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Abstract 
Heritable variation in gene expression provides a critical bridge between differences in genome 
sequence and the biology of many traits, including common human diseases. However, the 
sources of most regulatory genetic variation remain unknown. Here, we used transcriptome 
profiling in 1,012 yeast segregants to map the genetic basis of variation in gene expression with 
high statistical power. We identified expression quantitative trait loci (eQTL) that together 
account for over 70% of the total genetic contribution to variation in mRNA levels, allowing us 
to examine the sources of regulatory variation comprehensively. We found that variation in the 
expression of a typical gene has a complex genetic architecture involving multiple eQTL. We 
also detected hundreds of eQTL pairs with significant non-additive interactions in an unbiased 
genome-wide scan. Although most genes were influenced by a local eQTL located close to the 
gene, most expression variation arose from distant, trans-acting eQTL located far from their 
target genes. Nearly all distant eQTL clustered at 102 “hotspot” locations, some of which 
influenced the expression of thousands of genes. Hotspot regions were enriched for transcription 
factor genes and altered expression of their target genes though both direct and indirect 
mechanisms. Many local eQTL had no detectable effects on the expression of other genes in 
trans. These results reveal the complexity of genetic influences on transcriptome variation in 
unprecedented depth and detail. 
 

Main text 
Differences in gene expression among individuals arise in part from DNA sequence differences 
in regulatory elements and in regulatory genes. Regions of the genome that contain regulatory 
variants can be identified by tests of genetic linkage or association between mRNA levels and 
DNA polymorphisms in large collections of individuals. Regions for which such tests show 
statistical significance are known as eQTL1. Regulatory variation is widespread in the species for 
which it has been studied; indeed, in humans, the expression of nearly every gene appears to be 
influenced by one or more eQTL2,3. 
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In humans, eQTL are typically mapped by genome-wide association studies (GWAS) in 
unrelated individuals. To cover the genome, human GWAS must test a very large number of 
variants, resulting in a high multiple-testing burden and low statistical power. As a result, most 
human eQTL GWAS have been limited to searches for “local” eQTL that are located close to the 
genes they influence4,5. The power to detect local eQTL is higher because focused local tests 
reduce the multiple-testing burden, and because local eQTL tend to have larger effect sizes. 
However, genome-wide estimates show that most regulatory variation does not arise from local 
eQTL. Instead, it arises from “distant” eQTL, which are located far from the genes they 
influence, typically on different chromosomes, and which exert their effects through trans-acting 
factors6,7. Although a limited number of trans-acting human eQTL has been discovered2,3,6-13, the 
vast majority remains unknown. As a consequence, we know relatively little about this crucial 
source of regulatory genetic variation. 
In model organisms, eQTL can be identified by linkage analysis in panels of offspring obtained 
from crosses of genetically different individuals14. In this design, longer blocks of linkage reduce 
the number of statistical tests required to cover the genome. As a result, many local and distant 
eQTL have been discovered in such studies. However, even in model organisms, sample size 
limitations have to date resulted in insufficient statistical power to detect most eQTL. This 
limitation has manifested itself as “missing heritability”: detected eQTL tend to account for only 
a fraction of the measured heritable component of gene expression variation. Here, we address 
this limitation by carrying out an eQTL study in a very large panel of segregants from a cross 
between two yeast strains. The high power of our study allowed us to identify eQTL that account 
for the great majority of heritable expression variation in this cross, and to characterize the 
distant component of regulatory variation in unprecedented detail. 
 
Deep eQTL mapping explains most gene expression heritability 
We developed an experimental pipeline for high-throughput generation of RNA-seq data in yeast 
and obtained high-quality expression measurements (Supplementary Data 1 & 2) for 5,720 genes 
in 1,012 segregants from a cross between laboratory and wine yeast strains (hereafter, BY and 
RM, respectively). We obtained high-confidence genotypes at 11,530 variant sites from low-
coverage whole-genome sequences of the segregants15 (Supplementary Data 3). We used the 
genotype and RNA-seq data for eQTL mapping and identified 36,498 eQTL for 5,643 genes at a 
false discovery rate (FDR) of 5% (Supplementary Data 4). Only 77 genes had no detected eQTL. 
Among the genes with at least one detected eQTL, the median number was 6, with a maximum 
of 21 (Figure 1A, Supplementary Discussion 1). Previous eQTL mapping in 112 segregants from 
this cross detected an average of less than one eQTL per gene as a consequence of much lower 
statistical power14,16. That data set was used to obtain indirect estimates of the distribution of the 
number of eQTL per gene17, and these agree closely with the distribution of directly detected 
eQTL observed in the current study. The observed distribution of the number of loci also closely 
matched the distribution we reported for loci influencing 160 protein levels studied with the 
highly powered X-pQTL approach18. Our results provide direct demonstration that variation in 
expression levels of nearly all genes has a complex genetic basis. 
We used our data to estimate the additive heritability of the expression level of each gene (i.e., 
the fraction of expression variance attributable to genetic factors; Supplementary Figure 1; 
Supplementary Data 5). We observed a median heritability of 26%, with a maximum of 95%. 
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Our estimates are consistent with studies of gene expression in humans6,7,19,20, but are lower than 
those typically seen for organismal traits in this cross15,21, suggesting a greater contribution of 
environmental and stochastic factors to gene expression variation. Across genes, heritability was 
positively correlated with mean expression and with expression variance, and negatively 
correlated with the number of protein-protein and synthetic genetic interaction partners, as well 
as with gene essentiality (p ≤ 0.005) (Supplementary Figure 2; Supplementary Discussion 2 & 3; 
Supplementary Table 1; Supplementary Data 6). 
In contrast to previous eQTL studies, the detected eQTL explained most of the estimated 
additive gene expression heritability (a median across genes of 71.5%) (Figure 1B, 10-fold cross-
validation). Low missing heritability in our data is explained by the high power of our 
experiment. We had greater than 90% power to detect eQTL that explain at least 2.5% of 
expression variance (Figure 1C). The distribution of effect sizes of detected eQTL is strongly 
weighted toward small effects (median 1.9% of variance explained; Figure 1C), suggesting that 
the remaining missing heritability is explained by undetected eQTL with even smaller effects. 
These results are consistent with those observed for organismal traits in this cross15,21. Thus, we 
have discovered most eQTL with substantial effects that segregate in this cross, and these jointly 
account for the great majority of the observed genetic variation in the transcriptome. 
 
Genetic expression variation arises primarily from trans-acting hotspots 
We found that 2,884 genes (50% of 5,720 expressed genes) had a local eQTL (defined as an 
eQTL whose confidence interval includes the gene it influences) at genome-wide significance. 
This number rose to 4,241 genes (74% of expressed genes) when we performed eQTL analysis 
with only one nearby marker per gene in order to reduce the multiple testing burden (FDR < 
5%). Thus, the single pair of yeast isolates used here harbors sufficient local regulatory variation 
to alter the expression of more than half the genes in the genome. Comparisons with allele-
specific expression data22 support previous results23,24 that most but not all local eQTL act in cis 
(Supplementary Figures 3 & 4; Supplementary Discussion 4; Supplementary Tables 2 – 4; 
Supplementary Data 7). 
The vast majority of the genome-wide significant eQTL did not overlap the genes they 
influenced (92%; 33,529 of 36,498); indeed, 86% were located on a different chromosome. 
Nearly every expressed gene (98%; 5,606) had at least one such distant, trans-acting eQTL. The 
individual effect sizes of the trans eQTL were smaller than those of local eQTL (median 
variance explained 2.8-fold less, T-test p < 2.2e-16; Figure 1C). However, for the 2,846 genes 
that had both a local eQTL and at least one distant eQTL, the aggregate effect of the distant 
eQTL per gene was larger than that of the local eQTL (median 2.6-fold more variance explained; 
paired T-test p < 2.2e-16; Figure 1D). Genome-wide estimates in humans have similarly 
indicated 1.8-fold7 to 3.4-fold6 more genetic variation arising in trans than in cis. Our results 
directly demonstrate the importance of trans acting variation by showing that mapped trans 
eQTL influence the expression of a larger number of genes and jointly contribute more to 
expression variance than local eQTL. 
The trans eQTL were not uniformly distributed across the genome (Figure 2A). Instead, they 
clustered at 102 hotspot loci, each of which affected the expression of many genes14,25,26 (Figure 
2B). These hotspots contained over 90% of all trans eQTL. The eQTL that mapped outside of 
the hotspots also clustered more than expected by chance (randomization p < 0.001), suggesting 
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the existence of additional hotspots that affect the expression of too few genes to pass the 
stringent criteria used to define the set of 102. Isolated trans-acting loci that affect the expression 
of one or a few genes appear to be uncommon. 
The 102 hotspots affected a median of 425 genes, ranging from 26 (a newly discovered hotspot 
at position 166,390 bp on chromosome III) to 4,594 at the previously reported MKT1 
hotspot27(82% of 5,629 genes with any signal at a hotspot; Figure 2B). Three additional hotspots 
each affected more than half of all genes. They include a previously described hotspot at the 
HAP1 gene14 (3,640 genes affected), as well as two newly detected hotspots on chromosome 
XIV. A hotspot at 372,376 bp affected 4,172 genes and is likely caused by a variant that recently 
arose in the KRE33 gene in the RM parent used in our cross28. A hotspot at position 267,161 bp 
affected 3,169 genes and spans the genes GCR2, YNL198C, WHI3 and SLZ1. These results 
indicate that hotspots can have extraordinarily wide-reaching effects on the transcriptome, with 
some influencing the expression of the majority of all genes. 
Such widespread effects caused by single loci likely arise from a cascade of effects in which 
strong primary effects spread through the cellular regulatory network. For example, the BY allele 
of the transcriptional activator HAP1 carries a transposon insertion that reduces HAP1 function. 
As expected, the BY allele strongly reduced the expression of known transcriptional targets of 
HAP1: 26 out of the 69 HAP1 targets present in our data were among the 50 genes with the 
largest reduction in expression in segregants carrying the BY allele of HAP1 (p < 2.2e-16, odds 
ratio = 138). In total, only 75 direct transcriptional HAP1 targets are known. Unless previous 
work missed thousands of HAP1 targets, the vast majority of the 3,640 trans eQTL at HAP1 
must reflect indirect, secondary consequences of the direct transcriptional effects. HAP1 is an 
activator of genes involved in cellular respiration. Thus, the many secondary effects of the BY 
HAP1 allele on gene expression may be mediated by cellular responses to altered metabolism 
arising from reduced respiration. 
 
Causal genes underlying hotspots 
Functional analysis of eQTL hotspots requires identification of the underlying causal genes, and 
this has been challenging to do systematically. We developed a multivariate fine-mapping 
algorithm that narrows hotspot positions by leveraging information across the genes that map to 
each hotspot (Supplementary Data 8 – 13). With this approach, we resolved the locations of 26 
hotspots to regions containing three or fewer genes (a total of 58 genes; Figure 3A). Three 
hotspots contained exactly one gene (GIS1, STB5, and MOT3). We previously identified and 
experimentally confirmed the causal genes at several major hotspots (MKT127, HAP114, IRA216, 
GPA129, and the mating-type locus14), and these were all correctly localized by the algorithm, 
validating this fine-mapping strategy.  
The 58 genes at 26 high-resolution hotspots are highly enriched for the causal genes underlying 
the hotspots, making it possible to systematically study the functions of hotspot regulators. These 
genes were less likely to be essential or to have a human homolog than other yeast genes, but did 
not differ from other genes in their expression level or the number of physical or genetic 
interaction partners (Supplementary Table 5). The hotspot genes had highly significant 
enrichments for gene ontology (GO) terms related to transcriptional regulation (e.g. GO:0006357 
“regulation of transcription from RNA polymerase II promoter”: 19 genes among the 58; 4 
expected; p = 4e-9; Supplementary Figure 5; Supplementary Data 14), as well as weaker 
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enrichments for terms related to response to nutrient levels (GO:0031669; “cellular response to 
nutrient levels”: 8 genes, 1 expected, p = 6e-6) 
These analyses indicate that causal hotspot genes are disproportionately involved in 
transcriptional regulation, a signal that was not picked up in an earlier study with fewer, less-
well-resolved hotspots29. For example, we fine-mapped a new hotspot that affected 382 genes to 
a single gene, the transcription factor STB5 (Figure 3B). STB5 is a transcriptional activator of 
multidrug resistance genes30. A previous analysis suggested reduced activity of the STB5 BY 
allele compared to the RM allele31. Consistent with this observation, we found that the promoters 
of genes whose expression was lower in the presence of the STB5 BY allele were strongly 
enriched for STB5 binding sites (Figure 3C).  
We fine-mapped a new hotspot on chromosome X to two genes (Supplementary Figure 6A). Of 
these, we deemed the transcription factor CBF1 to be the more likely causal gene because the 
promoters of genes with higher expression in the presence of the BY allele at the hotspot locus 
were enriched for annotated32 CBF1 binding sites (p = 2e-10; odds ratio = 5.4). CBF1 regulates 
genes involved in sulfur metabolism33,34 and binds to centromeric DNA33,35 where it contributes to 
the production of centromeric transcripts36. However, the 307 genes that mapped to this locus 
were only weakly enriched for sulfur–related GO terms (e.g. GO:0072348 “sulfur compound 
transport”, p = 0.005) and showed no enrichment for centromere–related terms (Supplementary 
Data 12). Instead, the strongest enrichments were for terms related to the cell wall (e.g. 
GO:0071554 “cell wall organization or biogenesis”; p = 4e-10) and specifically the neck of 
budding daughter cells (GO:0005935 “cellular bud neck”; p = 0.0001). A potential role of CBF1 
in cell wall biology has been noted in the literature34 but has not been explored in detail. The 
strongest trans effect of this hotspot was on the gene CAP1 (Supplementary Figure 6B), which is 
an annotated32 transcriptional target of CBF1. CAP1 encodes a component of the capping protein 
heterodimer37, which localizes to the barbed ends of growing actin filaments where it prevents 
further actin filament growth38. In yeast, actin filaments play crucial roles in the transport of cell-
wall material, vesicles, and organelles to the budding daughter cell38. Deletion of CAP1 results in 
defective bud site selection in diploid yeast39. In our cross, higher expression of CAP1 caused by 
the CBF1 BY allele may increase actin filament blocking, altering the flow of cellular material 
during bud formation. In response, other genes involved in cell wall processes may adjust their 
expression, including strong trans targets of this hotspot such as SLT2, CRH1, and DFG5 that are 
not annotated40 as direct targets of CBF1. This hotspot provides an example of an unexpected 
primary eQTL effect resulting in secondary effects, likely caused by changes in expression of the 
primary targets.  
Hotspot genes can also influence mRNA levels more indirectly – for instance, by shaping the 
cellular response to external stimuli such as nutrient availability. For example, we fine-mapped a 
hotspot, which influenced 645 genes, to an interval on chromosome VIII containing six genes 
(Supplementary Figure 6C). One of these is ERC1, which encodes a transmembrane transporter. 
BY but not RM carries a frameshift in this gene, which removes the last two out of 12 predicted 
transmembrane helices of the protein41. This variant is known to reduce cell-to-cell variability (or 
“noise”) in the expression of a MET17 gene tagged with green fluorescent protein41. We found 
that the BY allele at this hotspot reduced the expression of genes that are highly enriched for the 
GO category “methionine biosynthetic process” (GO:0009086, p = 2e-22; Supplementary Data 8 
& 12). Thus, in addition to reducing MET17 expression noise, the ERC1 frameshift variant is 
linked to reduced mean expression levels of multiple genes in the methionine biosynthesis 
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pathway (the MET regulon; Supplementary Figure 6D). While the precise compounds that are 
imported or exported by Erc1p are not known, the ERC1 BY allele reduces cellular levels of S-
Adenosylmethionine (SAM)42, a key component of methionine and cysteine amino acid 
metabolism43. The ERC1 BY allele may down-regulate the MET regulon via its effects on SAM, 
triggering further transcriptional changes in hundreds of genes. 
 
Relationship of local eQTL and trans eQTL 
Most known causal variants underlying yeast eQTL hotspots are coding; however, change in 
expression of a trans-acting factor by a local eQTL is another plausible causal mechanism11. We 
found that a higher proportion of hotspots contained genes with a local eQTL than expected by 
chance (p = 0.007; Figure 4A). The median effect size of the strongest local eQTL in these 
hotspots was larger than expected (p = 0.003). This enrichment is consistent with some hotspots 
being caused by local eQTL that alter the expression of a gene located at the hotspot position, 
which in turn leads to changes in the other transcript levels that map to the hotspot. 
On the other hand, the majority of local eQTL (60%) did not overlap any of the hotspots. 
Evidently, the expression changes caused by these eQTL do not in turn lead to detectable trans 
effects on many unlinked genes, within the limits of our statistical power. 
The density of trans eQTL in our data was sufficiently high, and their confidence intervals 
sufficiently wide, that any local eQTL overlapped at least two trans eQTL. However, this 
number is inflated due to the wide confidence intervals of the many weak trans eQTL. Using a 
more narrow definition of the trans signal, we focused on the peak markers of trans eQTL that 
did not overlap a hotspot. We divided the portion of the genome that did not overlap a hotspot 
into non-overlapping bins, each centered on a local eQTL. We then examined how many of the 
non-hotspot trans peaks fell into these bins (Figure 4B). The resulting distribution roughly 
matched the distribution expected if non-hotspot trans peaks were localized in the genome at 
random. To the extent that the distribution differed from random, we found an excess of bins 
with six or more trans eQTL (p < 0.001), likely reflecting undetected, weak hotspots. There was 
also an excess of bins with zero trans peaks (p < 0.001). This class comprised the great majority 
of the distribution (Figure 4B). The genetic architecture that is most consistent with these 
observations is one in which most local eQTL have no detectable trans consequences on the 
expression of other genes. 
Even when the causal gene in a hotspot has a local eQTL, it does not automatically follow that 
this is the causal mechanism. For example, the STB5, CBF1, and ERC1 hotspot genes each had a 
local eQTL. However, neither STB5 nor CBF1 showed allele-specific expression, and while 
there was weak allele-specific expression for ERC1, it was in the opposite direction of the local 
ERC1 eQTL (Supplementary Data 7). Therefore, these local eQTL are unlikely to be caused by 
cis-acting variants. 
STB5, CBF1 and ERC1 each carry protein-altering variants between BY and RM, including the 
known causal ERC1 frameshift in BY. Altered protein activity due to these coding variants may 
be responsible for the many distant linkages to these three hotspots, and may also cause the 
observed local eQTL in trans, as previously shown for AMN123. The Stb5p and Cbf1p 
transcription factors are both predicted to target their own respective promoters32, and their 
altered activity could influence their own expression. For the transmembrane transporter ERC1, 
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the local eQTL may reflect trans-mediated feedback in which ERC1 expression is increased in 
BY in an attempt to counter the reduced activity of the truncated ERC1 BY allele. For each of 
these hotspots, it seems plausible that a change in protein function, rather than change in gene 
expression, underlies the hotspot. 
 
Genetics of mRNA vs. protein levels 
The degree to which mRNA-based eQTL also affect the protein levels of their target genes is a 
fundamental open question44-48 that has been difficult to resolve as a consequence of low 
statistical power in eQTL and protein QTL (pQTL) studies. Low power is expected to lead to 
poor overlap between eQTL and pQTL solely as a result of high false-negative rates. We 
compared our eQTL to pQTL that we had identified earlier for 160 proteins using a powerful 
bulk segregant approach18 (Supplementary Data 15). These pQTL also clustered at hotspots, 
which broadly mirrored the mRNA hotspots identified here (Supplementary Figure 7). However, 
differences in hotspot architecture exist. For example, a hotspot on chromosome II shows strong 
pQTL effects18 but only weak effects on mRNA levels for the same genes, none of which rise to 
genome-wide significance. 
In order to avoid downward bias in the overlap between eQTL and pQTL caused by false 
negatives (Supplementary Discussion 5), we focused on strong QTL in each dataset and asked if 
they overlapped a significant QTL in the other dataset. Of the 236 strongest eQTL (variance 
explained ≥ 3.5%; ≥ 99% power to detect), only 47% (111) overlapped a pQTL for the same 
gene. Of the 218 strongest pQTL (LOD ≥ 15), 50% (108) overlapped an eQTL for the same 
gene. Thus, even with high power and strong QTL effects, agreement between eQTL and pQTL 
was imperfect. Strong eQTL without a pQTL clustered primarily at the HAP1 and MKT1 
hotspots (Supplementary Table 6; Supplementary Figure 8B). These two hotspots also showed 
the clearest examples of overlapping eQTL and pQTL with opposite direction of effect on the 
same genes (Supplementary Table 7; Supplementary Figure 8A). Thus, while these hotspots 
influence both mRNA and protein levels of many genes, their effects on mRNA vs. protein 
levels of a given gene can be quite different. Strong pQTL without an eQTL were more widely 
distributed across the genome (Supplementary Table 8; Supplementary Figure 8C). 
 
Detection of non-additive eQTL interactions from a genome-wide search 
The contribution of non-additive or “epistatic” genetic interactions to trait variation is a topic of 
ongoing debate49-51. In particular, demonstration of non-additive effects on human gene 
expression has been challenging52-57. Although clear examples of epistasis have been revealed for 
yeast gene expression58,59, the limited power of earlier studies had necessitated targeted search 
strategies rather than a full genome-by-genome scan. 
We reasoned that the high power of our current dataset should permit a more unbiased view of 
the contribution of epistasis to mRNA expression variation, and carried out a genome-by-
genome scan for non-additive interaction effects on the expression levels of all genes. We 
detected 387 eQTL-eQTL interactions (FDR = 10%; Figure 5A; Supplementary Data 16). To our 
knowledge, this is the first unequivocal identification of eQTL interactions from an unbiased 
genome-by-genome scan. Targeted scans with a reduced multiple testing burden identified larger 
numbers of interacting pairs of loci: a total of 784 from a scan for interactions between genome-
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wide significant additive eQTL and the genome, and a total of 1,464 for interactions between 
significant additive eQTL. As previously reported, the interactions occurred primarily between 
pairs of loci in which one or both loci had a genome-wide significant additive effect. In 
particular, many pairs involved interactions between strong eQTL at major trans hotspots60, or 
interactions between strong local eQTL and distant eQTL at hotspots (Figure 5A). 
We quantified the fraction of variation in gene expression that is contributed by epistatic 
interactions. Pairwise interactions typically explained about 1/10th as much expression variance 
as did additive loci (Figure 5B). Thus, genetic interactions contributed only a small minority of 
trait variance for gene expression levels, which is consistent with what we previously reported 
for organism-level traits21. 
 
Conclusion 
The high power of our study allowed us to identify genome-wide significant eQTL that jointly 
explain over 70% of gene expression heritability. The completeness of our eQTL catalog allowed 
us to examine the contribution of trans-acting regulatory variation in much greater detail than 
previously possible. We showed directly that trans-acting eQTL form the predominant source of 
expression variation in a yeast cross, in agreement with indirect genome-wide estimates in 
humans. We also showed that the vast majority of trans-eQTL were concentrated at a limited 
number of hotspot regions that are inferred to harbor variants with widespread effects on the 
expression of other genes. Indeed, the strongest hotspots affected the expression of most genes in 
the genome. We showed that hotspots were enriched for genes involved in transcriptional 
regulation. The minority of eQTL that fell outside the statistically defined hotspots also clustered 
more than expected by chance, and we saw little evidence of isolated trans-acting loci that affect 
the expression of one or a few genes. The limited number of human trans-eQTL discovered to 
date also tended to influence the expression of multiple genes3,6-13, suggesting that a similar 
hotspot-dominated architecture underlies human expression variation and will be uncovered in 
better powered studies. 
The recently proposed omnigenic model61 for the genetic basis of complex trait variation posits 
that gene regulatory networks are sufficiently densely connected that the change in expression of 
any one gene, caused by a local eQTL, will “percolate” through the network and alter the 
expression of all other genes. The hotspot loci we described here offer evidence that some 
regulatory variants can indeed have widespread effects on the transcriptome, in some cases 
altering the expression of the majority of genes in the genome through precisely the combination 
of strong direct effects on “core” genes in specific pathways and weak indirect effects on other 
“peripheral” genes envisioned in the omnigenic model. 
On the other hand, although we detected local eQTL for most genes in our cross, the majority of 
these had no detectable trans effects on the expression of other genes, within the limits of our 
statistical power. Given that our study had sufficient power to detect weak indirect effects of 
trans-eQTL hotspots, we believe that most local eQTL indeed have no meaningful downstream 
consequences for gene expression, and, by extension are unlikely to contribute to variation in 
complex traits. Consistent with this conclusion, modest expression changes for dozens of yeast 
genes have been found to result in minimal fitness effects62. These results argue against the 
simplest form of the omnigenic model, in which a variant that changes the expression of any one 
gene has meaningful effects on every other gene. Instead, we observed that trans-eQTL effects 
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preferentially arise from variation in certain classes of genes, and may be caused by coding as 
well as regulatory variants. Given the crucial importance of regulatory variation for many 
complex traits, the organismal consequences of expression changes caused by different types of 
eQTL remain a key area for further research. 
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Methods 
Unless otherwise specified, all computational analyses were performed in R. 
 
Yeast growth 
We used 1,012 meiotic segregants previously generated15 from a cross between the prototrophic 
yeast laboratory strain BY (MATa; derived from a cross between BY4716 and BY4700) and the 
prototrophic vineyard strain RM (MATα hoΔ::hphMX4 flo8Δ::natMX4 AMN1-BY; derived from 
RM11-1a). The segregants were grouped according to their previously measured15 endpoint 
colony radius on YNB agar plates into groups of 96. The strains in each group were rearranged 
from existing stock plates into a total of 13 96-well plates in YNB medium, grown to saturation, 
and frozen as glycerol stocks for later growth. Within each group of 96, strain locations in the 
96-well plate were selected at random. Culture and liquid handling was performed on a BioMek 
FXP instrument or with multichannel pipettes in 96-well format. 
Our strategy of batching segregants according to their growth on YNB ensures that each 96-well 
plate contains segregants that grow at comparable rates. This facilitates growing all segregants 
on a plate such that they reach a similar optical density at 600 nm (OD) at the same time. Our 
batching strategy produces experimental batches that are correlated with growth rates. Because 
we statistically removed variation among experimental batches prior to eQTL mapping (see 
below), this design reduces our ability to compare variation in growth rates with variation in 
gene expression. We deemed this an acceptable trade-off because it considerably simplified 
handling >1,000 samples in a systematic fashion. We processed the batches in a randomized 
order with respect to their growth rate to avoid confounding processing date with faster or slower 
growth. 
We used the rearranged stock plates to inoculate growth cultures in 1 ml YNB medium (recipe 
for 1 L: 6.7g yeast nitrogen base with ammonium sulfate and without amino acids; 900 ml H2O; 
autoclave; add 100 mL of separately autoclaved 20% glucose solution) in 2 mL deep well plates 
sealed with Breathe-Easy membranes (Sigma Aldrich), and grew the cultures to saturation on 
Eppendorf MixMate instruments situated in a 30ºC incubator and set to 1100 rounds per minute 
(rpm). We set the saturated cultures back to OD = 0.05 in 1 mL YNB in a fresh deep well plate 
and continued growth at 30ºC. We monitored OD during growth by splitting out 100 ul of culture 
every other hour, measuring OD on a Synergy 2 plate reader (BioTek) and returning the 100 ul 
used for measuring OD to the deep-well culture plate. We increased the frequency of 
measurements as cultures approached OD = 0.4. 
Once average OD in the plate reached 0.4, we transferred the cultures to sterile Norgen nylon 
filter plates (#40008) situated on a vacuum manifold. We applied vacuum to remove all growth 
medium, sealed with aluminum foil seals, and flash froze the entire plate in liquid N2. The frozen 
plates were placed on a standard 96-well plate to protect their bottom, wrapped with parafilm, 
and stored at -80ºC until RNA extraction. Note that this procedure provided us with OD 
measurements up the exact time point at which cells were harvested. 
 
RNA extraction 
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We used Dynabeads mRNA purification kits (Ambion / Thermo Fisher) to directly isolate 
mRNA from cell lysates. To perform the RNA extractions on the BioMek robot, we prepared 
excess lysis/binding and Wash buffers that permitted the use liquid reservoirs with volumes that 
exceed that provided in the kits. These buffers were prepared as specified in the Dynabeads kit 
protocol: 
Lysis/Binding Buffer: 
100 mM Tris-HCl, pH 7.5 
500 mM LiCl 
10 mM EDTA, pH 8 
1% LiDS 
5 mM dithiothreitol (DTT) 
Washing Buffer A: 
10 mM Tris-HCl, pH 7.5 
0.15 M LiCl 
1 mM EDTA 
0.1% LiDS 
Washing Buffer B: 
10 mM Tris-HCl, pH 7.5 
0.15 M LiCl 
1 mM EDTA 

We filled the wells of an Axygen 1.1 mL plate (P-DW-11-C-S) with about 250 µl acid washed 
425-600 µm beads (Sigma G8722). We added 700 µL lysis buffer to our frozen cell plates, 
pipetted up and down to resuspend the cells, and applied them to the glass beads in the Axygen 
plate. The Axygen plate was tightly sealed with an Axymat rubber plate seal (AM-2ML-RD-S), 
and ground for 10 cycles on a plate-based mini bead beater (Biospec). Each cycle consisted of 1 
minute beating followed by 1 minute on ice. 
We centrifuged the plate for 4 minutes at 3,000 rpm to separate glass beads and cell debris from 
the lysate. We pipetted two aliquots of 200 µL of lysate supernatant into two 96-well PCR plates 
for a total of 400 µL lysate. These plates were sealed, and the RNA melted for 2 minutes at 65ºC 
in a thermocycler. We implemented a BioMek-assisted procedure to perform the Dynabead 
protocol with two mRNA enrichment steps. We did not quantify the resulting 11 µL of mRNA 
and simply used the entire mRNA for reverse transcription and sequencing library preparation. 
While piloting this procedure, we obtained typical yields of ~30 ng / µL and excellent RNA 
quality as judged by visualization on 1.1% agarose gels stained with ethidium bromide. 
Ribosomal RNA bands were clearly visible in crude lysate, less visible after the first mRNA 
enrichment, and absent after the 2nd mRNA enrichment step. After the 2nd mRNA enrichment, 
mRNA was clearly visible on the gel, with no visible RNA degradation. 
 
 
RNA sequencing library construction & sequencing 
We performed reverse transcription and sequencing library preparation using the Kapa Stranded 
mRNA-Seq Kit (KK8420/21). This kit usually begins by enriching mRNA from total RNA. 
Because we had already performed mRNA enrichment, we used our entire mRNA as input and 
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began at the RNA fragmentation step by adding 11 µL of “KAPA fragment, prime and elute 
buffer” to our 11 µL of mRNA. RNA fragmentation was performed on a thermocycler for 6 
minutes at 94ºC. 
The remaining procedure was performed as specified in the Kapa kit manual. Briefly, the 
fragmented RNA is randomly primed and used for 1st strand cDNA synthesis, 2nd strand synthesis 
and marking with dUTP, A-tailing of the double-stranded cDNA, adapter ligation, and PCR for 
12 cycles. The dUTP marked 2nd strand is not amplified in PCR, resulting in strand-specific 
libraries. We used custom designed Truseq-compatible indexing adapters (IDT) to allow 
multiplexing all 96 samples per batch. Prior to use, the two types of Truseq adapters were 
annealed (2 minutes at 97ºC; 72 steps of 1 minute at 1ºC decreasing temperature; 5 minutes at 
25ºC) to generate forked adapters that can be ligated to the A-tailed cDNA. We did not pool 
samples between batches.  
Sequencing libraries were quantified by combining 1 µL of library with 100 µL of Qubit High 
Sensitivity dsDNA reagent in 96-well plates with black bottom and wells, and reading 
fluorescence (excitation 485nm, emission 528 nm) on the Synergy 2 plate reader. We calculated 
library concentrations by comparing to a standard series obtained by diluting the standard 
solutions included in the Qubit quantification kit. Standards were measured in triplicate on each 
library plate. We pooled the libraries in each group to equal molarity and used qPCR (KAPA 
Biosystems #KK4854) on the pool to obtain the molarity for loading on the sequencer. Gel 
extraction was not necessary because the RNA fragmentation and bead clean-up that are part of 
the Kapa protocol resulted in library fragments of the desired size of 200 – 400 bp. 
Sequencing was performed for 100 bp single end on Illumina HiSeq 2500 instruments at the 
UCLA BSRC sequencing core for two lanes per batch, for 26 total lanes. On average, we 
obtained approximately 3 million reads per sample. 
 
Sequence processing & gene expression quantitation 
Adapter sequences were trimmed using trimmomatic63. Reads were pseudoaligned to the 6,713 
annotated yeast ORF coding sequences from Ensembl build R64-1-1 using kallisto v.43.064. 
Kallisto was run in strand-specific mode with parameters –l 150 and –s 8. For each transcript, we 
computed transcripts per million reads (TPM) as a measure of expression and used log2(TPM + 
0.5) for downstream analysis. Segregants with fewer than one million reads were removed from 
downstream analysis, and 1,012 segregants passed this filter. We removed 993 invariant 
transcripts with identical expression across all segregants or with log2(TPM + 0.5) less than 1 in 
50% or more of the segregants. Our final dataset included 5,720 transcripts, which were used for 
downstream analyses. These transcripts cover 5,506 of 5,971 open reading frames annotated as 
‘verified’ or ‘uncharacterized’ in the yeast genome40. 
 
Growth Rate Covariate 
Unless otherwise specified, all remaining analyses were conducted in R (www.r-project.org). 
Based on the OD measurements collected during growth prior to harvesting, growth rates were 
calculated for each segregant using the R package grofit and the function gcFitSpline65. The 
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difference between the maximum and minimum OD was recorded for each culture and used as a 
covariate for downstream analysis. 
 
Sequence variants 
Our BY and RM parent strains had earlier been sequenced to very high depth (>200-fold 
coverage of the genome), and GATK66 used to identify 48,254 sequence variants between them. 
These variants (irrespective of whether or not they are part of our marker map) were screened for 
potential functional impact using the Ensembl Variant Effect Predictor67. 
The segregant genotyping is described in Bloom 201315 and Bloom 201521. The 1,012 segregants 
used for this study were genotyped at 42,052 highly reliable markers, which are a subset of the 
total 48,254 sequence differences between BY and RM. Sets of markers that were in perfect 
linkage disequilibrium (i.e. markers never separated by recombination) among the 1,012 
segregants were collapsed to one marker. Our final linkage map comprised 11,530 unique 
markers.  
 
Heritability 
A variance component model was used to estimate additive heritability. First, gene expression 
measurements were corrected for batch covariates and the growth measurement covariate 
described above using a linear model for each gene 
P = DG + R 
where P is a vector of log2(TPM + 0.5) measurements for n segregants for that gene. D is a 
vector of estimated fixed effect coefficients for technical covariates. G is a matrix of n total 
segregants by m technical covariates. Technical covariates included experimental batch and the 
growth rate covariate described above. The vector of residuals is denoted as R. R contains 
expression phenotypes corrected for batch effect and growth covariate. 
We fit the variance component model 
R = a + e  
where a is the vector of additive genetic effects, and the residual error is denoted by e. The 
distributions of these effects are assumed to be normal with mean zero and variance–covariance 
as follows: 
a ~ N(0, σ2

AA); e ~ N(0, σ2
EVI) 

Here, A is the additive relatedness matrix – the fraction of the genome shared between pairs of 
segregants. A was calculated using the ‘A.mat’ function in the rrBLUP R package68. σ2

A is the 
additive genetic variance captured by markers. σ2

EV is the error variance and I is the identity 
matrix. Additive heritability was estimated using custom code adapted from Kang et al69. 
Although our heritability estimates are lower bounds due to counting noise in the number of 
sequencing reads per gene, downsampling of reads suggested that additional sequencing would 
increase heritability for most genes by at most a few percent (Supplementary Figure 1). 
Additionally, we fit a model to estimate the relative contribution of pairwise interactions with 
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R = a + i + e 
where i ~ N(0, σ2

AA(A°A)) and A°A is the Hadamard (entry-wise) product of A, which can be 
interpreted as the fraction of pairs of markers shared between pairs of segregants. σ2

AA is the 
interaction genetic variance captured by all pairwise combinations of markers. The other terms 
are the same as in the additive-only model. The result of ~1/10 as much variance arising from 
interactions relative to additive loci is based on the ratio of the average of the A°A term across 
genes to the average of the A term across genes. When we instead calculated this variance ratio 
for each gene, we found that the mean across genes was greatly inflated by a few extreme 
outliers, while the median was very low (less than 1/100) because almost half of the genes had an 
estimate of zero for the A°A term. 
 
Gene annotations and features 
Gene positions were extracted from Ensembl70 (www.ensembl.org) build 83. Various analyses 
throughout the paper made use of a range of gene-specific features, factors and covariates: 1) 
Total variance in expression was calculated as the sum of the additive and residual variance 
components obtained in our heritability estimates. 2) Expression level was calculated as the 
mean log2(TPM) across segregants, 3) Gene essentiality was coded as a binary factor and 
obtained from SGD40 (www.yeastgenome.org) by searching for genes whose SGD deletion 
phenotype contained the term “inviable”. 4) dNdS values were obtained from Supplementary 
Table S4 in Wall et al., 200571. 5) The number of protein-protein interactions was obtained from 
SGD by downloading all “physical” interactions between genes and counting their number per 
gene. 6) Synthetic genetic interactions were extracted from data from Costanzo et al., 2016 
which provides genetic interaction data for pairwise gene deletions or disruptions between nearly 
all essential (E) and nonessential (N) genes72. Specifically, we downloaded the “NxN”, “NxE”, 
and “ExE” raw genetic interaction datasets from http://thecellmap.org/costanzo2016/, combined 
them into one table, and extracted the lowest interaction p-value for each gene pair. We restricted 
this set using the “strict” definition from Costanzo et al.72 and kept only pairs with interaction p-
value < 0.05 and interaction strength (epsilon) > 0.16 or < -0.12. For each gene, we counted how 
many genes showed a genetic interaction at these thresholds and used this as our measure of 
synthetic genetic interactions. Using the “lenient” or “intermediate” definitions did not alter our 
conclusions. 7) We defined whether or not a gene is a transcription factor by downloading from 
SGD all genes annotated to the GO term GO:0003700 
“transcription_factor_activity_sequencespecific_DNA_binding” and its child GO terms. 8) As a 
proxy for deep evolutionary conservation, we extracted from Ensembl biomart whether or not a 
gene has a human homolog. 
Gene ontology (GO) associations for each gene were downloaded from the Gene Ontology 
Consortium (geneontology.org) on February 16, 2016. We used paralogy information 
downloaded from the yeast gene order browser73 (http://ygob.ucd.ie/). 
 
Characteristics of genes with high or low heritability 
We tested for gene features associated with the degree of heritability by multiple linear 
regression. This regression modeled heritability as the dependent variable and the various gene 
features as predictor variables. We used the ‘summary’ and ‘lm’ functions, and the ‘car’ package 
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in R to perform Type III sum-of-squares ANOVA. This analysis tests for the influence of each 
feature by dropping it from a full model that includes all other terms, and asking whether this 
results in a significantly worse fit as judged by F-statistics. The analysis controls for correlations 
among predictor variables and reports marginal associations only if they are significant over all 
other terms. We did not include interaction terms among predictor variables. 
 
Gene ontology enrichment analyses 
We tested for GO enrichments using the R package topGO74. For analyses in which genes were 
classified as “interesting” or not (e.g. whether a gene has heritability ≥ 90%, or whether it is 
located in a hotspot), we used the Fisher test for enrichment. When using a quantitative gene 
score as the measure of interest (e.g. the heritability), we used the one-sided t.test implemented 
in topGO. We used the ‘classic’ scoring method75, i.e. we did not adjust the enrichments for 
significance of child GO terms. 
 
eQTL mapping 
We21 and others76,77 have previously noticed that power and precision of QTL mapping on a 
given chromosome can be increased by controlling for genetic contributions that arise from the 
other chromosomes in the genome. Our eQTL mapping strategy controls for genomic 
background in two ways. For each gene, we identified large genetic effects segregating on other 
chromosomes and included them as covariates while mapping on a given chromosome. We also 
corrected for any additional polygenic additive background signal on other chromosomes. Then, 
for each gene we used a forward stepwise procedure to map eQTL with a false discovery rate 
procedure. Below we describe our algorithm in greater detail. Throughout, we use the terms 
“eQTL” and “linkage” interchangeably. 
 
Identification of large background genetic effects 
In the process of eQTL mapping on a given chromosome, we wanted to control for the genetic 
contributions from the remainder of the genome. Although this background control is sometimes 
done using a polygenic model with a random effect that captures overall relatedness across the 
genome76 (see below), large individual eQTL effects may not be adequately accounted for by one 
genome-wide relatedness matrix. Therefore, we performed the following procedure to identify 
large genetic effects. Our goal at this stage was not to formally identify these large effects as 
eQTL, but to perform a simple scan for large effects that can be included as covariates to control 
for their effects while mapping on a given chromosome. As our algorithm progresses along each 
chromosome, these large background effects will eventually be detected as formal eQTL. 
1. Gene expression measurements were corrected for batch covariates and the growth covariate 
using a linear model 
P = DG + R 
where P is log2(TPM + 0.5), D is the vector of estimated fixed effect coefficients for technical 
covariates (batch and growth), and G is a matrix of n total segregants by m technical covariates 
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as described in the section on Heritability above. The residual vector is denoted as R and 
contains the corrected expression measurements.  
2. We sought to identify a set of markers linked to large-to-moderate effect QTL. For each gene 
and for each chromosome, we calculated logarithm of the odds (LOD) scores between corrected 
expression levels R and the marker genotypes on that chromosome as 
−n(ln(1−r2) / 2ln(10)) 
where n is the number of segregants with genotypes and phenotypes, and r is the Pearson 
correlation coefficient between segregant genotypes and R. The marker with the largest LOD per 
chromosome was added to a matrix, Z, if it had LOD > 3.5.  
3. For each gene we calculated 
P = DG + CZ + R  
where C is a vector of genotype effects. This step controls for technical covariates as above, but 
additionally controls for large effects included in Z. It results in a new vector of residual 
expression levels R. We repeated steps 2 and 3 twice with this new R, appending additional 
markers to Z for each gene and each chromosome if they passed the threshold of LOD > 3.5. The 
goal of this repeated search for large effect eQTL was to control for large effect loci that were 
detected only after expression values were corrected for the effects of previously identified large 
effect loci. For example, a given chromosome may harbor several large effect QTL, and repeated 
runs of steps 2 and 3 ensure that such loci are captured. At the end of this procedure, we had a 
matrix Z of up to three markers per chromosome per gene that were linked to large-to-moderate 
effect loci. 
 
Correcting gene expression measurements for large background effects and additive polygenic 
background for all chromosomes except the chromosome of interest 
For each chromosome of interest and for each gene expression trait we calculated 
P = DG + CLZL + aL + R 
CL and ZL are the background eQTL effects identified from the procedure above that are not 
located on the chromosome of interest. aL ~N(0, σ2

aLAL) σ2
aL is the additive genetic variance from 

all chromosomes excluding the chromosome of interest. AL was calculated using the ‘A.mat’ 
function in the rrBLUP package using a genetic relatedness matrix that excludes markers from 
the chromosome of interest. The goal of this step was to obtain expression phenotypes R that can 
be used to scan for eQTL on a given chromosome by correcting for sources of variation that do 
not arise from that chromosome: batch and growth effects, large effects on other chromosomes, 
and a polygenic term accounting for any additional genetic contributions arising from other 
chromosomes. 
 
Mapping additive eQTL 
We mapped additive eQTL using a forward stepwise procedure. For each chromosome and for 
each gene we tested for linkage at each maker on the given chromosome with residual expression 
values R (calculated above) using the formula in Step 2 of “Identification of large background 
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genetic effects”. We recorded the location and LOD score of the marker with the highest LOD 
score. To decide if this marker should be included as a QTL in the model, we used a 
permutation-based FDR criterion of 5%.  
FDR was calculated as the ratio of the number of genes expected by chance to show a maximum 
LOD score greater than a particular LOD threshold vs. the number of genes observed in the real 
data with a maximum LOD score greater than that threshold, for a series of LOD thresholds 
ranging from 1.5 to 9 with 151 equal-sized steps of 0.05. The number of genes expected by 
chance was calculated by permuting R relative to segregant genotypes, calculating LOD scores 
for all genes across the chromosome and recording the maximum LOD score for each gene. In 
each run of the permutations, the permutation ordering was the same across all genes. We 
repeated this permutation procedure 1,000 times. Then, for each of the 151 LOD thresholds, we 
calculated the average number of genes with maximum LOD greater than the given threshold 
across the 1,000 permutations. We found the lowest of the 151 LOD thresholds at which the ratio 
of the number of expected genes with an eQTL of at least this threshold to the number of 
observed genes of at least this threshold was < 5%. This LOD threshold was used as a criterion 
for declaring a given QTL in the real data as significant. 
For all genes with a significant linkage (FDR <5%), the peak marker was added to the linear 
model for that gene as X: 
R = QX + e 
Genes without a significant linkage were excluded from additional testing on that chromosome. 
For the set of genes with a significant linkage, we repeated the procedure above by replacing R 
with e. The procedure was repeated for each chromosome until no genes had additional 
significant linkages. 
 
Cross-validation 
The amount of additive variance explained by detected QTL was estimated using cross-
validation. Segregants were grouped based on the batches used for RNA and library preparation. 
Each batch of segregants was left out of the procedure one at a time. The eQTL mapping 
procedure was performed for all the other batches. For the QTL markers detected in this training 
set, the amount of variance explained by the joint model of all significant QTL markers was 
estimated in the held out batch. 
 
eQTL confidence intervals 
eQTL confidence intervals were calculated as 1.5 LOD drops. We extended the eQTL location 
confidence intervals to include all markers in perfect LD with the markers used in eQTL 
detection (marker correlation = 1). 
 
Hotspot identification 

We devised an algorithm with the goal of identifying a set of eQTL hotspots by combining 
information across genetically correlated transcripts and, most importantly, using co-localizing 
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trans-eQTL to better narrow hotspot confidence intervals. The algorithm has three major steps. 
First, we control for unmodeled factors affecting gene expression that may obscure hotspot 
detection and localization. Second, we use a multivariate statistic to identify eQTL hotspots. 
Finally, we use a bootstrap procedure to delineate confidence intervals for hotspot location. We 
describe the steps in greater detail below. 

 

Identification of unmodeled factors affecting gene expression  

1. For each gene with at least one statistically significant eQTL we fit a linear model  

P = DG + QX + a + Re 

where P is log2(TPM + 0.5), D is the vector of estimated fixed effect coefficients for technical 
covariates, and G is a matrix of n total segregants by m technical covariates as described in the 
section on Heritability. X is a matrix of the statistically significant additive QTL peak markers 
for the gene, Q is a column vector of QTL effects, and a is random effect for the contribution of 
polygenic background to additive variance, where a ~N(0, σ2

aA), σ2
a is the additive genetic 

variance from all markers and A is constructed as described above in the section on calculating 
heritability. Re is the residual expression level after the contributions of all additive influences on 
gene expression variation in the model have been removed. 

2. For each gene, Re was scaled to have mean 0 and variance 1. Re for each gene was 
concatenated to form the columns of the matrix R. 

3. We calculated the singular value decomposition (SVD) of R. We also calculated the SVD after 
each column of R was individually permuted. We visually inspected a Scree plot for both 
decompositions and observed that the top 20 eigenvectors explained more variance than expected 
by chance. 

4. The top 20 eigenvectors were appended to the matrix G of covariates. These eigenvectors 
capture systematic expression variation that is shared across genes but that does not arise from 
any known technical covariate, identifiable eQTL, or additive genomic background as captured 
by our markers. These components presumably reflect undetected sources of variation from 
unmodeled experimental factors or non-additive genetic factors shared across genes. Their 
inclusion as covariates in G below follows from the same logic that motivates SVA78; we want to 
account for unmodeled factors that are contributing to gene expression variation to increase 
power to map and resolve eQTL hotspots.  

 

Correcting gene expression for technical covariates, detected additive QTL on other 
chromosomes, and unmodeled factors 

For each chromosome, we extracted all genes that have a significant linkage to that chromosome 
but do not physically reside on that chromosome (i.e., all genes that had a statistically significant 
trans acting eQTL on the given chromosome) and fit the linear model 

P = DG + QLXL + Re 
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This model is similar to that in Step 1, “identification of unmodeled factors affecting gene 
expression”, except that the matrix G is extended to include the 20 eigenvectors corresponding to 
unmodeled factors, and XL only contains statistically significant additive eQTL that do not reside 
on the chromosome of interest. Thus, Re is corrected for all influences on expression that are not 
relevant to mapping hotspots on the given chromosome, but retains all signal that does arise from 
the chromosome of interest. 

For each gene, Re was scaled to have mean 0 and variance 1. Re for each gene was concatenated 
to form the columns of the matrix R. 

 

Dimensionality reduction of R 

Our algorithm for fine-mapping eQTL hotspots makes use of a multivariate statistic (see section 
“multitrait mapping to localize eQTL hotspots”). We observed that on many chromosomes, the 
number of genes with trans linkages exceeded our total sample size. Because the multivariate 
statistic is not defined in this case, we reduced the dimensionality of R using SVD. The top m 
eigenvectors with corresponding eigenvalues greater than those observed from an SVD on 
permuted data were retained as matrix L. The entries of L can be interpreted as weighted linear 
combinations of the expression levels from individual genes, from which all sources of variation 
that do not arise from the chromosomes of interest have been eliminated. These combinations 
capture the majority of additive genetic influences on the given chromosome that are shared 
across genes (i.e. the effects of hotspots on multiple genes), and serve as the input to our hotspot 
detection algorithm. 

 

Multitrait mapping to localize eQTL hotspots 

We computed  

L = u + BX + E 

where u is a vector of means for each of the columns of L, B is a vector of coefficients for the 
effects of X on each of the columns of L, X is the genotype vector for each marker on the target 
chromosome (the model is fit one marker at a time), and E is a matrix of residuals. Next, we 
calculated the residual sum of squares matrix RSS as E`E and LOD scores as 
(n/2)log10(|RSS0|/|RSS|), where |RSS| denotes the determinant of the RSS matrix and RSS0 is the 
residual sum of squares matrix for the null model with no QTL effect79,80. This LOD score 
reflects linkage of genetic markers with the joint expression of the eigenvectors in L. To 
distinguish significant linkages affecting multiple genes from eQTL for individual genes, we 
refer to them as jointQTL (jQTL) in the remainder of this method section. 

We fit the equation above 100 times with permutations of phenotype to genotype for matrix L. 
The 99% quantile of the maximum observed LOD score per permutation was used to decide 
whether the maximum multivariate LOD was significant. If it was significant, then the effect of 
that marker was subtracted from L and the procedure repeated until no more jQTL were detected. 
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Refining jQTL locations and test for hotspots that are better modeled as two neighboring 
hotspots 

We sought to better refine the location of the jQTL given all other jQTL on that chromosome81. 
We collected the statistically significant peak markers for the jQTL identified above. Each peak 
marker was dropped from a joint model one at a time and the peak position was recomputed. 
Peaks that moved by more than 75 kb at this step were removed from the model. For all peaks 
with LOD > 200 we tested the possibility that the multivariate peak was a “ghost” jQTL, i.e. a 
jQTL that appears to be localized between two or more true jQTL that are very closely linked 
and that influence a similar set of genes. We fit a model where the one significant jQTL was 
replaced by a two-jQTL model, with the added criterion that the two jQTL could not be within 
10 markers on either side of the original peak. Permutations for this two-locus model were 
performed as in “multitrait mapping to localize eQTL hotspots”, with the relevant test and null 
statistics being the difference between the fit of the best two-locus model and the best one-locus 
model. Single jQTL peaks were replaced with the best two-locus model if the observed LOD was 
more than 10 greater than the 99% quantile LOD for the permuted data. Through the 
combination of the steps above, this procedure identified significant jQTL that correspond to 
hotspots that influence the expression of multiple genes. 

 

Bootstrap resampling to identify confidence intervals for jQTL location 

For each detected jQTL, segregants were sampled with replacement 1,000 times. For each 
sample, we refit  

Ls = u + BsXs + Bs1Xs1 + E  

where s indicates a bootstrap resample of the rows of a matrix. Xs contained the other significant 
jQTL peak markers from the interrogated chromosome and XS1 is the genotype vector for each 
marker on the target chromosome within a window of 80 markers centered on the observed QTL 
peak being interrogated. LOD scores were computed as in Step 1 of “multitrait mapping to 
localize eQTL hotspots” and the position of the marker with the maximum LOD score was 
retained for each bootstrap resampling. 

For all further analyses, we defined hotspot location confidence intervals as the central 95% 
confidence interval of bootstrap peaks. These intervals were extended to include all markers that 
are in perfect linkage disequilibrium with the markers at the ends of the confidence intervals. 

 
Local eQTL 
To classify an eQTL as local, we required its location confidence interval to overlap the position 
of the gene. We used gene locations expanded by 1,000 bp upstream and 200 bp downstream to 
account for regulatory variants that may be located in the promoter or the 3’UTR. We initially 
classified 2,969 eQTL as local. These 2,969 eQTL affected 2,884 genes. Closer inspection 
revealed that these multiple “local” eQTL per gene often involved one eQTL with a peak very 
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close to the gene and other, more distant eQTL. These more distant eQTL probably reflect trans 
eQTL on the same chromosome as their target gene with location confidence intervals broad 
enough that they happened to overlap the target gene. For our ASE comparisons below, we only 
used the local eQTL that were located closest to a given gene. 
 
Allele-specific expression analyses and comparison to local eQTL 
We used ASE data from two sources. The first source is the mRNA data from Supplementary 
Data S2 from Albert et al., 2014 22. The second source is unpublished data generated by Dr. 
Noorossadat Torabi in the Kruglyak laboratory. Both datasets performed mRNA sequencing on a 
BY/RM diploid hybrid strain. Reads from Albert et al. were ~30 bp in length to match ribosome 
profiling data presented in that paper, while reads from Torabi et al. were 100 bp. In contrast to 
ref 22, the Torabi data was not strand-specific. 
We processed the Torabi data exactly as described in ref22. Briefly, reads were aligned to both 
the BY reference genome and the RM reference genome provided by the Broad Institute 
(https://www.broadinstitute.org/fungal-genome-initiative/saccharomyces-cerevisiae-rm11-1a-
genome-project). We retained reads that mapped uniquely and without mismatch. We considered 
reads mapping to a set of coding SNPs carefully curated to only contain SNPs with good 
mapping characteristics22 and counted the number of reads arising from each allele. Counts for 
multiple SNPs per gene were summed. We performed hypergeometric downsampling to account 
for a small difference (0.5%) in total read counts mapping to BY vs. RM alleles. Genes with 
fewer than 20 reads were discarded. Significance of ASE was gauged using a binomial test, and 
p-values Bonferroni-corrected for multiple testing. Effect sizes are expressed as log2-
transformed fold changes, which in turn are calculated as the RM allele count divided by the BY 
allele count for each gene. 
The Torabi and Albert dataset are independent replicates of a BY/RM hybrid. We can use this 
fact to gain confidence in significance calls (we keep track of whether a gene was determined to 
have significant ASE in one or both of the datasets) and the magnitude of ASE (for each gene, 
we use the mean log2 fold change of the two datasets). Across the two datasets, we had ASE data 
available for 3,340 genes. 
To compare effect sizes between eQTL and ASE, we used log2-transformed eQTL fold changes 
re-computed on un-scaled expression data. ASE fold changes were computed as the log2 of the 
ratio of RM to BY allele counts. Comparisons of effect size across genes were performed using 
standardized major axis (SMA) analysis82. To correlate ASE and eQTL effect sizes to the number 
of sequence variants upstream of each gene, we defined the upstream interval as the sequence 
upstream of the start codon up to the neighboring gene for a maximum of 1,000 bp. We 
acknowledge that the length of sequence considered is therefore different for different genes, but 
believe that this is a reasonable approximation of the regulatory upstream regions in yeast83. 
Sequence variants had been obtained from short-read sequencing of the BY and RM strains used 
in this study15. 
All data necessary to reproduce the ASE analyses and eQTL comparisons is available in 
Supplementary Data File 7. 
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Power analyses for ASE data 
To gauge the statistical power to detect ASE in the two available ASE datasets, we performed 
simulations. We focused on two variables: the effect size (i.e. fold change) and the total read 
coverage available for the given gene. ASE data is overdispersed compared to a binomial 
distribution84. To properly account for this overdispersion in our simulations, we used the 
available ASE data to estimate the overdispersion parameter r in a beta-binomial distribution 
using the R function ‘optim’. We provided the function with the total read count and the 
observed allele count for each gene and used 0.5 as the “true” probability of success. We 
estimated r separately for the Torabi and the Albert data and found that the latter was somewhat 
more overdispersed (r = 0.0054) than the former (r = 0.0041). 
We confirmed that these overdispersion estimates fit the data reasonably well by generating 
simulated datasets using the observed read counts from the Albert and Torabi datasets for each 
gene, along with the estimated r’s. For each gene, we used the mean Albert/Torabi ASE fold 
change to compute the target probability of success. These simulated data are meant to represent 
a random instance of allelic counts across genes, using distributions that closely mimic the real 
data. We generated 50 such datasets using the Albert and Torabi parameters, respectively. We 
computed all pairwise correlations between these simulated Albert/Torabi datasets. The median 
correlation coefficient across genes was r = 0.42 in the simulated data, compared to r = 0.39 for 
the observed Albert / Torabi data. Thus, while the simulations underestimate the overdispersion 
in the real data by a small amount, they provide a reasonable approximation. 

We used these estimates for r to simulate 1,000 instances of allele counts for several 
combinations of total read count and fold change (Supplementary Figure 4). We computed power 
as the fraction of simulations in which a binomial test yielded p < 0.05 or p < 1.5e-5, the 
Bonferroni-corrected threshold for 3,340 tests. We also computed the fraction of simulations in 
which the direction of fold change agreed with the true change. 
These simulations show that power increases with increasing read counts and effect sizes. 
Crucially, even with very high sequencing depth of 5,000 allele-specific reads per gene, the 
power to detect ASE of a magnitude typical for the majority of local eQTL detected here is less 
than 60%. Most genes in the ASE data have substantially lower coverages: the median coverage 
is ~1,000 in the Torabi data and ~200 in the Albert data. Thus, we expect to miss the ASE effects 
of the majority of local eQTL. 
To explore this relationship more precisely, we conducted gene-matched power simulations. For 
each gene, we conducted 100 simulations using the estimated r and sequencing coverage for the 
given ASE dataset. We used the observed eQTL fold changes to compute expected probabilities 
of success. We conducted these simulations separately for the Albert and Torabi data. 
 
Genes affected by hotspots 
To estimate which genes are influenced by a given hotspot irrespective of whether these 
associations reached genome-wide significance for the given gene, we performed a targeted 
forward scan for linkage at the hotspot locations. For each chromosome and for each gene, we 
regressed out the effects of significant QTL detected on other chromosomes as well as the effects 
of technical covariates. Then, for each gene, we repeated the procedure described above under 
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“Mapping additive eQTL”. However, here X was defined to be the set of detected hotspot 
markers for that chromosome, as well as either the closest marker to each gene or, if a gene had a 
genome-wide significant local eQTL, the local eQTL peak marker for that gene. The same FDR 
threshold (5%) was used to identify the best model for each gene. For each gene, coefficients for 
the effects of all significant markers identified by this procedure were determined by multiple 
regression. 
The regression coefficients from this model were used to count the number of genes affected by 
a given hotspot (i.e. all nonzero entries) and to rank genes for inclusion in gene ontology (GO) 
and transcription factor (TF) binding site (TFBS) enrichments, and for plotting in networks. 
Supplementary Data 8 also presents the number of genes with a genome-wide significant eQTL 
overlapping each hotspot. 
For each hotspot, TFBS and GO enrichments were calculated on the 100 genes with the strongest 
increases or decreases in expression from the RM allele at the hotspot, respectively. When fewer 
than 100 genes were influenced by the hotspot in the given direction, we used all genes 
influenced in this direction. For the CBF1 hotspot, the main text reports additional enrichment 
analyses of all 307 linked genes, which we conducted as a follow-up to the scan of the top 100 
target genes. 
In Supplementary Data 8, we report GO enrichments for the genes affected by each hotspot. The 
table shows the top five GO categories for each hotspot that exceeded an enrichment p-value of p 
≤ 0.05 divided by the number of GO categories tested. We adjusted p-values separately for the 
Biological Process, Molecular Function, and Cellular Compartment GO subtrees. We did not 
adjust for the fact that multiple hotspots were tested, nor for the fact that two directions of effect 
(higher expression linked to the BY or the RM allele) were tested. Supplementary Data 12 lists 
all TFBS enrichment results. 
TFBS enrichments for genes affected by hotspots were computed using Fisher’s exact test. The 
underlying relationships between TFs and target genes were based on regulatory relationships 
between genes downloaded from SGD40 on May 1st, 2016. In Supplementary Data 8, we show all 
TFs with significant enrichments at a threshold of p ≤ 1.3e-6, corresponding to a Bonferroni-
corrected p-value controlling for 38,556 tests (189 TFs, 102 hotspots, and two directions of 
effect per hotspot). Supplementary Data 8 also shows the most significant TFBS enrichment, 
irrespective of whether this enrichment was significant after multiple testing or not. 
Supplementary Data 13 lists all TFBS enrichment results. For the CBF1 hotspot, the main text 
reports additional TFBS enrichment analyses based on binding sites annotated by ref 32, using 
their “highest confidence sites”, defined as “those containing conserved motif matches that were 
bound by the corresponding factor at a p-value < 0.001”32, and downloaded from 
http://fraenkel.mit.edu/improved_map/. The resulting TFBS enrichment results for CBF1 were 
very similar to those obtained using the annotation from SGD, which is a superset of the 
annotation in ref 32. 
We displayed the genes that are affected by each hotspot in a manner that reflects significant 
correlations between the genes’ expression levels in order to highlight groups of genes that may 
be functionally related. Because expression levels will become correlated when they are linked to 
the same hotspot, we wanted to estimate the underlying correlation matrix in a manner that is as 
free as possible from correlations induced by the hotspots. We fit a sparse conditional Gaussian 
graphical model (sCGGM85) to the expression data and the genotypes at the hotspot markers. 
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sCGGM decomposes the total correlation matrix among gene expression levels into “direct” 
effects of the genetic markers on each gene expression level as well as a matrix qyy of “indirect” 
effects that genes exert on each other. We fit the model on a multi-core processor using an R 
installation compiled using the Intel Math Kernel Library to speed up linear algebra operations, 
as provided by the University of Minnesota Supercomputing Institute. Following preliminary 
cross-validation on a subset of 2,000 genes, we set the sCGGM regularization parameters l1 and 
l2 to 0.1. 
We fit log2(TPM) values for all 5,720 expressed genes. Prior to fitting, effects of experimental 
batch and yeast culture optical density were removed using a linear model. We also removed the 
effect of the marker closest to each gene. This latter correction was not performed for genes that 
reside in the window tested by bootstrapping around each hotspot, and for genes with a local 
eQTL that overlaps the given hotspot. We chose to keep the local effects for these genes because 
local eQTL at these genes may underlie the hotspot, and we were interested in preserving such 
potential “direct” local effects for our visualizations. 

We used the entries of qyy to generate the network plots in Supplementary Figure 6 and 
Supplementary Data 11. In spite of the shrinkage imposed by the sCGGM algorithm, very few 
entries were estimated to be zero. As a practical threshold for plotting, we excluded values of qyy 
with absolute values less than 1e-5.5. This threshold was set based on visual inspection of a 
histogram of all entries in qyy, which showed a bimodal distribution with a clear peak of values 
exceeding this threshold separated from a peak centered on much smaller values. Network plots 
were generated using the R igraph package86. Supplementary Data 11 shows the resulting 
network plots for all hotspots. 
 
Analysis of genes located in hotspots  
Several hotspots were located close to chromosome ends. Yeast chromosome ends contain 
complex structural variation that segregates among isolates and influences traits 87. In some 
cases, BY and RM differ for the presence of entire subtelomeric blocks of genes 88. When a 
hotspot arises from these regions, the identity of the causal gene cannot be determined using our 
present segregant panel because each segregant either carries all or none of the genes in these 
regions. Further, the marker map we used for mapping stops at the borders of these regions. 
Therefore, these hotspots often have very sharp bootstrap distributions on the first or last marker 
of the linkage map on the given chromosome. We excluded subtelomeric hotspots from the 
analyses of genes located in hotspots because the position of the final marker on a chromosome 
is unlikely to reflect the position of the causal gene, which may well be located distally to the 
marker. We excluded 13 hotspots whose peak marker is within 5 kb of the end of our linkage 
map. We focused the remaining analyses of hotspot genes on 26 non-subtelomeric hotspots with 
confidence regions that contain three or fewer genes, for a total of 58 genes. 
To analyze features of genes located in hotspots, we performed multiple logistic regression. The 
dependent variable indicates whether or not a gene resides in one of these hotspots, and the set of 
gene features described above served as potential predictor variables. Significance tests were 
performed using likelihood ratio tests for dropping each term from a full additive model without 
interactions, as implemented in the R car package. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 24, 2017. ; https://doi.org/10.1101/208447doi: bioRxiv preprint 

https://doi.org/10.1101/208447
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 25 / 44 

Gene ontology analysis on these genes was conducted using Fisher’s exact test in topGO74. 
Genes in the yeast genome tend to be clustered in co-localized groups with similar functions89. 
To test if this clustering influences our GO analyses of genes located in hotspots, we performed a 
randomization analysis. We sampled 1,000 sets of 58 neighboring genes that mirror the 
distribution of the number of genes across the 26 hotspots. For each set, we performed the same 
GO enrichment analysis as for the actual 58 hotspot genes. Within each set, we counted the 
number of significant (at p < 0.05) GO terms and used the fraction of this distribution that 
matched or exceeded the number observed in the real set as an empirical p-value for whether the 
enrichment was globally significant. This test showed significantly more enriched terms than 
randomly expected for the GO Biological Process category (p = 0.001), but only a marginal 
excess for Molecular Function (p = 0.060) and no significant excess for Cellular Compartment (p 
= 0.695). 
This analysis is conservative because in the real data we considered GO terms at much more 
stringent p-value cutoffs than ≤ 0.05. We further explored the FDR for GO term enrichment at 
more stringent p-values by dividing the mean number of terms significant at a given threshold 
across the permutations by the number of significant terms observed in real data. We found that 
for Biological Process, FDR was < 0.05 for GO enrichments with p < 0.005, which includes all 
terms described in the paper. 
Finally, we computed an empirical p-value for each GO term by asking how often its observed p-
value is matched or exceed in the permutations. This analyses controls for different sizes and 
compositions of the different GO terms. All terms reported to be significant in the text had p < 
0.001 in these analyses; enrichments as strong or exceeding the observed ones were never seen in 
1,000 random gene sets. We conclude that our GO analysis of genes in hotspots is unlikely to 
reflect random sampling of genomic regions. 
Plots of hotspot location and gene content were generated using the R package Gviz90. 
Supplementary Data 10 shows plots of gene content for all hotspots. 
 
Comparisons to pQTL 
We used pQTL for 160 proteins identified in the BY/RM cross18. The pQTL coordinates were 
mapped from the sacCer2 to the sacCer3 genome using the UCSC liftover tool 
(https://genome.ucsc.edu/cgi-bin/hgLiftOver).  
The pQTL were mapped using bulk-segregant analysis (BSA) in large pools of segregants where 
each gene was tagged with green fluorescent protein18. BSA does not produce effect sizes in 
units of gene expression levels or variance. We instead used the allele frequency difference 
between high and low GFP pools at the pQTL peak position as a measure of pQTL effect size. 
For eQTL, we used the coefficient of the correlation between scaled expression levels and 
marker genotype. We chose this effect size measure because it, like the BSA allele frequency 
estimates, is bounded by -1 and 1, resulting in more easily interpretable scatterplots. Using other 
measures of eQTL effect such as multiple regression coefficients did not change our conclusions 
about pQTL overlap. 
For the comparison of strong eQTL to significant pQTL, we defined “strong” eQTL as those 
eQTL that explained ≥ 3.5% of phenotypic variance. Our eQTL data had ≥ 99% power to detect 
such eQTL. Under the assumption that the bulk-segregant based pQTL data had similar 
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statistical power as the current eQTL data, these eQTL should be easily detectable as pQTL if 
their effects on proteins are similarly strong.  For the comparison of strong pQTL to significant 
eQTL, we defined “strong” pQTL as pQTL with LOD ≥ 15. This threshold was chosen to pick a 
set of strong pQTL that had similar size (218 pQTL) to the set of strong eQTL (238 eQTL). 
For eQTL that did not overlap a significant pQTL or vice versa, we used the effect size point 
estimate at the respective peak position in the non-significant dataset for plotting in 
Supplementary Figure 8 B & C and for results presented in Supplementary Tables 6 & 8. Data 
underlying these analyses is available as Supplementary Data 15. 
 
Genetic interactions 
For each transcript with at least one significant additive QTL, we fit a model that included the 
batch and growth covariates, the significant additive QTL, and a random effect for polygenic 
background. The residuals from this model were used for the detection of QTL-QTL 
interactions.  
The set of markers used for the detection of QTL-QTL interactions was reduced to 3,106 using 
the findCorrelation function in the R package caret (https://cran.r-
project.org/web/packages/caret/index.html), using a cutoff of 0.99.  All unique combinations of 
markers were tested for each transcript, with the exclusion of the 20 closest markers on the same 
chromosome. QTL-QTL peaks, including the rare case of closely linked QTL-QTL interactions 
occurring on the same chromosome pair, were identified using custom code. The same procedure 
was repeated for five random permutations of segregant identities. A false discovery rate was 
calculated as the ratio of expected to observed peaks at different LOD thresholds. A false 
discovery rate for the marginal scan was calculated as the ratio of expected to observed peaks at 
different LOD thresholds for the subset of marker pairs where one of the pairs had a significant 
additive effect. False discovery rate was controlled at 10% for both scans. 
Additionally, we tested a model of QTL-QTL interactions between significant additive QTL 
only.  For each gene, we regressed out the effects of significant additive QTL, the effect of 
polygenic background, and the effects of technical covariates. Then, for each gene we tested only 
the QTL-QTL interaction effect between significant additive QTL markers. We note that this 
procedure involved the peak markers detected in the section on eQTL mapping, and no marker 
downsampling was performed here. An F-statistic was calculated for each test. The same 
procedure was repeated 10 times with permutations of segregant identities. From the 
permutations, the expected number of significant QTL-QTL linkages was calculated at various 
thresholds. False discovery rate was controlled at 10% for this procedure. Supplementary Data 
16 lists all identified genetic interactions. 
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Figures 

 
Figure 1 – Detection and effects of local and distant eQTL. 
a) Histogram showing the number of eQTL per gene. b) Most additive heritability for transcript 
abundance variation is explained by detected eQTL. The total variance explained by detected 
eQTL for each transcript (y-axis) is plotted against the additive heritability (h2). The diagonal 
line represents a scenario under which the variance explained by eQTL exactly matches the 
heritability; the line is shown as a visual guide. c) Power to detect eQTL as a function of effect 
size, and distributions of observed local and distant eQTL effects. The black curve corresponds 
to the statistical power (right y-axis) for eQTL detection at a genome-wide significance 
threshold. Colored areas show the density of individual significant eQTL (left y-axis) that 
explain a given fraction of phenotypic variance (x-axis) for distant (blue) and local (red) eQTL. 
Note that the x-axis is truncated at 20% variance explained to aid visualization of smaller effects, 
and omits a long tail of rare, large eQTL. d) Scatterplot showing the fraction of phenotypic 
variance explained by the local eQTL (x-axis) and the fraction of variance explained by the sum 
of the distant eQTL for each gene (y-axis). The diagonal line represents the case of equal local 
and distant variance fractions, and is shown as a visual guide. Darker shades of blue indicate a 
higher density of genes. Inset: Violin plots of the distributions of fractions of phenotypic 
variance explained by summed local and distant eQTL, respectively. 
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Figure 2 – Locations of eQTL in the genome. 
a) Map of local and distant eQTL. The genomic locations of eQTL peaks (x-axis) are plotted 
against the genomic locations of the genes whose expression they influence (y-axis). The strong 
diagonal band corresponds to local eQTL. The many vertical bands correspond to eQTL 
hotspots. Point size is scaled as a function of eQTL effect size, measured in fraction of 
phenotypic variance explained. b) The number of gene expression traits linking to each of 102 
identified eQTL hotspots (Methods) are shown as vertical bars. 
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Figure 3 – Genes located in hotspot regions. 
a) Histogram showing the number of genes located in the hotspot regions. b) A hotspot on 
chromosome VIII maps to the gene STB5. The figure shows, from top to bottom: a diagram 
showing the general region on the chromosome, the empirical frequency distribution of hotspot 
peak locations from 1,000 bootstrap samples (Methods), locations of BY/RM sequence variants 
(red: variants with “high” impact such as premature stop codons67; orange: “moderate” impact 
such as nonsynonymous variants; grey: “low” impact such as synonymous or intergenic 
variants), and gene locations. The light blue area shows the 95% confidence interval of the 
hotspot location as determined from the bootstraps. The red line shows the position of the most 
frequent bootstrap marker. c) Genes for which the BY allele at the STB5 hotspot is linked to 
lower expression are enriched for STB5 transcription factor (TF) binding sites in their promoter 
regions. The figure shows enrichment results for all annotated TFs (grey dots), with the strength 
of enrichment (odds ratio) on the x-axis vs. significance of the enrichment on the y-axis. The 
STB5 result is highlighted in red. 
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Figure 4 – Relationship of local eQTL and distant eQTL hotspots. 
a) The fraction of hotspots that contain a genome-wide significant local eQTL. The black 
histogram shows the distribution observed in 1,000 random, size-matched regions of the genome. 
Because of the high number of local eQTL, most hotspots are expected to contain a local eQTL 
even by chance. The observed fraction (red line) still exceeds this random expectation. b) 
Distribution of trans eQTL at local eQTL in non-hotspot regions. The genome was divided into 
non-overlapping bins centered on local eQTL that did not overlap a hotspot. We counted the 
number of trans eQTL peaks in each bin. The figure shows the frequency (y-axis) of bins with a 
given number of trans eQTL (x-axis). The observed distribution is shown by red lines, and the 
distributions obtained in 1,000 randomizations of non-hotspot trans eQTL is show by clouds of 
black circles. 
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Figure 5 – Non-additive interactions between eQTL. 
a) Map of detected interactions between pairs of eQTL. The position of the affected gene is 
shown on the y-axis. The x-axis shows the locations of the two interacting eQTL in each pair, 
which are connected by horizontal lines. Line width scales as a function of the strength of the 
interaction term. Only pairs with a significant interaction term detected in a genome wide search 
(all genome positions by all genome positions for all expressed genes) are shown. eQTL pairs 
often involve a local eQTL (visible as line endpoints falling along the diagonal) and distant 
eQTL hotspots (visible as line endpoints forming vertical bands). b) Boxplots of the fraction of 
phenotypic variance (y-axis) explained by genetic variation as captured by genome-wide 
relatedness in an additive (“A”, left), and interactive (“AA”, right) model. 
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Supplementary Figures 
 

 
Supplementary Figure 1 – Mean additive heritability across all transcripts as a function of 
downsampling the total number of reads per sample. 
The downsampled number of reads per sample (x-axis) is plotted against the mean additive 
heritability across all genes (y-axis). The black line is a non-linear least squares fit. 
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Supplementary Figure 2 – Heritability (h2) compared to other measures. 
In all panels, heritability for each gene is plotted on the y-axis and compared to: a) The average 
TPM for a gene across the segregants. b) The number of detected eQTL per gene. c) The fraction 
of phenotypic variance explained by the largest effect eQTL per gene. The diagonal line 
represents the case of all heritability mapping to the strongest eQTL, and is shown as a visual 
guide. d) The fraction of additive heritability explained by the largest effect eQTL per gene. The 
vertical line represents the case of all additive heritability being explained by the strongest 
eQTL, and is shown as a visual guide. 
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Supplementary Figure 3 – Allele-specific expression (ASE) compared to local eQTL effects. 
a) For each gene present in the ASE datasets, we show the magnitude of ASE in the diploid 
BY/RM hybrid (x-axis) vs. the magnitude of the local eQTL in the current data (y-axis). Positive 
values indicate higher expression in RM compared to BY. The vertical and horizontal lines 
indicate ASE and local eQTL effects of zero, respectively. The diagonal line represents identical 
ASE and local eQTL effects. Local eQTL effects are computed at the position of all genes, 
irrespective of whether the local eQTL was significant. b) As in a), but showing only genes with 
significant ASE in at least one ASE dataset. Genes without a significant local eQTL are 
highlighted by black circles. We show names of genes that have ASE in both datasets but do not 
have a significant local eQTL. c). Boxplots showing absolute local eQTL effects for genes with 
no, one, or two significant ASE datasets. d) as in a), but only for genes with a significant local 
eQTL. Genes with high statistical power to detect ASE are highlighted by blue circles. We show 
the names of genes with local eQTL and high ASE power but no significant ASE, and names of 
genes with significant ASE and a local eQTL with opposite direction of effect (TDH3, YTA12, 
DBP5).  
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Supplementary Figure 4 – Power to detect Allele-specific expression. 
The figure shows the results from a simulation study that varied the strength of true ASE (x-axis) 
and the depth of sequencing coverage, expressed as the number of reads covering the two alleles 
of the gene. Different depths of coverage are shown as colored lines. The blue line indicates the 
median coverage per gene observed in ref 22, and the grey lines indicate the 10th and 90th coverage 
quantile in the same reference. The green area indicates the fold-changes observed for local 
eQTL to show the ASE magnitudes that may be expected in real data. On the y-axes, the panels 
show: Left: Power to detect ASE at nominal significance of p ≤ 0.05, Middle: Power to detect 
ASE with Bonferroni correction across the number of expressed genes, Right: the fraction of 
simulated ASE datasets in which the observed direction of ASE matched the true direction, 
irrespective of statistical significance. 
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Supplementary Figure 5 – Gene ontology (GO) enrichments of genes located in hotspots. 
For each major GO category of “Biological Process”, “Molecular Function”, and “Cellular 
Compartment”, the figure shows two panels. The most significant GO term as well as GO terms 
discussed in the main text are indicated. Top panels: Relationship between strength (x-axis) and 
significance (y-axis) of the GO enrichment. Each GO term is plotted as a dot, with size scaled as 
a function of the number of terms in the GO group. Note how the relationship between 
enrichment strength and significance depends on GO category size. Different levels of 
significance are indicated by colored circles. With decreasing stringency, these colors indicate: 
Red: p < 0.05 after Bonferroni correction for the number of GO terms tested; Orange: 
permutation-based p < 0.005, corresponding to an FDR of 5% (Methods), Blue: GO term 
specific permutation-based p < 0.01. Bottom panels: The number of genes in each GO term 
expected to be significant based on GO category size (x-axis) vs. the number of genes in each 
GO term observed to be significant. Color codes are as in the top panels. The diagonal line 
indicates observations that match the expectation, and is shown as a visual aid. 
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Supplementary Figure 6 – The CBF1 and ERC1 hotspots. 
a & c) The regions surrounding each hotspot. From top to bottom: a diagram showing the general 
region on the chromosome, the distribution of hotspot peak locations in 1,000 bootstrap runs, 
locations of BY/RM variants (red: variants with “high” impact such as premature stop codons67; 
orange: “moderate” impact such as nonsynonymous variants; grey: “low” impact such as 
synonymous or intergenic variants), and gene locations. The blue area shows the 90% confidence 
interval of hotspot location, and the lighter blue area shows the 95% confidence interval, both 
determined from the bootstraps. The red line shows the position of the most frequent bootstrap 
marker. The region tested in the bootstrap analysis is delimited by two markers, which are shown 
as grey lines at the outer edges of the plots. These markers and the peak markers are padded to 
span all variants that are in perfect linkage disequilibrium with the marker used in the analysis. b 
& d) A visual representation of the top 50 genes affected by each hotspot. Each gene is shown as 
a dot, with size scaled as a function of the size of the effect of the hotspot on the gene. For CBF1, 
we show genes with higher expression linked to the BY allele (yellow dots). For ERC1, we show 
genes with lower expression linked to the BY allele (light blue dots). Local eQTL that overlap 
the 95% confidence interval of hotspot location are indicated by red circles, and genes with a 
local eQTL anywhere in the region tested in the bootstrap analysis are indicated by orange 
circles. Edges between genes indicate co-expression in a gene regulatory network fit using code 
from ref 85. Blue edges indicate positive co-expression, and red edges indicate negative co-
expression. Genes mentioned in the main text are highlighted. In c), note the connection between 
the local eQTL for CBF1 and the distant eQTL for CAP1. In d), note the group of genes with 
methionine-related functions, including MET17. 
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Supplementary Figure 7 – Distant eQTL and pQTL hotspots. 
The figure shows the fraction of 154 genes assayed for mRNA variation in the current data and 
for protein variation in ref 18 that have an eQTL or pQTL in a given bin along the genome (x-
axis). eQTL from the current dataset are shown in the upper half of the figure, and pQTL from 
ref 18 are shown in the bottom half with an inverted scale. Note that chromosome III is omitted 
from the figure because eQTL hotspots on this chromosome cannot be detected as pQTL due the 
experimental design used to detect the pQTL18. 
 
  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 24, 2017. ; https://doi.org/10.1101/208447doi: bioRxiv preprint 

https://doi.org/10.1101/208447
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 44 / 44 

 
Supplementary Figure 8 – Comparison of individual distant eQTL and pQTL. 
Each panel shows the effect size of linkage of mRNA levels for a given gene to a given genomic 
position (x-axis; correlation coefficient between mRNA level and marker genotype) compared to 
the effect size of linkage of protein levels for the same gene to the same genomic position (y-
axis; difference in frequency of the BY allele between pools with high and low expression of the 
protein as measured by green-fluorescent protein tags18). We chose these measures of effect size 
because they both can range from -1 to 1, facilitating visual comparison across different 
experimental designs. Positive values indicate higher expression in RM compared to BY. Only 
distant QTL located on different chromosomes than their target gene are shown. a) Effects at 
peak markers for overlapping significant eQTL and significant pQTL. Overlapping QTL with 
different direction of effect presented in Supplementary Table 7 are highlighted in blue; extreme 
outliers are marked in the figure by the genomic location of the QTL and the name of the 
affected gene. The dashed vertical and horizontal lines indicate zero eQTL and pQTL effect, 
respectively, and are shown as visual aids. b) At all distant eQTL, the figure shows mRNA and 
protein effects at the eQTL peak marker, irrespective of significance in pQTL data. Dot size 
scales as a function of eQTL effect size. Red circles denote eQTL that overlap a significant 
pQTL. Blue circles denote strong eQTL that do not overlap a pQTL as listed in Table 
Supplementary Table 6; the most extreme cases of eQTL without a pQTL are indicated. c) At all 
distant pQTL, we show mRNA and protein effects at the pQTL peak marker, irrespective of 
significance in eQTL data. Dot size scales as a function of pQTL effect size. Red circles denote 
pQTL that overlap a significant eQTL. Blue circles denote strong pQTL that do not overlap an 
eQTL as listed in Supplementary Table 8; the most extreme cases of pQTL without an eQTL are 
indicated. 
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