fea-
tures using SOCRAT [16], a web platform for interactive
visual analytics. The goal of visual analytics is to support

analytical reasoning and decision making with a combina-
tion of highly interactive visualizations and data analysis
techniques. SOCRAT implements a visual analytics work-
flow that encompasses an iterative process, in which data
analysts can interactively interrogate extracted morphome-
tric measures in the form of interactive dialogue supported
by visualizations and data analysis components. As an ex-
ample, we include t-Distributed Stochastic Neighbor Em-
bedding (t-SNE) [19] visualizations of both 2D and 3D fea-
tures generated by SOCRAT [16].

3.4. Classification

We compare various supervised classification algorithms
from scikit-learn, a popular Python machine learning toolkit
[24], including Gaussian Naive Bayes (NB), Linear Dis-
criminant Analysis (LDA), k nearest neighbors classifier
(kNN), support vector machines with linear (SVM) and
Gaussian kernels (RBF), Random Forest (RF), Extremely
Randomized Trees (ET), and Gradient Boosting (GBM).
All classifiers use default hyper-parameters. Feature pre-
processing includes feature standardization by subtracting
the mean and scaling to unit variance of the training set. In
this study, we assign the label of the whole image to every
single cell extracted from it.

3.5. Cross-validation

To evaluate the possible batch effect that could occur
during the image acquisition [4], we compare traditional
k-fold cross-validation (CV) scheme with the suggested
Leave-2-Opposite-Groups-Out (L2OGO) scheme. L2OGO
ensures that: (1) all masks derived from one image fall ei-
ther in the training or testing set, and (2) testing set always
contains masks from 2 images of different classes. Un-
like Leave-One-Group-Out CV, L2OGO enables per-split
evaluation of performance metrics such as the Area under
the Precision-Recall curve (AUPR) and the Area Under the
Receiver Operating Characteristic curve (AUROC). Since
original volumes are of different size and contain different
number of nuclei, we joined smaller volumes into bigger
groups to reduce class imbalance in testing sets and the vari-
ance of the performance metric estimates. Given the class
imbalance in L2OGO, we compute AUC, AUPR, and F1
score to compare algorithms [28].

4. Results
4.1. Fibroblast cells morphometric analysis

After the curation process and the exclusion of nuclei
without detected nucleoli, the full collection of segmented
fibroblasts consists of total 965 nuclear (498 SS and 470
PROLIF) and 2,181 nucleolar (1,151 SS and 1,030 PRO-
LIF) binary masks. 2D and 3D morphometric measures of
nuclear and nucleolar masks are merged into per-nucleus
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Figure 3. A t-SNE projection of 2D and 3D voxel-based morpho-
metric features extracted from binary masks of the fibroblast data.
Visualized using SOCRAT [16].

Figure 4. The comparison of cross-validation strategies and com-
monly used algorithms to evaluate the classification performance
and possible batch effects using combined morphometric features
of 2D and 3D fibroblast nuclear and nucleolar binary masks.

feature vectors as described above. To assess the variabil-
ity of data, we use t-SNE [19], a dimensionality reduction
technique that is well suited for the visualization of high-
dimensional datasets on the 2D space. Fig. 3 suggests that
the projection of 3D morphometric measures provides bet-
ter separability of nuclei clusters in the feature space, al-
though still not perfect.

Next, we evaluate the performance of algorithms for
Fibroblast morphometric classification on 2 different CV
schemes: 20 splits in L2OGO and a 7 times repeated 4-
fold CV. Results in Fig. 4 do not show any apparent batch
effects in the 2D classification setting. However, 3D perfor-
mance estimates for all classifiers using L2OGO are more

Figure 5. A t-SNE projection of 2D and 3D voxel-based morpho-
metric features extracted from binary masks of the PC3 data. Vi-
sualized using SOCRAT [16].

Figure 6. The comparison of cross-validation strategies and com-
monly used algorithms to evaluate the classification performance
and possible batch effects using combined morphometric features
of 2D and 3D PC3 nuclear and nucleolar binary masks.

pessimistic compared to 4-fold CV, which indicates the pos-
sibility of batch effects and overly optimistic classification
results in 4-fold CV. As expected, L2OGO led to a large
variance of metrics, especially in the F1 score, which can
be explained by classifiers’ sensitivity to different class im-
balances in each iteration of this scheme. Within L2OGO,
a number of algorithms showed higher performance on 3D
morphometry compared to 2D features. The best overall re-
sult is achieved by the Gaussian SVM (RBF) classifier in
3D with the median AUC = 0.814 ± 0.245, AUPR =
0.724± 0.206, and F1 = 0.709± 0.185).
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4.2. PC3 cells morphometric analysis

After the exclusion of nuclei without detected nucle-
oli, the segmented PC3 collection consists of 458 nuclear
(310 EPI and 148 EMT) and 1,101 nucleolar (649 EPI and
452 EMT) binary masks. Fig. 5 shows t-SNE projection,
demonstrating better cluster separation produced from 3D
morphometric measure space, suggesting that 3D feature
representations are more informative compared to their 2D
counterparts.

After merging smaller EMT groups, L2OGO scheme
produced 4 pairs of groups as training and testing sets.
Given smaller number of volumes and apparent class im-
balance, we compared L2OGO to 4-fold CV repeated 2
times. Similar to the previous experiment, 2D morphome-
try classification performance was quite similar for both CV
schemes, see Fig. 6. However, in 3D, the performance of al-
gorithms degraded as measured by L2OGO CV, such that no
methods performed better than in 2D. This can indicate pos-
sible batch effects, given the perfect performance estimates
for 3 classifiers on 2D features. However, it is hard to judge
given the large performance metrics’ variation in 3D. In this
case, the best classification by single classifier was the result
of applying the Gradient Boosting classifier (GB) with the
median AUC = 0.774± 0.017, AUPR = 0.875± 0.019,
F1 = 0.818± 0.018.

Results of classification on both collections suggest that
the combination of the voxel-based morphometry and com-
mon algorithms with default parameters can provide a good
baseline performance. Using 3D masks can improve the
performance as it did in Fibroblast classification. How-
ever, it suggests that having the three-dimensional informa-
tion sometimes can lead to more apparent batch effects and,
thus, require more complex validation schemes.

5. Discussion

A lack of publicly available 3D cell imaging datasets
limits the evaluation of various 3D cell and nuclear mor-
phology analysis solutions. To address this limitation, we
present a new dataset that consists of two collections of 3D
volumetric microscopic images. Each collection includes
images of cells in two phenotypic states and, thus, poses a
binary classification problem that can be used for the assess-
ment of cell nuclear and nucleolar morphometry analysis
methods. We share these data publicly to promote results
reproducibility, facilitate open-scientific development, and
enable collaborative validation. To the best of our knowl-
edge, this 3D imaging dataset is one of the largest publicly
available datasets of its type.

In order to establish baseline evaluation of simple voxel-
based morphometric analysis methods, we provide an ex-
ample of 3D image processing workflow: from segmenta-
tion, to feature extraction, to morphometric analysis. First,

we use both model-based and machine learning segmenta-
tion methods to extract individual nuclear and nucleolar bi-
nary masks in 3D. Then, we extract commonly used 2D and
3D voxel-based measures of binary mask morphology and
combine them into per-nucleus feature vectors. Variability
of extracted measures between classes is demonstrated via
t-SNE projection visualizations. We compare a number of
commonly used machine learning classification algorithms
on both collections of data using voxel-based morphometric
measures. To account for batch effects, while enabling cal-
culations of AUROC and AUPR performance metrics, we
also propose a specific cross-validation scheme (L2OGO).
Our results indicate potential usefulness of 3D cell imaging
data for morphology analysis. However, they also indicate
the possibility of stronger batch effects compared to the 2D
setting.

As a limitation of this work, the microscope settings did
not meet the Nyquist sample rates and may have created
distortions in the digitized images [7]. Bigger variability
of the performance estimates in 3D using the suggested CV
scheme (L2OGO) may be reduced by better class balanc-
ing or loss weighting during the each iteration of the cross-
validation process. Although produced nuclear and nucleo-
lar binary masks are visually inspected, they are produced
by segmentation algorithms rather than hand-labeled by an
expert. Thus, these masks should not be considered as a
ground truth for segmentation. We provide an example of
3D image processing workflow, which, in general, does not
have to always include segmentations step [4]. The size
of the produced 3D morphological dataset should be big
enough to use segmentation-free deep learning-based mor-
phology analysis approaches [5, 15]. Recent examples in
medical image analysis have already demonstrated success-
ful applications of such models in the small data regime
[13, 26]. Finally, we assume each cell in the same image
to be representative of the same phenotypic label that is
provided on the level of the whole image. However, this
assumption does not always hold. One 3D volumetric im-
age can contain cells of multiple phenotypes. This can be
addressed by using methods for weakly-supervised classifi-
cation that are robust to label noise.

Imaging protocols, original and segmented data, and the
source code are made publicly available on the project web-
page: http://www.socr.umich.edu/projects/
3d-cell-morphometry/data.html. Additionally,
extracted morphometric features are made available for in-
teractive exploration and analysis online via our visual ana-
lytics platform SOCRAT [16].

6. Conclusion
3D cell microscopy is a powerful technique that enables

investigation of biological mechanisms related to morpho-
logical changes in cell nucleus through quantitative analysis
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of changes in its size and shape. The ability to analyze these
changes can significantly impact clinical decision-making
and fundamental investigation of cell deformation. To our
knowledge, we provide the biggest publicly available 3D
cell imaging dataset to the date. We describe the data ac-
quisition process and suggest an image processing work-
flow to establish baseline morphological classification per-
formance. This approach allows an informative evaluation
of cell nuclear and nucleolar shapes in the provided imag-
ing data. Public availability of our workflows, source code,
documentation, and all derived data from this study facili-
tates result reproducibility, collaborative method validation,
and broad knowledge dissemination in the bioimage analy-
sis community and beyond.
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