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8

Abstract The mammalian nervous system is constructed of many neuronal cell types, but the9

principles underlying this diversity are poorly understood. To begin to assess brain-wide10

transcriptional diversity, we sequenced the transcriptomes of the largest collection of genetically11

and/or anatomically identified neuronal classes from throughout the central nervous system. Using12

improved expression metrics that distinguish information content from signal-to-noise-ratio, we13

found that homeobox transcription factors contain the highest information about cell types and14

have the lowest noise. Non-transcription factors that contribute the most to neuronal diversity15

tend to be long, due to large introns, and are enriched in genes specifically involved in neuronal16

function. Genome accessibility measurements reveal that long genes have more candidate17

regulatory elements arrayed in more distinct patterns. These candidate regulatory elements18

frequently overlap interspersed repeats and the pattern of repeats is predictive of gene expression.19

Elongation of neuronal genes by insertions of mobile elements and the resulting new regulatory20

sites may be an evolutionary force enhancing nervous system complexity.21

22

Introduction23

The extraordinary diversity of vertebrate neurons has been appreciated since the proposal of the24

neuron doctrine (Cajal, 1888). Typically, this diversity is characterized by neuronal morphology,25

physiology, molecular expression, and circuit connectivity. The exact number of neuronal cell types26

remains unknown, but estimates of 40-60 have been provided for the retina (Macosko et al., 2015;27

Masland, 2004) and for mouse cortex (Tasic et al., 2016; Zeisel et al., 2015). If similar numbers28

are discovered in most brain regions, the number could be in the thousands or more. Although29

neuronal diversity has long been recognized, the question of how this diversity arises is only30

beginning to be addressed (Arendt, 2008; Muotri and Gage, 2006). Describing the cell types of31

the brain and understanding the principles governing their diversity are fundamental goals for32

neuroscience.33

Currently two techniques dominate the efforts to profile the transcriptional diversity of cell34

types in the brain: one is RNA-seq from single neurons, (single-cell RNA-seq; SCRS), (e.g. Shapiro35

et al., 2013) and the other is from genetically or anatomically marked pools of neurons (e.g. Okaty36

et al., 2015; Cembrowski et al., 2016). An obvious advantage of the SCRS approach is that, by37

definition, each measurement comes from only a single cell type. However, SCRS measurements38

can be noisy and, depending on the approach, can have limited depth and sensitivity (Parekh39

et al., 2016; Svensson et al., 2017). So far, the field attempts to generate accurate and precise40

transcriptional profiles of cell types by clustering and then averaging the profiles of single cells.41

But the process of clustering itself can add noise (Ntranos et al., 2016), and the unbiased nature42
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On the Origin of Neuronal Diversity

of the measurement complicates the assessment of reproducibility. Pooling reduces noise, but43

can suffer from unknowingly lumping together more than one cell type. In the end, performing44

both methods will allow for a more confident assessment of the cell types of the brain. While large,45

unbiased single cell efforts have been completed or are underway, similar large scale efforts for46

genetically identified neurons have yet to be reported. We performed RNA-seq on the largest set47

to date of genetically identified and fluorescently labeled pooled neurons from micro-dissected48

brain regions. In total, we profiled 179 neuronal cell types and 15 non-neuronal cell types and49

quantitatively compared our cortical profiles to those obtained in SCRS studies. (A more precise50

description of our use of the term "cell type" is provided in the Methods). The comparison reveals a51

comparable level of homogeneity, but a much lower level of noise in the bulk sorted profiles. We52

have curated these reproducible and precise expression profiles to serve as a look-up table for53

linking single cell and cell type expression profiles to genetic strains in which they can be repeatedly54

accessed.55

Cell types are typically identified by performing differential expression analyses. Standard56

differential expression methods focus on signal variance but are influenced by both information57

content and robustness of differential expression. We introduced two simple metrics to separate58

out these features of the data. Signal contrast (SC) is a signal-to-noise ratio that (unlike ANOVA)59

is not sensitive to differences in information content. Differentiation index (DI) is a measure60

of information content closely related to mutual information. Using these metrics, we identify61

homeobox transcription factors (TF) as the gene family with the lowest noise and highest ability62

to distinguish cell types and use these and other TFs to construct a compact “code” for profiled63

neuronal cell types. We find that the effector genes carrying the most information about cell64

types are synaptic genes like receptors, ion channels and cell adhesion molecules. Interestingly,65

a common feature of these genes is their long genomic length, reflecting the increased number66

and length of their introns. Our ATAC-seq results indicate that long genes contain a larger number67

of candidate regulatory regions which are arrayed in more diverse patterns than found in short68

genes, suggesting the longer length of the genes may permit increased regulatory complexity.69

Moreover, these long genes are elongated during evolution by insertions of mobile elements and a70

large portion of the candidate regulatory regions identified by ATAC-seq overlap with these mobile71

elements. Thus, the increased length of neuronal genes may provide a platform for evolution to72

fine-tune gene expression and thus diversify the cell types of the nervous system.73

Results74

A dataset of cell type-specific neuronal transcriptomes75

To begin exploring the diversity in the nervous system, we collected transcriptomes from 166 types76

of neurons and 15 types of non-neuronal genetically/retrogradely labeled cell populations (Table 1;77

Figure 1 Supplement 1; Supplementary Table 1,2). Data from 9 previously published hippocampal78

cell types (Cembrowski et al., 2016), 2 hypothalamic cell types (Henry et al., 2015), and 2 neocortical79

cell types (Shima et al., 2016), harvested and processed in the same way as other samples, were80

also included in our analyses. Each neuron type collected represents a group of fluorescently81

labeled cells dissociated and sorted from a specific micro-dissected region of the mouse brain or82

other tissue. In most cases, the fluorescent label was genetically expressed in a mouse driver line,83

but retrograde labeling was used in some cases. The pipeline for cell type-specific transcriptome84

collection is depicted in Figure 1A (see Methods for additional details). Mouse lines were first85

characterized by generating a high resolution atlas of reporter expression (Figure 1B), then regions86

containing labeled cells with uniform morphology were chosen for sorting and RNA-seq. This effort87

constitutes the largest and most diverse single collection of genetically identified cell types profiled88

by RNA-seq. The processed data, including anatomical atlases, RNASeq coverage, and TPM are89

available at http://neuroseq.janelia.org (Figure 1C).90

To determine the sensitivity of our transcriptional profiling, we used ERCC spike-ins. Amplified91
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On the Origin of Neuronal Diversity

Figure 1. The NeuroSeq dataset. (A) Schema of pipeline for anatomical and genomic data collection. (B)

Example sections from atlases at low (top), medium (middle) and high (bottom) magnifications. (C)Web tools

available at http://neuroseq.janelia.org
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On the Origin of Neuronal Diversity

RNA libraries had an average sensitivity (50% detection) of 23 copy*kbp of ERCC spike-ins across all92

libraries (Figure 1D). Since manually sorted samples had 132±16 cells (mean± sem, all following93

as well), this indicates our pipeline had the sensitivity to detect a single copy of a transcript per94

cell 80% of the time. In total we sequenced 2.34 trillion bp in 577 libraries. Total reads per library95

was 41±0.5M reads (Figure 1 Supplement 2A top). Using the aligner STAR (Dobin et al., 2012),96

68.9±0.37% of the reads mapped uniquely to the mm10 genome, 2.8±0.06% mapped to multiple97

loci, 5.6±0.14% did not map to mm10, and 22.7±0.36% contained abundant sequences such as98

ribosomal RNA or mitochondrial sequences (Figure 1 Supplement 2A bottom) and 0.06%± 0.004%99

contained short reads (less than 30bp after removing adaptor sequences). Sequenced library data100

were deposited in NCBI GEO (accession number:GSE79238). This high sensitivity allowed for deep101

transcriptional profiling in our diverse set of cell types.102

To assess the extent of contamination in the dataset, we checked expression levels of marker103

genes for several non-neuronal cell types (Figure 1 Supplement 2B). As previously shown (Okaty104

et al., 2011), manual sorting produced, in general, extremely clean data.105

To demonstrate the utility of the dataset, made possible by its broad sampling of cell types, we106

extracted pan-neuronal genes (genes expressed commonly in all neuronal cell types but expressed107

at lower levels or not at all in non-neuronal cell types; Figure 1 Supplement 3). Broad sampling108

is essential to avoid false positives (Zhang et al., 2014b; Mo et al., 2015; Stefanakis et al., 2015).109

Extracted pan-neuronal genes contain well known genes such as Eno2 (Enolase2), which is the110

neuronal form of Enolase required for the Krebs cycle, Slc2a3 (chloride transporter) required for111

inhibitory transmission, and Atp1a3 (ATPase Na+/K+ transporting subunit alpha 3) which belongs to112

the complex responsible for maintaining electrochemical gradients across the membrane, as well113

as genes not previously known to be pan-neuronal, such as 2900011O08Rik (now called Migration114

Inhibitory Protein;Zhang et al. (2014a)). Synaptic genes are often differentially expressed among115

neurons, but some included in this pan-neuronal list such as Syn1, Stx1b, Stxbp1, Sv2a, and Vamp2116

appear to be common components required in all neurons, highlighting essential parts of these117

complexes. Thus, this pan-neuronal gene list reveals components necessary for any neuron. The118

dataset should also be useful for many other applications, especially those requiring comparisons119

across a wide variety of neuronal cell types.120

Comparison to single cell datasets121

Pools of sorted neurons may be heterogeneous if multiple neuronal subtypes are labeled in the122

same brain region of the same strain. SCRS has recently emerged as a viable method for profiling123

cellular diversity that does not suffer from this limitation. However, since profiles of cell types in124

SCRS studies are obtained by clustering individual, often noisy, cellular profiles, inaccuracies can125

arise from misclustering or overclustering. In order to assess the relative cellular homogeneity of126

our sorted samples, we compared the current dataset to the cluster profiles from SCRS studies. We127

focused on neuronal and non-neuronal cell types in the neocortex, profiled in two recent studies128

(Tasic et al., 2016; Zeisel et al., 2015). Assuming each sorted population corresponds to a linear129

combination of one or more SCRS profiles, we assessed homogeneity by linear decomposition using130

non-negative least squares (NNLS). We performed multiple checks on the validity of the procedure131

(see Figure 2 Supplements 1-3 and Methods) and found that it is able to fairly accurately decompose132

mixtures of component expression profiles when those components are well separated.133

For each sorted cell type, the procedure identifies the weights (coefficients) of component134

clusters (cell types) from the SCRS datasets (Figure 2A). As expected, cell types present in the SCRS135

studies, but not profiled in NeuroSeq, (e.g. L4 neurons, VIP interneurons and oligodendrocytes),136

were not matched (purely blue columns in Figure 2A). Other cell types matched perfectly to a137

single SCRS cell type (e.g., microglia, astrocytes, ependyma) or matched to more than one, implying138

heterogeneity in the sorted profiles or poor separation of the SCRS profiles. Profiles with imperfect139

matches usually matched closely related cell types. For example, the NeuroSeq Pvalb interneuron140

group matched one or two of the SCRS Pvalb-positive interneuron clusters, and layer 2/3 (L2/3)141
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Table 1. Summary of Profiled Samples.

region/type transmitter #groups subregions #samples

CNS neurons Olfactory (OLF) glu 10 AOBmi,MOBgl,PIR,AOB,COAp 30

GABA 4 AOBgr,MOBgr,MOBmi 11

Isocortex glu 22 VISp,AI,MOp5,MO,VISp6a,SSp,SSs,ECT,ORBm,RSPv 80

GABA 3 Isocortex,SSp (Sst+, Pvalb+) 7

glu,GABA 1 RSPv 3

Subplate (CTXsp) glu 1 CLA 4

Hippocampus (HPF) glu 24 CA1,CA1sp,CA2,CA3,CA3sp,DG,DG-sg,SUBd-sp,IG 65

GABA 4 CA3,CA,CA1 (Sst+, Pvalb+) 12

Striatum (STR) GABA 12 ACB,OT,CEAm,CEAl,islm,isl,CP 33

Pallidum (PAL) GABA 1 BST 4

Thalamus (TH) glu 11 PVT,CL,AMd,LGd,PCN,AV,VPM,AD 29

Hypothalamus (HY) glu 11 LHA,MM,PVHd,SO,DMHp,PVH,PVHp 36

GABA 4 ARH,MPN,SCH 15

glu,GABA 2 SFO 3

Midbrain (MB) DA 2 SNc,VTA 5

glu 2 SCm,IC 6

5HT 2 DR 10

GABA 1 PAG 4

glu,DA 1 VTA 3

Pons (P) glu 7 PBl,PG 22

NE 1 LC 2

5HT 2 CSm 7

Medulla (MY) GABA 7 AP,NTS,MV,NTSge,DCO 18

glu 6 NTSm,IO,ECU,LRNm 20

ACh 2 DMX,VII 6

5HT 1 RPA 3

GABA,5HT 1 RPA 4

glu,GABA 1 PRP 3

Cerebellum (CB) GABA 10 CUL4, 5mo,CUL4, 5pu,CUL4, 5gr,PYRpu 25

glu 4 CUL4, 5gr,NODgr 10

Retina glu 5 ganglion cells (MTN,LGN,SC projecting) 14

Spinal Cord glu 1 Lumbar (L1-L5) dorsal part 3

GABA 4 Lumbar (L1-L5) dorsal part, central part 12

PNS Jugular glu 2 (TrpV1+) 7

Dorsal root ganglion (DRG) glu 2 (TrpV1+, Pvalb+) 5

Olfactory sensory neurons (OE) glu 4 MOE,VNO 9

non-neuron Microglia 2 MOp5(Isocortex),UVU(CB) (Cx3cr1+) 6

Astrocytes 1 Isocortex (GFAP+) 4

Ependyma 1 Choroid Plexus 2

Ependyma 2 Lateral ventricle (Rarres2+) 6

Epithelial 1 Blood vessel (Isocortex) (Apod+,Bgn+) 3

Epithelial 1 olfactory epithelium 2

Progenitor 1 DG (POMC+) 3

Pituitary 1 (POMC+) 3

non brain Pancreas 2 Acinar cell, beta cell 7

Myofiber 2 Extensor digitorum longus muscle 7

Brown adipose cell 1 Brown adipose cell from neck. 4

total 194 577
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pyramidal neurons matched SCRS L2/3 clusters, or an adjacent cluster in L4 (Tasic: L4 Arf5). The142

spread of coefficients repeatedly involved the same few SCRS cell clusters (e.g. columns L5b Tph2143

and L5b Cdh13 in Tasic; and S1PyrL5, S1PyrL6 in Zeisel), which could occur if these clusters are144

not well separated, which we confirmed by a cross-validation procedure (Figure 2 Supplement 3).145

We measured the "purity" of the decomposition as the fractional match to the highest coefficient.146

The purity scores for the decomposition of NeuroSeq cell types by the two SCRS datasets were147

higher than those obtained for SCRS cell clusters decomposed by the other SCRS data set (Figure148

2B,C). This implies that although sorted sample heterogeneity may exist in some of our sorted149

samples, it is comparable (or smaller) than the inaccuracies introduced by clustering single cell150

profiles. We also compared the separability of cell types assayed in the sorted and SCRS datasets151

(Figure 2 Supplement 4) by calculating the gene expression distances between each cell type within152

each dataset. NeuroSeq profiles were far more separable than clusters in either SCRS dataset,153

likely because of the noise reduction achieved by averaging across cells and because of the larger154

numbers of cells and reads comprising each profile. Hence sorted and single cell techniques have155

complimentary strengths and cross referencing both data modalities may provide the most accurate156

assessment of cell type specific expression.157

Improved metrics to quantify differential expression158

Analysis of expression differences between individual groups is the basis of most profiling efforts.159

Variance-based metrics, such as Analysis of Variance (ANOVA) F-Value or coefficient of variation (CV)160

are commonly used for this purpose. These metrics are jointly affected by the information content161

of the differential expression (pattern) and the robustness of the differences (effect size) and so162

cannot readily separate these two parameters. As a complement to traditional metrics and to begin163

mining our extensive and complex dataset for novel insights, we developed two easily calculated164

metrics that better separate the information content and the robustness of expression differences.165

First, in order to extract the transcriptional signals related to cell type identity, we quantified166

each gene’s ability to differentiate each pair of profiled cell types. Based on expression levels and167

variability (Figure 3A; Methods) we compiled a Differentiation Matrix (DM) with elements equal to168

one or zero depending on whether or not the gene is differentially expressed between each pair of169

profiles (see Methods). The Differentiation Index (DI) is simply the fraction of pairs distinguished,170

excluding self-comparisons; and ranges from 0 to 1. The maximum observed value of 0.65 indicates171

that the gene distinguishes 65% of the pairs, while a value of 0 indicates that the gene distinguishes172

none (i.e., expressed at similar levels in all cell types).173

The ability to detect transcriptional differences between cell types depends on both magnitude174

of difference and associated noise. To quantify this in our second metric, we defined the Signal175

Contrast (SC), which closely reflects Signal-to-Noise-Ratio (SNR). Since the signals we are interested176

in are the gene expression differences distinguishing cell types, we used a noise estimate derived177

from all undistinguished pairs from the same gene. SC, which indicates how robustly pairs are178

distinguished, is the ratio of the average effect size for distinguished and undistinguished pairs.179

High SC genes robustly distinguish cell populations and are therefore suitable as "marker genes".180

Our metrics outperform existing metrics such as ANOVA, CV, and Fano factor in distinguishing181

the information content and robustness of differential expression. To illustrate the properties182

of DI and SC relative to existing metrics, we calculated these metrics against various simulated183

expression patterns with added noise (Figure 3 Supplement 1A). The results (Figure 3 Supplement184

1A, lower part) demonstrate that DI (blue) is highly correlated with mutual information (MI; green),185

yet much easier to calculate. This makes intuitive sense, since the division of cell types into those186

that can and cannot be distinguished (DM; Figure 3A) corresponds to a unit of information about187

cell types provided by a gene expression pattern (for more details of the relationship between DI188

and MI, see Figure 3 Supplement 1C and 2). The simulations also show that DI is fairly independent189

from SNR. For example, both high and low SNR binary patterns yield similar DIs. In contrast, SC190

(orange) is independent from MI, but is highly correlated to SNR. Thus, DI provides an estimate of191
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Figure 2. Decomposition by NNLS. (A) NNLS coefficients of NeuroSeq cell types by two SCRS datasets. (B)

(Left) Tasic et al. clusters decomposed by Zeisel et al. clusters. (Right) Zeisel et al. clusters decomposed by Tasic

et al. clusters. There are few perfect matches. (C)Mean purity scores for NeuroSeq and SCRS datasets. The

purity score for a sample is defined as the ratio of the highest coefficient to the sum of all coefficients.

(**:p<0.01, t-test.)

7 of 28

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 24, 2017. ; https://doi.org/10.1101/208355doi: bioRxiv preprint 

https://doi.org/10.1101/208355
http://creativecommons.org/licenses/by-nc-nd/4.0/


On the Origin of Neuronal Diversity

the information content of expression patterns across cell types, whereas SC provides an estimate192

of SNR.193

Unlike DI and SC, traditional variance-based methods like ANOVA F-values and CV are either194

affected by both MI and SNR (ANOVA) or by neither (CV). These differences between metrics195

are summarized in Figure 3 Supplement 1B. The fact that ANOVA does not distinguish between196

information content and SNR is also apparent in the data. As shown in Figure 3B, high-ANOVA197

genes include both high DI and high SC genes. Therefore, SC and DI are useful because they provide198

independent measures of the robustness and magnitude of differential expression between cell199

types.200

Genes with the highest information regarding cell types201

To determine the types of genes most differentially expressed (highest DI) and most robustly202

different (highest SC) between cell types, we used the PANTHER (Thomas, 2003) gene families203

(Figure 3D). As expected, high DI genes are enriched for neuronal effector genes including receptors,204

ion channels and cell adhesion molecules (Figure 3D top). The least noisy expression differences205

(highest SC) were those of homeobox transcription factors (TFs) and the more inclusive categories206

(TFs, DNA binding proteins) that encompass them (Figure 3D bottom). Hence DI and SC respectively207

emphasize the information content of genes mediating the distinctive neuronal phenotypes that208

distinguish cell types, and the robust, low-noise expression of genes involved in shaping these cell209

types unique transcriptional programs.210

Genes may also contribute to cell type differences through differential splicing. We analyzed211

splicing events by computing the relative likelihood (branch probabilities) of each donor site in a212

transcript being spliced to multiple acceptor sites, and of each acceptor site being spliced to multiple213

donors (Figure 3C). Interestingly, when these branch probabilities are computed separately for each214

cell type, they are highly bimodal, reflecting virtually all-or-none splicing at each alternatively spliced215

site. This pattern has previously been observed for individual cells in some systems (Shalek et al.,216

2013). The present observations suggest that these splicing decisions are made at the level of cell217

types, rather than independently for individual cells of the same type. We applied a variant of the218

DM/DI method to alternative splicing (Figure 3C,E,F; for details see Methods) and found that voltage-219

gated calcium and sodium channels are highly alternatively spliced, consistent with previously220

known results (e.g. Lipscombe et al., 2013). We also found that G-protein modulators, especially221

guanyl-nucleotide exchange factors (GEFs), are highly alternatively spliced. Hence, differential222

splicing of multi-exon genes also contributes to transcriptome diversity across neuronal cell types.223

SC, like SNR, is a ratio between signal and noise, and so can reflect high expression levels in ON224

cell types (high signal), low expression levels in OFF cell types (low noise), or both. Homeobox genes225

are not among the most abundantly expressed genes. Their average expression levels (∼30 FPKM)226

are significantly lower than, for example, those of neuropeptides (∼90 FPKM). This suggests that227

the high SC of homeobox TFs depend more on low noise than on their high signal. In fact, most228

homeobox TFs have uniformly low expression in OFF cell types (e.g. Figure 4A). We quantified this229

"OFF noise" for all genes and found that homeobox genes are enriched among genes that have230

both low OFF noise and at least moderate ON expression levels (red dashed region in Figure 4B).231

Since tight control of expression may reflect closed chromatin, we measured chromatin acces-232

sibility using ATAC-seq (Buenrostro et al., 2013) on 7 different neuronal cell types (see Methods).233

As expected, compared to high-noise genes (Figure 4C bottom), genes with low OFF noise were234

more likely to have fewer, smaller peaks within their transcription start site (TSS) and gene body235

(Figure 4C top, Figure 4D), consistent with the idea that their expression is controlled at the level of236

chromatin accessibility.237

Functionally, the tight control of homeobox TF expression levels may reflect their known im-238

portance as determinants of cell identity, and the fact that establishing and maintaining robust239

differences between cell types may require tight ON/OFF regulation rather than graded regulation.240

If they are, in fact, important "drivers" of cell type-specific differences, their expression pattern241
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Figure 3. Gene expression metrics related to information content and robustness (A) Expression

differences between cell types are compiled into a signal ratio matrix (SR) and binarized into a differentiation

matrix (DM) reflecting whether each pair of cell types is distinguished (1) or not (0). The Differentiation Index (DI)

is the fraction of nonzero values. The Signal Contrast (SC) is the average expression difference between

distinguished pairs divided by the average expression difference between undistinguished pairs. (B) Highly

significant ANOVA genes (warm colored dots) include a mixture of genes with high SC and low DI and genes with

low SC and high DI. (C) Definition of generalized PSI (percent spliced in). For a splice donor, a generalized form

of PSI (donor branch probability) can be defined as the joint distribution of transition probabilities from the

donor to each acceptor. Acceptor branch probability can be defined conversely. (D) PANTHER (Thomas, 2003)
gene families enriched in the top 1000 DI and the top 1000 SC genes. Red lines indicate the p = 10−5 threshold
used to judge significance. (E) Histogram of all donor branch probabilities from alternatively spliced sites. The

distribution is highly bimodal, indicating that alternative splicing is "all or none" for each site in each cell type

(though often varying between cell types). (F) PANTHER gene families enriched in the top 500 DN genes. The

number of cell types distinguished by a gene’s splice variants (sDN; see Methods for calculation) rather than the

ratio (DI) is used since the denominator of DI (total number of cell types potentially distinguished) varies for

each gene. This is because genes not expressed in a cell type can contribute to distinctions based on expression,

but not to those based on splicing. Red lines indicate the p = 10−3 threshold used to judge significance.
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should be highly informative about cell types. However, the homeobox family was not identified242

on the basis of a particularly high DI (Figure 3C and Figure 4 Supplement 1B; mean DI=0.21; rank243

16th) compared to, for example, cyclic nucleotide-gated ion channels (mean 0.31, highest) or GABA244

receptors (0.29, 2nd). We infer that this is due to the fact that graded expression differences also245

contribute to DI. Since binary ON/OFF expression patterns may be more critical for cell type specifi-246

cation than graded expression patterns, we calculated a binary version of DI (bDI; see Methods).247

With this metric, the homeobox TF family is the most enriched PANTHER family among the top 1000248

bDI genes (Figure 4 Supplement 1A) and had the 2nd highest average bDI (0.07) among PANTHER249

families after neuropeptides (0.08) (Figure 4 Supplement 1B). Among TF subfamilies, the LIM domain250

subfamily of homeobox genes had the highest mean bDI (Figure 4 Supplement 1C), consistent with251

its known role in specifying spinal cord and brainstem cell types (Tsuchida et al., 1994; Philippidou252

and Dasen, 2013).253

The ability of gene families to provide information about cell types is determined by both how254

informative individual family members are, and the relationships between them. If the information255

across family members is independent, the overall information is increased relative to the case in256

which multiple members contain redundant information (Figure 4 Supplement 1D). This aspect of257

"family-wise" information is not captured by "gene-wise" metrics like mean bDI, or by enrichment258

analysis (Figure 3C, Figure 4 Supplement 1A-C). One way of capturing the additive, non-redundant259

information within a gene family is to measure its ability to separate cell types using a distance260

metric. This analysis (Figure 4E) reveals that homeobox TFs yield the largest distances between261

cell types. Thus, homeobox TFs provide the best separation of profiled cell types both individually262

(Figure 4 supplement 1A,B) and as a family (Figure 4E). It has long been known that a subset263

of homeobox TFs, the HOX genes, play an evolutionarily conserved role in specifying cell types264

in invertebrates (Kratsios et al., 2017; Zheng et al., 2015) and in the vertebrate spinal cord and265

brainstem (Dasen and Jessell, 2009; Philippidou and Dasen, 2013). Our current analyses suggest266

that the larger family of homeobox TFs play a broader role in transcriptional diversity of cell types267

across the mammalian nervous system.268

In summary, by defining novel metrics DI and SC, we identify homeobox TFs as the most robustly269

distinguishing family of genes as well as synaptic and signaling genes as the most differentially270

expressed genes. These two categories of genes drive neuronal diversity by orchestrating cell type-271

specific patterns of transcription and by endowing neuronal cell types with specialized signaling272

and connectivity phenotypes.273

A compact TF code for neuronal identity274

In addition to identifying the most informative transcription factors across the entire set of cell275

types studied, we also identify the most informative TFs for individual cell types. To accomplish this,276

we extracted the most compact set of “ON” or “OFF” TFs needed to specify each cell type generating277

a hierarchy of TFs constituting a decision tree that efficiently classifies cell types (Gabitto et al.,278

2016). At each level of the tree, TFs were chosen to optimally bisect (by their expression level) the279

set of cell types into two groups that differed maximally from each other in terms of their overall280

expression profile (assessed within the full transcriptome). To generate a classifier operating at281

each level of anatomical organization, we favored TFs whose bisected groups are consistent with282

anatomical divisions (see Methods for details).283

The selected TFs included many genes previously implicated as key transcriptional regulators284

(KTRs) in the development or maintenance of the distinguished cell types. For example, Foxg1, which285

split forebrain from other cell types, is known to be critically required for normal development286

of the telencephalon (Xuan et al., 1995; Danesin and Houart, 2012) and is known to function cell287

autonomously within the olfactory placode for the production of olfactory sensory neurons, as well288

as for all other cells in the olfactory lineage (Duggan et al., 2008). Similarly, at the next levels, Tbr1289

(Bedogni et al., 2010), Satb2 Leone et al. (2014), Egr3 (Chandra et al., 2015), Isl1 (Lu et al., 2013) and290

Emx2 (Zhang et al., 2016), are known as KTRs involved in the development and/or maintenance of291
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Figure 4. Mechanisms contributing to high information content and low noise of Homeobox TFs. (A)

Example expression patterns of a LIM class homeobox TF (Lhx1) and a calcium binding protein (Calb2) with
similar overall expression levels. Cell type legend is given in Figure 1 Supplement 1. (B) (upper) OFF state noise

(defined as std. dev. of samples with FPKM<1) plotted against maximum expression. (lower) PANTHER families
enriched in the region indicated by red dashed lines in the upper panel. (C) Average (replicate N=2) ATAC-seq

profiles for the genes shown in A. Some peaks are truncated. Expression levels are plotted at right (grey bars).

(D) Length-normalized ATAC profile for genes with high (> 0.3, blue dashed box in B, n=853) and low (< 0.2, red
dashed box in B, n=1643) off state expression noise. (E)Mean separability of cell types for PANTHER families.

Separability is a measure of gene expression distance (defined as the average of 1- Pearson’s corr. coef.)

calculated across a set of genes. Since dispersion of separability decreases with family size, results are

compared to separability calculated from randomly sampled groups of genes (green solid lines: mean and std.

dev.; green dashed lines: 99% confidence interval). Z-scores: homeobox TF: 17.4, GPCR: 16.1, receptor: 13.1 and

signaling molecule: 11.2.
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the relevant cell types, providing significant validation of this method.292

The TF code identified for each cell type is not unique. First, there are additional TFs that are293

consistent with the tree (see Supplementary Table 3). Second, past the first level (Foxg1), TFs may be294

expressed outside of the cell types shown and so could contribute to encoding other expression295

differences. More generally, the details of the tree may depend on the precise procedure used296

to extract it. We explored variant procedures that better preserved the known anatomical and297

developmental relationships between cell types (Figure 5 Supplement 1) as well as procedures that298

made no assumptions about these relationship whatsoever (Figure 5 Supplement 2). Interestingly,299

in each case, the majority of the same genes were identified, suggesting they encode cell type300

information that is robust to the precise methods used to extract them.301

Although the decision tree classifier identifies many known KTRs, it also suggests hypotheses302

about less studied genes. For example, Tox2 has received little prior study in the CNS, although it303

has recently been identified and replicated as a locus of heritability for Major Depressive Disorder304

(Zeng et al., 2016). Based on its position in the tree, we hypothesize that Tox2 is a KTR of midbrain,305

hypothalamic and hindbrain cell types, including dopaminergic and serotonergic cell types in these306

regions, although its expression in other cell types may also contribute. Hence the tree of identified307

TFs is a robust and rich source of novel hypotheses about transcriptional regulation in genetically308

identified cell types. Known and hypothesized KTRs identified by the decision tree classifier are309

tabulated in Supplementary Table 3.310

Long genes contribute disproportionately to neuronal diversity311

We found that neuronal effector genes such as ion channels, receptors and cell adhesion molecules312

have the greatest ability to distinguish cell types (highest DI; Figure 3C). Previously, these categories313

of genes have been found to be selectively enriched in neurons and to share the physical character-314

istic of being long (Sugino et al., 2014; Gabel et al., 2015; Zylka et al., 2015). Consistent with this,315

DI is strongly biased toward long gene length (Figure 6A). Interestingly, the expression of long genes316

is not uniform across brain regions, but is highest in the evolutionary newer forebrain and is lower317

in the older brainstem and hypothalamus (Figure 6B). Non-neuronal cell types expressed only 1/2318

to 1/5 as many long genes as neuronal cell types (blue bars in Figure 6B). This was true even for319

non-dividing cell types like myocytes and largely non-dividing tissues like the heart (separate data320

not shown). Hence long genes, which are preferentially expressed in neurons, also contribute most321

to the differential expression between neuronal cell types.322

REST is an important zinc-finger transcription factor restricting expression of neuronal genes323

in non-neurons (Chong et al., 1995; Schoenherr and Anderson, 1995). We wondered if REST prefer-324

entially targets long genes. To assess the magnitude of this effect and its influence on the length325

distribution of neuronal genes (Figure 6 Supplement 1A), we plotted the length-dependence of326

genes containing RE1/NRSE elements (Figure 6 Supplement 1B) and observed that they are indeed327

biased toward long genes. When these REST targets are removed from neuronally expressed328

genes, the length distribution of expressed genes looks similar to that of non-neurons (Figure 6329

Supplement 1C). However, consistent with the fact that only 8.6% of neuronally expressed genes330

are REST targets (contain an NRSE), the removal of these genes has only a modest effect on the331

length distribution of DI (Figure 6 Supplement 1D). Therefore, although REST targets are long, many332

other long genes also contribute to neuronal diversity.333

Long genes differ from more compact genes primarily in the number and length of their introns,334

which, for the longest genes, comprise all but a few percent of their length (Figure 6 Supplement 1E).335

Introns often contain cis regulatory elements that regulate transcription, splicing and other aspects336

of gene expression. Could these longer introns increase the regulatory capacity of long genes? In337

order to determine whether or not the introns of long genes have enhanced regulatory capacity,338

we identified candidate regulatory elements as sites of enhanced genome accessibility using our339

ATAC-seq data. As expected, long genes had more candidate regulatory elements (ATAC peaks;340

Figure 6 supplement 1F) and these peaks were present in a greater number of distinct patterns per341
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Figure 5. A compact TF code. A decision tree classifier constructed from the most informative TFs for profiled

cell types. Cell types are bisected at each node by TF expression level, (color scale). Each cell type can be

specified by the "ON" (warm colors) or "OFF" (cool colors) expression of 4 to 11 TFs as indicated. For example,

Purkinje cells (yellow-light blue group near the right bottom corner, consisting of CUL4,5gr-Cdhr1,

CUL4,5pu-Pcp2, etc.) have a code which can be read from left to right within the red dotted lines, consisting of:

Foxg1(OFF)-Tox2(OFF)-Emx2(OFF)-Hoxb6(OFF)-Mkx(OFF)-Ebf2(ON)-Rreb1(ON). Blue dashed lines mark positions

of ON/Off transitions for each TF.
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gene across cell types (Figure 6C,D). Consistent with the hypothesized role in differential expression,342

the number of unique patterns correlated well with the degree of differential expression across cell343

types (Figure 6E). Hence long genes have enhanced regulatory capacity that correlates with their344

enhanced contribution to neuronal diversity.345

To compare candidate regulatory elements in long genes between neurons and non-neurons,346

we used publicly available DNase-seq data from the ENCODE project (Dunham et al., 2012). We347

found a significantly higher number of open chromatin sites in brain compared to non-brain tissue.348

This bias was particularly pronounced in forebrain, and was stronger in human than in mouse349

tissue (Figure 6 supplement 1G-J). Together these data support the hypothesis that neuronal genes350

may have increased in length over evolutionary time in part to support more complex and nuanced351

regulatory regimes.352

To assess the relative contribution of long (≥100kbp) and short (<100kbp) genes, we first353

calculated averages of "gene-wise" metrics (Figure 6F). Signal contrast is comparable between these354

two groups of genes, but, for all other metrics (DI, bDI, sDN; for sDN see Figure 3 D,E and Methods),355

averages for long genes are about twice that of short genes. Enhanced alternative splicing of356

long genes (high sDN) is readily understandable from the increased number of alternative splice357

sites in long genes (Figure 6 Supplement 1K). To assess the "group-wise" contribution (akin to358

the "family-wise" analysis of Figures 3C,F and 4E), we first observed that both groups are fairly359

decorrelated between member genes (Figure 6 Supplement 1L). Despite similar decorrelation, the360

distances between cell types based on long gene expression are larger than those obtained from361

expression of short genes (Figure 6G). Thus, long genes, as a group, contribute more than short362

genes to neuronal diversity.363

TE insertions elongate genes and carry regulatory information364

The above results indicate that gene length is an important contributor to gene expression diversity365

across cell types. Gene lengths differ widely across species (Figure 7A and Figure 7 Supplement1A),366

suggesting genes are elongated during evolution. In fact, evolutionary older genes are longer367

(Figure 7 Supplement 1B; Grishkevich and Yanai (2014)). To better understand mechanisms of368

gene elongation over mammalian evolution, we examined segments inserted into the human and369

mouse genomes by comparing them to closely related species (Figure 7B). Plotted in Figure 7B370

(left) is a histogram of the lengths of the segments inserted into human (see alsoMikkelsen et al.371

(2005). Two clear peaks are recognizable, corresponding to Alu and L1 repeats. Moreover, around372

92% of the base pairs of the inserted segments overlap with known repeats (Figure 7B inset; Bao373

et al. (2015)). Similar results are observed in the mouse genome (Figure 7B right; see also Pozzoli374

et al. (2007)). These comparisons indicate that genes are elongated by transposable element (TE)375

insertions.376

Since long genes have a greater number of candidate regulatory elements, as indicated by more377

ATAC-peaks, we asked whether these can originate from mobile elements. As shown in Figure 7C,378

56% of the ATAC peaks overlap known repeats and this number increases to 75% when only newly379

inserted segments are considered, indicating that TEs may carry regulatory functions. To explore380

the possibility that TE/repeats contribute to global regulation of neuronal gene expression, we fit381

gene expression levels with counts of individual repeats within and surrounding each gene (Figure382

7D). The R2 values for each cell type calculated using test genes (20%) not used for fitting (Figure383

7E, blue) are much larger than expected by chance (Figure 7E, green/red/orange). If counts and384

genes are shuffled (green) cross validated R2 values drop below 0. However, if the length of the385

gene is retained in the shuffling control (orange, red) the R2 values drop to about 1/3 of those in the386

original fitting. This reflects the fact that gene length is highly correlated with expression (Figure 7387

Suplement 1C; c=0.418: mean Pearson’s r between log gene length and expression rank) and some388

repeats, such as SINEs, are highly correlated with both gene length (c=0.841) and expression (Figure389

7 Supplement 1C; mean c=0.454). We also varied the size and position of the regions used to count390

repeats and found that predictions about expression (R2) were best when including the gene body391
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Figure 6. Long genes have a greater capacity for differential expression. (A) Black dots: DI of each gene is

plotted against sorted gene length. Red dots: binned average of DIs (1000 genes per bin, sorted by length). (B)

Fraction of the longest 500 genes expressed within each brain region profiled for neuronal (red bars) and

non-neuronal cell types (blue bars). (C) ATAC-seq peaks for Gabra5 showing different patterns of peaks for each
of 7 cell types. Scale (top right) in reads per million. Expression levels for each cell type are shown at right (gray

bars). (D) Black dots: number of distinct peak patterns observed across 7 ATAC-seq profiled cell types plotted

against the gene length for each gene; 7 corresponds to a distinct pattern for each profiled cell type. Red dots:

binned averages of black dots as in panel A. Background histograms show numbers of genes in each length bin.

(E) Violin plot showing the relationship between DI and the number of different patterns of ATAC-seq peaks.

Corr.coef. (0.31) is greater than that between DI and gene length (0.19; panel A). (F) Average metrics for long

(≥100kbp) and short (<100kbp) neuronal genes (reproducibly expressed in neuronal cell types). (G) Separability
of cell types calculated as in Figure 4E, but using long neuronal genes and short neuronal genes rather than

functionally defined gene families. Z-score is 33.2 for long and 22.1 for short neuronal genes. Both are highly

different from randomly sampled genes (green solid lines mean and Std. dev.; dashed lines = 99% confidence

interval), but long genes provide greater separation.
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and the adjacent 10 ∼ 50kbp. (Figure7 Supplement 1D,E).392

In summary, genes are elongated by insertions of TEs which overlap candidate regulatory393

elements, and are predictive of relative gene expression levels, suggesting they may increase the394

capacity of long genes to be differentially expressed.395

Discussion396

A Resource of Neuronal Cell type specific Transcriptomes397

The dataset presented here is the largest collection of cell type-specific neuronal transcriptomes398

obtained by RNA-seq (Table 1) and so offers the broadest view to date of the transcriptional basis399

of neuronal diversity. Prior RNA-seq data from sorted cells have been focused primarily on what400

distinguishes neurons as a class from other brain cell types (Zhang et al., 2014b), or have focused401

on a limited number of brain regions, such as the somatosensory cortex, hippocampus (Zeisel et al.,402

2015; Cembrowski et al., 2016; Tasic et al., 2016) and retina (Macosko et al., 2015). Our strategy of403

profiling labeled populations of ∼ 100 cells is intermediate between single cell profiling, which can be404

limited by the noisiness of single cell assays (Marinov et al., 2013) and tissue profiling, which cannot405

resolve the heterogeneity of component cell types (Nelson et al., 2006). This approach enabled406

us to obtain highly sensitive and reproducible transcriptomes from genetically accessible target407

populations. The wide range of cell types in the dataset is suitable for addressing general questions408

regarding neuronal identity and diversity, but at the same time, the fact that each transcriptome409

corresponds to a genetically (or retrogradely) labeled population, allows investigation of the same410

population of the cells across time and labs in order to address more specific questions about those411

cell types412

We developed a quantitative approach for comparing cell type profiles across multiple studies413

using NNLS decomposition. The results reveal multiple cases in which pooled cell profiles mapped414

to more than one SCRS profile. It is likely that at least some of these cases represent biologically415

distinct cell types that share a genetic marker (like subtypes of Pvalb interneurons). However, in416

most of these cases, the SCRS clusters were barely separable, and the two SCRS studies available417

for comparison did not agree. Given the complimentary advantages of improved reproducibility,418

separability and deeper depth of sequencing afforded by the pooling approach, and of reduced419

heterogeneity afforded by the SCRS approach, it is likely that further integration of these approaches420

with other modalities, such as FISH (Moffitt et al., 2016) will be needed to accurately catalog the full421

census of brain cell types.422

A transcriptional code for neuronal diversity423

We developed novel, easily calculated metrics that capture essential features of the robustness424

and information content of transcriptome diversity. These measures are not cleanly captured by425

traditional variance-based metrics like ANOVA and CV (Figure 3 Supplement 1). We found that426

the homeobox family of TFs exhibited the most robust (high SC) expression differences across427

cell types (Figure 3D bottom). These ON/OFF differences were characterized by extremely low428

expression in the OFF state (Figure 4A-D). Mechanistically, the low expression was associated429

with reduced genome accessibility measured by ATAC-seq (Figure 4C,D), presumably reflecting430

epigenetic regulation, known to occur for example at the clustered Hox genes via Polycomb group431

(PcG) proteins (Montavon and Soshnikova, 2014). Although this regulation has been studied most432

extensively at Hox genes, genome-wide ChIP studies reveal that PcG proteins are bound to over433

100 homeobox TFs in ES cells (Boyer et al., 2006). Our results indicate that strong cell type-434

specific repression persists in the adult brain. Presumably this represents the continued functional435

importance of preventing even partial activation of inappropriate programs of neuronal identity.436

As a group, homeobox TFs distinguished 98% of neuronal cell types profiled. Historically,437

homebox TFs are well known to combinatorically regulate neuronal identity in Drosophila and C.438

elegans (Kratsios et al., 2017) and the vertebrate brainstem and spinal cord (Dasen and Jessell,439
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Figure 7. Genes are elongated by TE insertions and TEs contain information for gene expression (A)

Distribution of gene length for various well annotated species. Red lines indicate means and whiskers indicate

inter-quartile range. Blue bars are all protein coding genes and yellow bars are the subset of genes with

homologs in all species. (human: Homo sapiens; chimp: Pan troglodytes; monkey: Macaca mulatta, mouse: Mus
musculus; dog: Canis lupus familiaris; chicken: Gallus gallus; frog: Xenopus tropicalis; zebrafish: Danio rerio; fly:
Drosophila melanogaster; worm: Caenorhabditis elegans) (B) Histograms of lengths of segments inserted into the
human genome compared to chimp (left) and mouse genome compared to rat (right). Peak near 300bp (more

visible in human) corresponds to Alu, and near 6000bp corresponds to LINE. Pie charts (insets) indicate fraction

of inserted bp overlapping transposable elements (TE) and other types of repeats. Gorilla and Guinea pig are

used as surrogates of common ancestors of human and chimp, and mouse and rat, respectively (see Methods).

(C) Percentage of ATAC peaks overlapping major categories of repeat elements. Left side: all ATAC peaks, right

side: ATAC peaks overlapping recently inserted segments calculated in (B). (D) Schema describing repeat score

and regression model. Repeat scores (upper panel) are calculated separately for each type of repeat element

and for each gene as the count of that element in the specified interval determined by the gene. Regressions

(lower panel) are calculated separately for each cell type by fitting coefficients (b) to ranked expression levels (Y)

using intercept(a) and repeat score (X). (E) Fits to 80% of the genes are cross validated using the remaining 20%.

Histograms show cross validated R2 for each cell type (blue), and for controls shuffling the relationship between

repeat scores and genes(score matrix; green) or changing the repeat score by randomly changing the location

of repeats (red) or by calculating the repeat score over a randomly selected genomic interval of the same length

as the gene (orange). The latter two shuffling methods retain some predictive value compared to shuffling the

repeat score matrix (green) since they maintain the correlation between gene length and expression (See Figure

7 Supplement 1C). (F) A model of how neuronal genes become elongated over evolutionary time scales.
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On the Origin of Neuronal Diversity

2009; Philippidou and Dasen, 2013). The continued expression of homeobox TFs throughout the440

adult mammalian nervous system suggests that they likely also contribute to the maintenance of441

neuronal identity.442

In order to reveal the relationship between specific cell types and TFs, we constructed a TF443

decision tree for classifying profiled cell types. As expected from their high information content,444

homeobox TFs figured prominently in this list (49/127). Many of the identified factors are known445

to be key transcriptional regulators of the cell types in which they continue to be expressed446

(Supplemental Table 3). In most cases it is not known whether or not these roles occur only in447

development, or are also important for the maintenance of neuronal identity. Lists of expressed448

TFs and the genetically accessible cell types in which they are expressed provide a ready source of449

testable hypotheses about how cell type specific transcriptional identity is maintained in the adult450

nervous system.451

Long genes shape neuronal diversity452

Our study suggests that long genes contribute disproportionately to neuronal diversity (Figure453

6A,F,G). Increases in the number of alternative start and splice sites present in longer genes454

increase neuronal diversity (Figure 6F), but in addition, we hypothesize that longer genes have455

a larger number of regulatory elements that alter expression and enhance differential usage of456

these alternative sites. Long genes likely elongate during evolution, via insertions of TEs in their457

introns (Figure 7A,B; Sela et al., 2007; Grishkevich and Yanai, 2014). Long neuronal genes, such458

as ion channels and cell adhesion molecules, may be expressed primarily late in development459

(Okaty et al., 2009). Developmentally later and more spatially and cell-type restricted expression460

of neuronal genes may make mammalian genomes more tolerant to mutations caused by the461

insertion of TEs in these genes. Conversely, genes such as Hox genes, which are critical for early462

development, and are often expressed in progenitors giving rise to many cell types, are remarkably463

TE impoverished (Chinwalla et al., 2002; Simons, 2005). TE insertions occurring randomly are464

expected to happen more frequently in long genes (Figure 7F, Figure 7 Supplement 1F,G), thereby465

accelerating their elongation over time.466

Here we provide evidence supporting the hypothesis that evolution of the vertebrate nervous467

systemmay have taken advantage of TE insertions and subsequent exaptations to diversify neuronal468

cell types, increasing the complexity of brain circuits. Long genes are enriched in the signaling469

molecules, receptors and ion channels responsible for input/output transformations in neurons, and470

the cell adhesion molecules that specify neuronal connectivity. Thus, changes in their expression471

could lead to changes in circuit level function. Specifically, elongation of long genes through TE472

insertions, occurring in the early embryo or in germ cells, likely creates a reservoir of genetic473

elements providing fodder for regulatory innovation. Subsequent exaptation of a fraction of474

these elements may have enhanced cell type-, and hence, behavioral- diversity, in turn, increasing475

the ability of populations to adapt to their environment (Figure 7F). This evolutionary advantage476

of lengthening neuronal genes may help to explain the paradox of why long genes should be477

abundantly expressed in CNS neurons despite the fact that these genes are sites of genome478

instability associated with genetic lesions leading to autism and other developmental disorders479

(Wei et al., 2016). This hypothesis also shifts focus away from short, developmental time scales480

considered in other hypotheses linking TE insertion to neuronal function (Muotri et al., 2005;481

Richardson et al., 2014; Perrat et al., 2013). Instead of DNA rearrangements in neuronal progenitors482

producing neuronal diversity, we consider the time scales of evolution and thus also shift focus to483

the germ line, where natural selection has its influence.484

In summary, the elongation of neuronal effector genes may have endowed them with increased485

capacity for differential expression, permitting enhanced neuronal diversity. This diversity can also486

be characterized in terms of expression patterns of homeobox and other TFs. The maintenance487

of diverse neuronal identities must require interactions between expressed TFs and accessible488

cis regulatory elements within target effector genes. Identifying these interactions will require489
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manipulating them within genetically identified cell types.490

Methods and Materials491

Cell Types and Mouse Lines492

Cell types are defined operationally by the intersection of a transgenic mouse strain (or in some493

cases anatomical projection target) and a brain region. These "operational cell types" may or may494

not correspond to "atomic" cell types, but as shown in Figure 2 have comparable purity to clusters of495

single cells. Mouse lines profiled in this study are summarized in Supplementary Table 1. Most were496

obtained from GENSAT (Gong et al., 2007) or from the Brandeis Enhancer Trap Collection (Shima497

et al., 2016). For Cre-driver lines, the Ai3, Ai9 or Ai14 reporter (Madisen et al., 2009) was crossed498

and offspring hemizygous for Cre and the reporter gene were used for profiling. All experiments499

were conducted in accordance with the requirements of the Institutional Animal Care and Use500

Committees at Janelia Research Campus and Brandeis University.501

Atlas502

Animals were anesthetized and perfused with 4% paraformaldehyde and brains were sectioned503

at 50�m thickness. Every fourth section was mounted on slides and imaged with a slide scanner504

equipped with a 20x objective lens (3DHISTECH; Budapest, Hungary). In house programs were used505

to adjust contrast and remove shading caused by uneven lighting. Images were converted to a506

zoomify compatible format for web delivery and are available at http://neuroseq.janelia.org.507

Cell Sorting508

Manual cell sorting was performed as described (Hempel et al., 2007; Sugino et al., 2014). Briefly,509

animals were sacrificed following isoflurane anesthesia, and 300�m slices were digested with510

pronase E (1mg/ml, P5147; Sigma-Aldrich) for 1 hour at room temperature, in artificial cerebrospinal511

fluid (ACSF) containing 6,7-dinitroquinoxaline-2,3-dione (20�M ; Sigma-Aldrich), D-(–)-2-amino-5-512

phosphonovaleric acid (50�M ; Sigma-Aldrich), and tetrodotoxin (0.1�M ; Alomone Labs). Desired513

brain regions were micro-dissected and triturated with Pasteur pipettes of decreasing tip size.514

Dissociated cell suspensions were diluted 5-20 fold with filtered ACSF containing fetal bovine serum515

(1%; HyClone) and poured over Petri dishes coated with Sylgard (Dow Corning). For dim cells,516

Petri dishes with glass bottoms were used. Fluorescent cells were aspirated into a micropipette517

(tip diameter 30-50�m) under a fluorescent stereomicroscope (M165FC; Leica), and were washed518

3 times by transferring to clean dishes. After the final wash, pure samples were aspirated in a519

small volume (1∼3�l) and lysed in 47�l XB lysis buffer (Picopure Kit, KIT0204; ThermoFisher) in a520

200�l PCR tube (Axygen), incubated for 30min at 40◦C on a thermal cycler and then stored at -80◦C.521

Detailed information on profiled samples are provided in Supplementary Table 2.522

RNA-seq523

Total RNA was extracted using the Picopure kit (KIT0204; ThermoFisher). Either 1�l of 10−5 dilution524

of ERCC spike-in control (#4456740; Life Technologies) or (number of sorted cells/50) * (1�l of 10−5525

dilution of ERCC) was added to the purified RNA and speed-vacuum concentrated down to 5�l and526

immediately processed for reverse transcription using the NuGEN Ovation RNA-Seq System V2527

(#7102; NuGEN) which yielded 4∼8�g of amplified DNA. Amplified DNA was fragmented (Covaris528

E220) to an average of ∼200bp and ligated to Illumina sequencing adaptors with the Encore Rapid529

Kit (0314; NuGEN). Libraries were quantified with a KAPA Library Quant Kit (KAPA Biosystems) and530

sequenced on an Illumina HiSeq 2500 with 4 to 32-fold multiplexing (single end, usually 100bp read531

length, see Supplemental Table 2).532

RNA-seq analysis533

Adaptor sequences (AGATCGGAAGAGCACACGTCTGAACTCCAGTCAC for Illumina sequencing and534

CTTTGTGTTTGA for NuGEN SPIA) were removed from de-multiplexed FASTQ data using cutadapt535
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v1.7.1 (http://dx.doi.org/10.14806/ej.17.1.200) with parameters “–overlap=7 –minimum-length=30”.536

Abundant sequences (ribosomal RNA, mitochondrial, Illumina phiX and low complexity sequences)537

were detected using bowtie2 (Langmead and Salzberg, 2012) v2.1.0 with default parameters. The538

remaining reads were mapped to the UCSC mm10 genome using STAR (Dobin et al., 2012) v2.4.0i539

with parameters “–chimSegmentMin 15 –outFilterMismatchNmax 3”. Mapped reads are quantified540

with HTSeq (Anders et al., 2014) using Gencode.vM13 (Harrow et al., 2012).541

Pan-neuronal genes542

Pan-neuronal genes are extracted as satisfying the following conditions: 1) mean neuronal ex-543

pression level (NE)> 20 FPKM, 2) minimum NE > 5 FPKM, 3) mean NE >maximum non-neuronal544

expression level (NNE), 4) minimum NE >mean NNE, 5) mean NE > 4x mean NNE, 6) mean NE >545

mean NNE + 2x standard deviation of NNE, 7) mean NE − 2x standard deviation of NE >mean NNE.546

DI/SC/DN calculation547

To calculate548

To calculate DI, the following criteria were used to assign a "1" or "0" to each element in the549

difference matrix (DM): log fold change > 2 and q-value <0.05. Q-values were calculated using the550

limma package including the voom method (Law et al., 2014). To adjust the power to be similar551

across cell types, two replicates (the most recent two) are used for all cell types with more than552

two replicates. We have tried the same calculations with 3 replicates (using a fewer number of cell553

types) and obtained similar results (data not shown).554

To calculate binary DI (bDI), the following DM criteria were used: expression levels of all the555

replicates in one of the cell types in the pair < 1FPKM and expression levels of all the replicates in556

the other cell type in the pair > 15FPKM, in addition to q-value <0.05.557

To assess the extent of differentiation by alternative splicing, we calculate differentiation at558

the level of each splice branch. See Figure 3D for the definitions of a splice branch and of branch559

probability. For each branch, at each alternative splice site, we define each pair of cell types as560

"different" when 1) branch probabilities for all replicates in a group are less than 0.3 or greater than561

0.7, and 2) both cell types in the pair have > 10 reads reads at the alternative site. Condition 1)562

is justified by the bimodal distribution of branch probabilities shown in Figure 3E. Accumulating563

over all pairs creates a DM for each branch. We then combine all the branches using a logical "OR"564

to create a gene-level DM for each gene. If any branch distinguishes a pair of cell types, that pair565

is called "different" at the gene level. The gene-level DM has a value of "1" for pairs of cell types566

distinguished by any of the branches belonging to that gene, and has a value of "0" for pairs of cell567

types not distinguished by any branch belonging to the gene. The number of pairs compared can568

differ, depending on the expression pattern of the gene, since branch probabilities can only be569

calculated for cell types that express the gene. This situation differs from that for DI or bDI (based570

on expression levels rather than splicing) since pairs of cell types can be distinguished even if one571

does not express the gene. Therefore, unlike DI and bDI which assume a fixed number of total pairs,572

we use DN (total number of pairs distinguished), rather than the fraction of pairs distinguished, to573

rank genes.574

NNLS/Random forest decomposition575

SCRS datasets deposited in NCBI GEO (GSE71585, Tasic et al. (2016); and GSE60361, Zeisel et al.576

(2015)) were used for NNLS decomposition. Specifically the deposited count data were converted to577

TPM and used for comparison. The NeuroSeq dataset was quantified using RefSeq and featurecount578

(Liao et al., 2013) and converted into TPM. Subsets of genes common to all three datasets are then579

used for all further analyses. Since distributions of TPM values differed between datasets, they were580

quantile normalized to an average profile generated from the NeuroSeq dataset. Since most genes581

in the SCRS profiles exhibited noisy expression patterns, using the entire gene set for decomposition582

is not feasible. Therefore, we selected for decomposition the genes deemed most informative for583
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distinguishing cell classes based on ANOVA across cell classes. However, simply taking the top584

ANOVA genes lead to highly biased gene selection since some cell types exhibited much larger585

transcriptional differences than others (e.g. many ANOVE selected genes were specific to microglia).586

We therefore selected genes so as to minimize the overlap between the cell types distinguished.587

Beginning with the highest ANOVA gene (highest ANOVA F-value), genes were selected only if their588

DM (Differentiation Matrix defined in Figure 3) differed from those previously selected, defined589

with a Jaccard index threshold of 0.5. We chose 300 genes from each dataset, yielding a total of590

563 genes when all three sets were combined. This gene set was then used for all decompositions.591

Decompositions were performed on average profiles created by summing NeuroSeq replicates592

or by summing single-cell profiles using cluster assignments provided by the authors. NNLS was593

implemented using the Python scipy library (http://www.scipy.org).594

For Random forest, implementation in the Python scikit-learn library (Pedregosa et al., 2011)595

was used.596

ATAC-seq597

7 cell types, Purkinje and granule cells from cerebellum, excitatory layer 5, 6 and entorhinal598

pyramidal cells from cortex, excitatory CA1, or CA1-3 pyramidal cells from hippocampus, labeled599

in mouse lines P036, P033, P078, 56L, P038, P064, and P036 respectively (all from Shima et al.,600

2016) were profiled with ATAC-seq. They were FACS sorted to obtain ∼20,000 labeled neurons. ATAC601

libraries for Illumina next-generation sequencing were prepared in accordance with a published602

protocol (Buenrostro et al., 2013). Briefly, collected cells were lysed in buffer containing 0.1% IGEPAL603

CA-630 (I8896, Sigma-Aldrich) and nuclei pelleted for resuspension in tagmentation DNA buffer604

with Tn5 (FC-121-1030, Illumina). Nuclei were incubated for 20-30 min at 37◦C. Library amplification605

was monitored by real-time PCR and stopped prior to saturation (typically 8-10 cycles). Library606

quality was assessed prior to sequencing using BioAnalyzer estimates of fragment size distributions607

looking for a ladder pattern indicative of fragmentation at nucleosome intervals as well as qPCR to608

determine relative enrichment at two housekeeping genes compared to background (specifically609

the TSS of Gapdh and Actb were assessed relative to the average of three intergenic regions). For610

sequencing, Illumina HiSeq 2500 with 2 to 4-fold multiplexing and paired end 100bp read length611

was used. In addition to ATAC-seq, RNA-seq was performed on replicate samples of ∼2,000 cells612

collected in a similar way, and library prepared using the same method described above.613

ATAC-seq analysis614

Nextera adaptors (CTGTCTCTTATACACATCT) were trimmed from both ends from de-multiplexed615

FASTQ files using cutadapt with parameters "-n 3 -q 30,30 -m 36". Reads were then mapped to UCSC616

mm10 genome using bowtie2 (Langmead and Salzberg, 2012) with parameters "-X2000 –no-mixed –617

no-discordant". PCR duplicates were removed using Picard tools (http://broadinstitute.github.io/picard,618

v2.8.1) and reads mapping to mitochondrial DNA, scaffolds, and alternate loci were discarded. Big-619

Wig genomic coverage files were generated using bedtools (Quinlan and Hall, 2010) and scaled620

by the total number of reads per million. For reproducible peaks, liberal peaks were called using621

HOMER (v4.8.3) (Heinz et al., 2010) with parameters "-style factor -region -size 90 -fragLength 90622

-minDist 50 -tbp 0 -L 2 -localSize 5000 -fdr 0.5" and filtered using the Irreproducibility Discovery623

Rate (IDR) in homer-idr (http://github.com/karmel/homer-idr.git) with parameters "–threshold 0.05624

–pooled-threshold 0.0125". Peak counts and peak patterns were then quantified using bedtools.625

TF Tree626

The set of mouse TFs was constructed by combining 4 curated TF lists: genes annotated in 1)627

PANTHER (Thomas, 2003) PC00218 (transcription factor), 2) Riken Transcription Factor Database628

(Kanamori et al., 2004), 3) HUGO (Gray et al., 2014) families with TF functions and 4) Gene Ontology629

(Ashburner et al., 2000) GO:0006355 (regulation of transcription). Genes appearing reproducibly630
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in these list (i.e. in more than 1 list) were used as TFs. Anatomical regions used as constraints are631

defined in a hierarchical manner (see Supplementary Table 5).632

The TF tree is constructed recursively using the following algorithm:633

preparation:634

0. calculate bDIs for all subsets of samples defined by anatomical regions635

function bisect(list of samples):636

1. if the list of samples consists of only one cell type, exit637

2. calculate bDI,SC within this group of samples for all TFs638

3. if there is no TF with bDI>0, exit639

4. find the appropriate level in the hierarchy of anatomical regions640

5. penalize bDIs (from 2.) with bDIs of containing anatomical regions (from 0.)641

6. sort TFs by their penalized bDI and SC in descending order642

7. set candidates as TFs with penalized bDI>0.2, if there are none, take the top 5643

8. for each candidate, calculate divisions of samples according to expression level644

- at sample level, assign ON/OFF using FPKM=3 as threshold645

- at cell type level, assign ON/OFF according to dominant ON/OFF of samples646

- divide all cell types into ON or OFF groups647

- optionally constrain division to anatomical boundary648

9. if there is no division, exit649

10. if there is more than one division then650

- calculate "division strength" for all divisions:651

- a0 = mean number of binary distinctions of all genes between ON and OFF groups652

- a1 = mean number of binary distinctions of all genes within ON or OFF groups653

- division strength = a0/a1654

- then choose the division with the highest division strength655

11. output ON/OFF groups and corresponding TF(s) for the chosen division656

12. call bisect on ON group samples657

13. call bisect on OFF group samples658

Inserted segments659

The multiz alignments downloaded from the UCSC genome browser (Kent et al., 2002) was used660

to calculate inserted segments in human or mouse. By comparing closely related species (human661

vs. chimp or mouse vs. rat), candidate segments inserted into human (or mouse) are extracted.662

By using another closely related species as a common ancestor (gorilla, guinea pig respectively for663

human/chimp and mouse/rat), segments absent in chimp and gorilla (or absent in rat/guinea pig)664

are called insertion in human (or mouse), and segments absent in chimp but present in gorilla (or665

absent in rat but present in guinea pig) are called deletion in chimp (or rat).666

TE fitting667

Repeat annotations for mouse mm10 genome as detected by RepeatMasker (Smit et al., 2013-2015)668

with Repbase (ver. 20140131 Bao et al., 2015) were used. Only repeat families with number of669

instances>200 are included. For individual repeats, only those with number of instances>50 are670

included. For repeats in the "Simple repeat" class, only those with number of instances>1000671

are included. Repeat scores are calculated as described in Figure 7D using Gencode.vM13. Only672

genes with non-zero repeat scores are used for fitting. For fitting expression level (rank) by repeat673

score, a regularized version of linear regression, Ridge regression, was implemented in the Python674

scikit-learn library (Pedregosa et al., 2011).675

Tissue data676

In addition to cell type-specific data obtained in this study, we analyzed publicly available RNA-677

seq and DNase-seq data using tissue samples. Information on these samples are described in678
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Supplementary Table 4.679

Annotations680

For reference annotations we used Gencode.vM13 (Harrow et al., 2012) downloaded from http://www.gencodegenes.org/,681

NCBI RefSeq (Pruitt et al., 2013) downloaded from the UCSC genome browser.682

Anatomical Region Abbreviations683

Region abbreviations: AOBmi, Accessory olfactory bulb, mitral layer; MOBgl, Main olfactory bulb,684

glomerular layer; PIR, Piriform area; COAp, Cortical amygdalar area, posterior part; AOBgr, Accessory685

olfactory bulb, granular layer; MOBgr, Main olfactory bulb, granular layer; MOBmi, Main olfactory686

bulb, mitral layer; VISp, Primary visual area; AI, Agranular insular area; MOp5, Primary motor area,687

layer5; VISp6a, Primary visual area, layer 6a; SSp, Primary somatosensory area; SSs, Supplemental688

somatosensory area; ECT, Ectorhinal area; ORBm, Orbital area, medial part; RSPv, Retrosplenial area,689

ventral part; ACB, Nucleus accumbens; OT, Olfactory tubercle; CEAm, Central amygdalar nucleus,690

medial part; CEAl, Central amygdalar nucleus, lateral part; islm, Major island of Calleja; isl, Islands of691

Calleja; CP, Caudoputamen; CA3, Hippocampus field CA3; DG, Hippocampus dentate gyrus; CA1,692

Hippocampus field CA1; CA1sp, Hippocampus field CA1, pyramidal layer; SUBd-sp, Subiculum, dorsal693

part, pyramidal layer; IG, Induseum griseum; CA, Hippocampus Ammon’s horn; PVT, Paraventricular694

nucleus of the thalamus; CL, Central lateral nucleus of the thalamus; AMd, Anteromedial nucleus,695

dorsal part; LGd, Dorsal part of the lateral geniculate complex; PCN, Paracentral nucleus; AV,696

Anteroventral nucleus of thalamus; VPM, Ventral posteromedial nucleus of the thalamus; AD,697

Anterodorsal nucleus; RT, Reticular nucleus of the thalamus; MM, Medial mammillary nucleus; PVH,698

Paraventricular hypothalamic nucleus; PVHp, Paraventricular hypothalamic nucleus, parvicellular699

division; SO, Supraoptic nucleus; DMHp, Dorsomedial nucleus of the hypothalamus, posterior700

part; ARH, Arcuate hypothalamic nucleus; PVHd, Paraventricular hypothalamic nucleus, descending701

division; SCH, Suprachiasmatic nucleus; LHA, Lateral hypothalamic area; SFO, Subfornical organ;702

VTA, Ventral tegmental area; SNc, Substantia nigra, compact part; SCm, Superior colliculus, motor703

related; IC, Ingerior colliculus; DR, Dorsal nucleus raphe; PAG, Periaqueductal gray; PBl, Parabrachial704

nucleus, lateral division; PG, Pontine gray; LC, Locus ceruleus; CSm, Superior central nucleus raphe,705

medial part; AP, Area postrema; NTS, Nucleus of the solitary tract; MV, Medial vestibular nucleus;706

NTSge, Nucleus of the solitary tract, gelatinous part; DCO, Dorsal cochlear nucleus; NTSm, Nucleus707

of the solitary tract, medial part; IO, Inferior olivary complex; VII, Facial motor nucleus; DMX, Dorsal708

motor nucleus of the vagus nerve; RPA, Nucleus raphe pallidus; PRP, Nucleus prepositus; CUL4,5mo,709

Cerebellum lobules IV-V, molecular layer; CUL4,5pu, Cerebellum lobules IV-V, Purkinje layer; PYRpu,710

Cerebellum Pyramus (VIII), Purkinje layer; CUL4,5gr, Cerebellum lobules IV-V, granular layer; MOE,711

main olfactory epithelium; VNO, vemoronasal organ.712
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Figure 1–Supplement 1.

Cell type-specific samples. Sample groups color coded by region (left color bar) and transmitter

phenotype (right color bar). Transmitter phenotype was determined from transmitter synthesis and

storage enzyme expression. Abbreviations: OLB: olfactory bulb; OLF: olfactory regions (excluding

bulb); CTX: Isocortex and Claustrum; HPF: hippocampal formation; STR: Striatum and related ventral

forebrain structures; PAL: pallidum; TH: thalamus; HY: hypothalamus; MB: midbrain; MY: medulla;

P: pons; CB: cerebellum; RE: retina; OE: olfactory epithelium; SP: spinal cord; X: peripheral nervous

system or non-neural tissue. For additional abbreviations see Methods.
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Figure 1–Supplement 2.

Quality Control measures. (A) (Top) Total reads for each of the libraries. Samples are color coded

by region and transmitter, as shown in Figure 1 Supplement 1. (Bottom) Categories of reads in

each library: unmapped: reads that did not map to the mm10 genome including chimeric and

back-spliced reads; short: reads less than 30bp in length after removing adaptor sequences; non-

unique: reads mapping to multiple locations; abundant: reads containing ribosomal RNA polyA,

polyC and phiX sequences, and unique: uniquely mapped reads. For further analyses, abundant,

short and unmapped reads were not used. (B) Contaminating transcripts from non-neuronal cell

types. Samples with significant expression of these transcripts (at right) include tissue samples and

non-neuronal samples. Each row is normalized by the maximum value.
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Figure 1–Supplement 3.

Pan-neuronal genes. Genes expressed in all neuronal cell types, but not (or at much lower levels)

in non-neurons within the dataset. Heat-map shows log expression levels and the color at the right

side indicates fold-change of the expression level between neurons and non-neurons. Criteria for

extracting these genes are listed in the Methods.
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Figure 2–Supplement 1.

A test of NNLS decomposition. (Left) Single cell profiles from Tasic et al. (2016) were merged
according to which of the 17 transgenic strains and sub-dissected layers they originated from (row

labels). Merged profiles were then decomposed using NNLS by the same individual cluster profiles

used in Figure 2 (column labels). (Right) The reported proportion of single cell profiles according to

the author’s classification. The close similarity between left and right matrices indicates an accurate

NNLS decomposition of the merged clusters. Note that information about which and how many

individual cell types were sorted from each line and set of layers was not explicitly provided to the

decomposition algorithm, but were accurately deduced from the merged expression profiles.
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Figure 2–Supplement 2.

Random forest decomposition. A random forest classifier (500 decision trees) was trained

from single cell profiles and their cluster assignment (column labels) and then used to decompose

NeuroSeq cell types (row labels). Coefficients are the ratio of the votes from the 500 trees (coefficient

ranges from 0 to 1 and 1 indicates all trees vote for a single class). The pattern of coefficients is

similar to that obtained by NNLS (Figure 2A) suggesting the decomposition is relatively robust and

does not reflect a peculiarity of the NNLS algorithm.
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Figure 2–Supplement 3.

Cross validation of NNLS decompositions (A) Each of Tasic et al. cluster is randomly divided

into two groups and one is used to decompose the other. Some cluster pairs share significant

coefficients, suggesting they are too similar to each other to separate well. For example, pairs of

clusters L2 Ngb and L2/3 Ptgs2, L4 Arf5 and L4 Scnn1a, L4 Ctxn3 and L4 Scnn1a, and L5 Cdh13

and L5 Tph2 are hard to distinguish. This is consistent with the observation of intermediate cells

between each of these clusters in the original study (their Figure 4).(B) Purity scores (similar to

Figure 2C) for the cross-validated NNLS decomposition of each Tasic et al. cluster. (C)Mean purity

scores obtained from the same cross-validation procedure applied to each of the three datasets.
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Figure 2–Supplement 4.

Separability of cell type clusters (A) Definition of separability. Cartoon represents two different

single cell clusters as distributions of points. The separability is the ratio of the distance between the

centroids to the sum of the "diameter" of each cluster. Here, we calculate the diameter of a cluster

using the distances from the centroid of the cluster as the mean distance + 3 times the standard
deviation of the distribution of the distances. With this definition, two clusters are "touching" when

separability =1, overlapping when <1, and separate when >1. The multi-dimensional distance is
computed as 1- Pearson’s corr.coef. (B) Separabilities between cell type clusters for three datasets

shown with two different dynamic ranges (color scale; 0-1 for upper row and 0-10 for lower row).

The order of cell type clusters are the same as in Figure 2.
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Figure 3–Supplement 1.

Simulated data reveal features of expression metrics

(A) (Upper) An example of simulated binary and graded expression patterns with added noise.

X-axis indicates sample/groups. (Lower) Various average metrics calculated from the simulated

expression patterns (100 individual simulations; error bars are standard deviations). Values are

normalized within each metric across binary expression group or graded expression group. (B)

Summary of each metric’s correlation with Mutual Information and SNR: check mark–correlated,

X–uncorrelated, triangle–partially correlated. (C) DI and MI are highly correlated. The relationship

between DI, calculated without considering replicates, and MI with expression levels discretized

into 2 levels (left) and 5 levels (right). Although increasing the number of discrete expression levels

decreases the degree of correlation, they remain monotonically and closely related.

975

Figure 3–Supplement 2.976

Relationship between DI and MI Here we explore more detailed relationship between mutual

information and differentiation index. To calculate mutual information between expression levels

and cell types, we discretize expression levels into Ne levels. Let Ns be number of samples. Let nij
be counts in the contingency table where i = 1, ..., Ne and j = 1, ..., Ns. Then the joint probability

distribution and the marginal probability distribution can be written as:

p(i, j) =
nij
Ns

(1)

p(i) =
∑

j nij
Ns

=
ni
Ns

(2)

p(j) =
∑

i nij
Ns

=
nj
Ns

(3)

(4)

Where ni =
∑

j nij and nj =
∑

i nij . nj is number of replicates in cell type j. The mutual information
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between expression level (E) and samples (S) is:

I(E;S) =
∑

i,j
p(i, j) log

p(i, j)
p(i)p(j)

(5)

=
∑

i,j
p(i, j) log

p(i, j)
p(j)

−
∑

i,j
p(i, j) log p(i) (6)

=
∑

i,j
p(j)p(i|j) log p(i|j) −

∑

i,j
p(i, j) log p(i) (7)

=
∑

j
p(j)

∑

i
p(i|j) log p(i|j) −

∑

i
log p(i)

∑

j
p(i, j) (8)

= −
∑

j
p(j)H(E|S = j) −

∑

i
p(i) log p(i) (9)

= −H(E|S) +H(E) (10)

H(E|S = j) is the entropy of expression levels in cell type j, which represents the expression noise977

in cell type j, andH(E|S) is the average of these across all cell types. When there is no replicates978

H(E|S) is zero. When there are replicates, H(E|S = j) represents how noisy the expression is.979

This may depends on expression level, and H(E|S), the average of H(E|S = j)may depends on980

expression prevalence (i.e., how widely the gene is expressed), but in any case, the first term981

−H(E|S) represents reduction of the mutual information by noise.982

The second term H(E) is the entropy of marginal distribution p(i) and represents the main
information content of cell types encoded in expression levels. This can be rewritten using counts

in the contingency table as:

H(E) = −
∑

i
p(i) log p(i) (11)

= −
∑

i

ni
Ns

log
ni
Ns

(12)

= −
∑

i

ni
Ns

log ni +
∑

i

ni
Ns

logNs (13)

= − 1
Ns

∑

i
ni log ni + logNs (14)

Thus, it takes maximumwhen all ni ’s are 0 or 1, which corresponds to the case where one expression983

level corresponds to one cell type, making all cell types distinguishable by the expression levels.984

This is when the discretization levels are larger than number of samples. When the number of985

discretization levels (Ne) is smaller than the number of samples (Ns), H(E) takes the maximum986

value of logNe when all the samples are distributed equally to each bin.987

To explore the relationship betweenH(E) and DI, the log ni in the first term is replaced (approxi-
mated) by (ni − 1) (first two terms in the Taylor expansion of log ni around ni = 1.):

H(E) ∼ − 1
Ns

∑

i
ni(ni − 1) + logNs (15)

= − 2
Ns

∑

i
ni(ni − 1)∕2 + logNs (16)

= 2
Ns

{

Ns(Ns − 1)∕2 −
∑

i
ni(ni − 1)∕2

}

− (Ns − 1) + logNs (17)

= (Ns − 1)sDI − (Ns − 1) + logNs (18)

Since ni is the number of samples in one expression level, ni(ni − 1)∕2 is the number of indistinguish-988

able pairs in that expression level when there is no replicate. The term within the curly bracket is989

then the number of distinguishable pairs, leading to eq.(18).990
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More formally, since both ℎ(p) =
∑

ni log ni and d(p) =
∑

ni(ni − 1) =
∑

n2i −Ns are Schur-convex991

functions1 on partitions of Ns, p = (n1, n2, ..., nk), when partition p1 majorizes p2 then, ℎ(p1) ≥ ℎ(p2)992

and d(p1) ≥ d(p2). When partition length is 2, that is when expression levels are discretized into993

only 2 levels, corresponding to ON/OFF, then, all of the partitions can be ordered by majorization994

relationship, therefore, ℎ(p) and d(p) are order-preserved transformation of each other (Figure 3995

Supplement 1C left). When partition length is greater than 2, this relationship is not true. However,996

they are still highly correlated to each other (Figure 3 Supplement 1C right).997

When DI is calculated from global discretization (as in the above case), the maximum number

of pairs distinguishable happens when all the samples are equally distributed to each bin and the

number of distinguishable pairs is

(

Ns
Ne

)2
Ne(Ne − 1)∕2. Therefore,

max(DI) =
(

Ns

Ne

)2 Ne(Ne − 1)∕2
Ns(Ns − 1)∕2

(19)

=
(

1 − 1
Ne

)

∕
(

1 − 1
Ns

)

(20)

∼ 1 − 1
Ne

(wℎen Ns ≫ 1) (21)

As stated above, this is also when the entropyH(E) takes the maximum value of log2Ne in the unit998

of bits. (Figure 3 Supplement 1C)999

1A Schur-convex function is a function f ∶ ℝk → ℝ which satisfies f (x) ≥ f (y) for all x, y where x majorizes y. For
x = (x1, x2, ..., xk) ∈ ℝkwℎere(x1 ≥ x2 ≥ ... ≥ xk) and y = (y1, y2, ..., yk) ∈ ℝkwℎere(y1 ≥ y2 ≥ ... ≥ yk). x majorizes y when
∑k
i=1 xi =

∑k
i=1 yiand

∑j
i=1 xi ≥

∑j
i=1 yiforallj = 1, ..., k. When xmajorizes y, it follows xi ≥ yi for all i, so it is easy to see ℎ(x) ≥ ℎ(y)

and d(x) ≥ d(y).
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Figure 4–Supplement 1.

(A) PANTHER families enriched in the top 1000 bDI genes. (B) Averages of metrics (DI,SC,bDI) for

PANTHER families. Only top 10 are shown. Numbers in parenthesis indicate family size. (C) Average

bDI calculated for each TF family in HUGO protein families (Gray et al., 2014). (D)Mean Pearson’s
corr. coef. between genes within PANTHER families. Homeobox TF family is indicated by the red dot.

Most of the PANTHER family genes are decorrelated within families but genes in some families, such

as ribosomal protein, histone, tubulin, and RNA binding protein have highly significant correlation

within families.
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Figure 5–Supplement 1.

TF tree constructed using stronger anatomical constraints. Similar to Figure 5, but the con-

straints on anatomical boundaries are enforced during each bisection. However, TF expression was

not constrained to be uniform within a group, leading to some subgroups that do not match the

expression of the dividing gene.
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Figure 5–Supplement 2.

TF tree constructed without anatomical constraints. Similar to Figure 5 but anatomical sub-

regions were not constrained to be grouped together.
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Figure 6–Supplement 1.

Properties of long genes in current and prior datasets.(A) Number (histogram) and ratios (dots)

of genes expressed in neurons (pink histogram, red dots) and non-neurons (brown histogram, green

dots) relative to the number of genes in the entire population (grey histogram) as a function of gene

length (ratios computed per bin of 500 genes). (B) Number (cyan histogram; left axis) and ratios

(cyan dots; right axis) of genes with nearby NRSE relative to the numbers of neuronally expressed

genes (pink histogram). (C) (Magenta dots) ratio of neuronally expressed non-REST target genes to

the population. Other components are same as in A. (D) DI dependence of length without REST

target genes compared to all genes. DI is still strongly length dependent because REST targets

are a small fraction of expressed long genes. (E) Fraction of gene length attributable to intron

length. (F) Length dependence of peak counts in the ATAC-seq data from the current study. (G)- (J)

Length dependence of peak counts in ENCODE DNase hypersensitivity data. Examples from mouse

ENCODE data in forebrain (telencephalon) (G) and liver (H) samples showing individual peaks (black

dots) and binned averages (red dots) as a function of gene length. Average mouse (I) and human

(J) peak counts from brain(blue) and non-brain(green) samples. (K) Number of alternative splice

sites for each gene (in Gencode mouse v14) plotted against gene length. (L) Similar to Figure 4

Supplement 1D, mean Pearson’s correlation coefficients between genes within long and short gene

groups relative to mean and S.D. (green solid lines) and 99% confidence interval (green dashed

lines) calculated from randomly selected groups of genes.
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Figure 7–Supplement 1.

Supplementary to Figure 7. TE insertions elongate genes and contain information about

gene expression (A) Example of gene length differences between species for Kcnma1 (a calcium-
activated potassium channel, also called slopoke, in Drosophila). (B) Estimated evolutionary age of
human genes correlates with their length. The length distribution of human genes is plotted as a

function of age, estimated from their most distant homologs. Genes common to all vertebrates (or

to all listed genomes) are longer than genes common only to mammals (mouse) or common only

to primates (monkey). (C) Correlation between gene expression rank and gene length (blue) and

SINE repeat score (orange) calculated for all cell types. Because of their abundance, SINE repeat

scores are correlated with gene length. (D) Similar to Figure 7E but using repeat scores calculated

from different sized intervals surrounding each gene (not including the gene body). Average R2 is

maximal near 10kb for both upstream and downstream intervals. Shuffling conditions are colored

as in Figure 7E. (E) Similar to Figure 7E but for repeat scores calculated from gene body only (upper

panel) or gene body+∕−100kb (lower panel). (F) Fraction of genome spanned by long genes (orange)
is greater than that spanned by short genes (green), despite being fewer in number. Some genomic

regions contain overlapping long and short genes (yellow). (G) Percentage of inserted sequences

calculated in Figure 7A (Human vs. Chimp and Mouse vs. Rat), that overlap TEs within long (≥
100kbp) or short (<100kbp) genes.
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