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Abstract

The molecular regulatory network underlying stem cell pluripotency has been intensively studied, and

we now have a reliable ensemble model for the ‘average’ pluripotent cell. However, evidence of significant

cell-to-cell variability suggests that the activity of this network varies within individual stem cells, leading

to differential processing of environmental signals and variability in cell fates. Here, we adapt a method

originally designed for face recognition to infer regulatory network patterns within individual cells from single-

cell expression data. Using this method we identify three distinct pluripotency configurations – corresponding

to naïve, primed and ‘formative’ states – and associate these configurations with particular combinations of

regulatory network activity archetypes that govern different aspects of the cell’s response to environmental

stimuli, cell cycle status and core information processing circuitry. These results show how variability in

cell identities arise naturally from alterations in underlying regulatory network dynamics and demonstrate

how methods from machine learning may be used to better understand single cell biology, and the collective

dynamics of cell communities.

Introduction

The pluripotent epiblast exists transiently in the developing embryo and is the founding tissue for all somatic

and germ cells in the adult mammalian organism1;2. Because of this remarkable ability there has been sustained

interest in deciphering the molecular regulatory mechanisms that underpin pluripotency3. From these studies,

it has become increasingly clear that the functional state of pluripotency emerges in a complex, and as yet

incompletely understood, way from the collective dynamics of underpinning molecular regulatory networks,

which involve numerous protein-protein, protein-DNA, epigenetic and signaling interactions4–10.

The nature of the regulatory relationships in these underlying networks have accordingly become a focus

of increasing research attention11;12. Typically, regulatory interactions are inferred from measurements taken
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from cellular aggregates, usually containing many thousands of cells, and therefore provide an ensemble view

that characterizes those interactions that are typical for the ‘average’ pluripotent cell13. These ensemble models

have been tremendously useful in dissecting the molecular basis of pluripotency and have become successively

refined in recent years4;5 to include, for example, the processing logic of combinatorial interactions11;12.

However, although undoubtedly powerful tools to understand pluripotency, these networks are fundamentally

derived from bulk cell measurements and there is now a need to better understand how these ensemble models

relate to regulatory processes within individual pluripotent cells14–17.

The relationship between ensemble and individual cell regulatory networks are particularly relevant to the

study of pluripotency for two reasons.

Firstly, it is now well observed that apparently functionally homogeneous pluripotent cells exhibit substan-

tial cell-to-cell variability in gene/protein expression patterns, suggesting that pluripotency as a function is

compatible with a variety of different molecular configurations18–20. This has led to acceptance that there are

numerous alternate states of pluripotency – most notably naïve and primed states corresponding to the epiblast

of the blastocyst, and the epiblast in the egg cylinder of the mouse post-implantation embryo respectively –

each with subtly different developmental potential. Our understanding is such that propagation of these alter-

nate pluripotent states in vitro is now routine, using different cocktails of growth factor supplementation21–26.

Importantly, these distinct populations can each contribute to all principal embryonic lineages in vitro and

are apparently inter-convertible25;27;28, suggesting a remarkable plasticity in the dynamics of the underlying

regulatory networks. It seems likely that as our understanding of pluripotency develops, other varieties of

pluripotency will be discovered and sustained in vitro. Indeed, it has recently been proposed that pluripotent

cells also progress through an important formative state, in which the naïve regulatory network is partially

dissolved and cells become competent for lineage allocation29;30.

Secondly, the epiblast appears insensitive to the removal or addition of cells1, suggesting a level of functional

redundancy between individual cells that is supportive of the notion that pluripotent cell populations in vivo

behave more like a ‘collection of transition cells’1, than a defined developmental state per se. This collective

behavior presumably also emerges from the dynamics of the underlying regulatory networks, although the

mechanisms by which such collective dynamics are regulated by intracellular regulatory networks is still largely

mysterious31. Taken together, these findings suggest that the regulatory network underlying pluripotency exists

in a number of interchangeable configurations, although the nature of these different configurations, and their

relationships to one another, are not yet fully understood14;16.

Here, we sought to develop a method to interpret single cell data to better understand how alterations in

regulatory network activity within individual cells gives rise to variability within pluripotent cell populations.

To approach this problem, we were inspired by a method from the early days of face recognition, which

de-constructs facial images into facial archetypes, known as eigenfaces, that are learned from a training set of

portraits, and reconstructs unseen faces as weighted sums of these learned eigenfaces32;33 (see Fig. 1). Although

face recognition methods are now highly sophisticated, the original implementation of the eigenface routine

is essentially an ingenious, although mathematically straightforward, implementation of principal component

analysis (PCA) that relies on the fact that each facial image may be considered as a matrix of numbers, and

therefore reshaped to a vector and associated with a point in a high-dimensional space. Thus, given a set

2

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 25, 2017. ; https://doi.org/10.1101/208470doi: bioRxiv preprint 

https://doi.org/10.1101/208470
http://creativecommons.org/licenses/by-nc-nd/4.0/


PC1 PC2 PC60

…

95%

…

…

PC N2

100%

…

…

set of training images of size N×Na b

training set

eigenfaces

individual

classification

36%

×
w

×
w

×
w+ + +… … × 

w + +

71%

N26021

PC1

PC2

PCn

Figure 1: Eigenfaces for face recognition. (a) A training set of portrait images of size N × N is used

to extract the facial archetypes (eigenfaces) encoded by the N2 principal components of the training set. A

small subset of eigenfaces explains most of the variability in facial features between individuals. In this specific

example from The Extended Yale Face Database B34;35, a recognizable version of an original test image can

typically be reconstructed from a weighted sum of the first 5.9% (60 out of 1024) eigenfaces, which explain

95% of the variance in the data. (b) Each test face may be reconstructed as a weighted sum of eigenfaces, and

thereby efficiently encoded by a weight vector, which may be thought of as a point in a much lower dimensional

space than the original feature space. In this case although each face is initially associated with a point in a

1024 dimensional space (corresponding to the 1024 pixels in the original image), a recognizable version may

be reconstructed in just 60 dimensions (the corresponding weightings). Different images of the same person

typically occupy a region in the principal component space around a central characteristic image.

of training portrait images, PCA may be used to extract the characteristic features – the eigenvectors of the

training covariance matrix, also known as principal components – that capture significant variation within

the training set (Fig. 1a). By transforming these eigenvectors back into matrices of the same dimension as

the images in the training set they can be visualized as facial archetypes (or ‘eigenfaces’) of the training set

(Fig. 1a). Remarkably, it was observed that only a small number of eigenfaces (typically ∼ 5%) is sufficient to

explain 95% of facial details, and therefore unseen portrait images can be reliably reconstructed as a weighted

sum of a very small number of eigenfaces (Fig. 1a). Importantly, this means that the vector of weights alone (i.e.

∼5 numbers) is typically sufficient to recognize an individual from their portrait, thus significantly reducing the

dimension of the recognition problem (Fig. 1b).

While this does not immediately appear to relate to the study of pluripotency we surmised that a similar

approach could be used to reconstruct pluripotent cell identities from single cell data, as a weighted sum

of regulatory network archetypes. Furthermore, just as portrait images can be efficiently encoded using the

eigenface weight-vector, we wanted to determine if complex patterns of gene/protein expression within individual

cells could similarly be encoded by a low-dimensional representation in terms of the activity of these network

archetypes, thereby facilitating more accurate classification of cell identities from noisy expression data.
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Results

Integrating regulatory interactions with single cell data

We first sought to obtain a reliable training dataset of protein expression patterns in pluripotent cells across

multiple intracellular information levels, including the protein abundance of core transcription factors4;5, the

phosphorylation status of signaling pathways6–8 and global transcriptional activity based on histone acetyla-

tion9;10. Such systems-level proteomic information at single-cell resolution is currently only available through

immunolabeling followed by mass-cytometry, a highly specialized technique that is available to only a small

number of groups36. Thus, we sourced a relevant training dataset from the literature37. In total this training

data consists of expression patterns of 34 proteins and protein modifications in 31,876 pluripotent cells from

two mouse embryonic stem cell (mESC) lines (Nanog-GFP [NG] mESCs and Nanog-Neo [NN] mESCs that

express green fluorescent protein [GFP] or a Neomycin resistance gene respectively from the endogenous Nanog

locus38), grown in low-serum medium supplemented with Leukemia Inhibitory Factor (LIF; 0i conditions). In

addition, this dataset also contains expression levels of the same features in 15,540 NG mESCs and 15,752 NN

mESCs grown in medium supplemented further with a GSK3β inhibitor and a MEK inhibitor (known as 2i

conditions, which support the pluripotent ‘ground’ state39), as well as expression time-course data containing

834,548 secondary mouse embryonic fibroblasts (MEFs) generated from both cell lines that express Yamanaka

reprogramming factors40 under the control of a doxycycline (dox) inducible promoter38.

To interrogate this data, we sought to supplement it by constructing a directed regulatory network specific

to the features (transcription factors, surface epitopes, phosphorylation, etc.) that had been quantified (Fig. 2).

Features (that is, proteins profiled) in this signed, directed regulatory network are represented as nodes and

regulatory interactions between features are represented as edges between pairs of nodes (an edge is positive

if it is activating, and negative if the edge is inhibiting). Evidence for node interactions was extracted from

transcription factor binding data from ChIPBase 2.041, and information on other known interactions were

sourced from the Kyoto Encyclopedia of Genes and Genomes (KEGG)42 and Reactome43 (see Table S1 for

details). Unconnected nodes, such as the inert GFP reporter, and cell cycle markers pH3 and IdU were removed

from the analysis. The resulting network G contains 27 nodes, connected by 124 edges (Fig. 2a).

The overall structure of G is conveniently encoded in the network adjacency matrix,

Aij =

s, if nodes i and j are connected

0, otherwise
(1)

where s = +1 for activating interactions, and s = −1 for inhibitory interactions.

The first step in our process consists of combining this regulatory network with the single cell expression

training set. Trivially, the expression data represents the activity of the nodes in the network within each

cell, but does not take into account regulatory interactions between nodes. To incorporate this information,

we assumed that the activity of each edge within the network is determined by the signal intensities of both

interaction partners within the individual cell. Accordingly, denoting the vector of expression values in a given
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Figure 2: Integrated regulatory network derived from the literature. Schematic shows the structure

of the inferred regulatory network between the factors profiled, derived from the literature (see Table S1). The

network accounts for multiple molecular information processing mechanisms, at multiple different spatial loca-

tions in the cell, including interactions between: transcriptional regulators (green squares), chromatin modifiers

(petrol octagons), cell cycle factors (sea green rounded squares), signalling cascades (light green circles), and

surface molecules (yellow diamonds).

cell by v, we created a weighted adjacency matrix W

Wij =

vi × v
s
j if nodes i and j are connected

0 otherwise.
(2)

Thus, we associated a high weight to a positive edge if both the source and the target were highly expressed,

and a high weight to a negative edge if the source was highly expressed and the target was expressed at a

low level. Informally, this representation may be thought of as assigning high confidence that a given edge is

expressed within an individual cell if its source and target nodes are expressed consistently with the sign of the

edge relating them. The resulting weighted adjacency matrix W is a simple measure of the extent to which the

network G is expressed in the cell given the expression patterns observed in that cell. By analogy with the face

recognition problem, W may be considered as the ‘image’ of the cell.

As with the eigenface routine, this matrix may be easily restructured as a vector. In this case, W may be

coerced into a vector of length m (where m is the number of edges in the network, here 124), by first reshaping

it to a vector of length n2 (where n is the number of nodes in the network, here 27), and then squeezing out

all entries for which Aij = 0. This procedure effectively injects the expression data with prior knowledge of the

network structure, leading to an expansion of the original feature space from Rn to Rm (generically a connected

network will have more edges than nodes, unless it is a tree). Using this method, we inferred the activity of

the regulatory network G within each of the ∼ 9× 105 individual cells, and treated NG mESCs cultured in 0i
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conditions as a training dataset and held back the remaining data to test the model.

Regulatory networks characterize alternate states of pluripotency

Once the training data had been produced, we conducted principal component analysis. In the same way that

the principal components (PCs) in the eigenface routine may be reshaped and interpreted as facial archetypes

from which individual portraits may be reconstructed, the principal components here may be reshaped and

interpreted as network archetypes from which pluripotent cell identities may be reconstructed. However, while

only ∼ 5% of the PCs are required for accurate face recognition, we found that (for both NG and NN mESCs)

∼ 23% of the PCs were required to explain 95% of the variance in our training data (Fig. 3a). The larger

number of PCs required is not unexpected, and is reflective of the high levels of noise that are characteristic

of high-throughput single cell data44. Therefore, rather than using the proportion of variance explained to

determine the appropriate number of PCs to retain for subsequent analysis, we sought to identify the minimal

number needed to preserve the natural clustering structure in the data.

We found that four distinct clusters of cells were readily identifiable in the full dataset (natural clustering

structure was obtained by fitting to a Gaussian mixture model to the data and selecting the most appropriate

model, here with four components, by minimizing the Bayesian information criterion [BIC], see Fig. 3d and

Fig. S1d). This natural clustering was robustly retained when projecting the data onto the first three PCs

(Fig. 3b); higher components only added noise to this basic clustering structure. This analysis suggests that

PCs 1-3 account for the biological variability present in the data, while higher components primarily correspond

to technical variability.

Since the PCs are linear combinations of the underlying features (here, network edges) each one may be

thought of as regulatory network archetype, and the expression pattern of each cell in the training data may

therefore be reconstructed as a weighted sum of these archetypes. By analogy with eigenface routine, we will

call these network archetypes eigen-networks. Since PCs 1-3 account for the biological variability in the data,

the structure of the eigen-networks associated with these components are of particular interest. The first eigen-

network (PC1 in Fig. 4a) naturally separated cells into two subsets (compare Fig. 3b), based upon overall activity

of regulatory interactions (Fig. 3c). A subset of cells with low overall edge expression (cluster 1 in Fig. 3b)

primarily contained apoptotic cleaved Casp3-positive cells (Fig. 3c) and cell cycle arrested cells (Fig. S1g) that

lacked expression of the hallmarks of pluripotency, such as Oct4, Nanog and Klf4 (Fig. 3c). In contrast to this

small subset, the majority of cells displayed high overall expression of pluripotency related-factors, including

Oct4 (Fig. 3c).

The majority pluripotent population identified by the first eigen-network naturally separated into 2 dis-

tinct further sub-populations (clusters 2, 3 in Fig. 3b) by expression of the second eigen-network (PC2 in

Fig. 4a), which broadly captures the strength of connection between the cell’s signaling pathway activity and its

core transcriptional regulatory circuitry, including activity of β-catenin (Wnt-signalling), Stat3-phosphorylation

(LIF-signalling) and Erk-phosphorylation (FGF/MEK-signalling). This component therefore captures integra-

tion of the primary axes of extrinsic control of the pluripotent ground state39, and distinguishes cells in the

pluripotent ground state (cluster 3), which are characterized by high Nanog, Oct4 and Klf4 expression and

strong integration of signaling and core transcriptional regulatory programs, from those in the primed pluripo-
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Figure 3: PCA identifies three distinct pluripotent states within ES cells cultured in 0i conditions.

(a) Cumulative proportion of variance explained by principal components (PCs) of the training data for NG

mESCs and NN mESCs respectively. The dotted red line marks the commonly used threshold value of 0.95. (b)

Density plot of training data from NG mESCs projected onto the first three components. Four clear clusters

are apparent, labeled 1-4, corresponding to distinct states of network activity. Each hexagonal bin contains

at least 5 cells. (c) Heat map of expression of important nodes in NG mESCs projected onto PCs 1-3. Mean

expression values are displayed for each hexagonal bin. Distinct alternate states of pluripotency are apparent,

based upon edge co-expression patterns. (d) Bayes information criterion (BIC) as a function of the number of

Gaussian mixture components fitted to the first three principal components. The arrow marks the elbow in

the plot, indicating the optimal number of components (here 4). (e) Projection of a test dataset of expression

patterns from NG mESCs cultured in 2i conditions onto the training PCs (panel b). Panels b-e show data from

NG mESCs, corresponding data for NN mESCs is shown in Fig. S1.

tent state (cluster 2), which are characterized by low Nanog and Klf4 expression, and more sporadic connectivity

between signaling and transcriptional controls (Fig. 3c).

In addition to these primary populations we also observed small subset of cells (∼ 2%) that could be
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Figure 4: Regulatory network activity archetypes define alternate pluripotency states. (a) Graphical

representation of the first three PCs, interpreted as regulatory network archetypes. Color and edge width

indicate signed deviation from the mean. (b) Representative regulatory network states for naïve, formative,

and primed pluripotency states. The network corresponding to arrested/apoptotic cells (cluster 1) in Fig. 3b is

also shown for reference.

distinguished from the primed and naïve pluripotent states based on expression of the third eigen-network (see

population 4 in Fig. 3b). This fourth population is similar to the primed state (population 2) with respect

to expression of Nanog (both low; see Fig. 3c) and similar to the naïve state (population 3) with respect

to expression of Klf4 (both high; see Fig. 3c). However, it is quite distinct with respect to a number of

surface markers. Notably cells in cluster 4 are CD73high (Nt5e; Fig. 3c), and CD44high and CD54low (not

shown), suggesting an increased interaction with the extracellular matrix. These differences are not simply a

manifestation of mitosis or cell cycle arrest, since the proportion of M-phase cells in this population is comparable

to both the naïve and primed states and the proportion of G0-phase cells is comparable to the primed state (Fig.

S1f-g). Rather, since Klf4 has been implicated in driving the transition from an epiblast stem cell phenotype to

an embryonic stem cell phenotype27, we conjecture that this population is an intermediate between the naïve

and primed pluripotent states. In accordance with this notion, we observe that it has the highest total within

cluster variance, indicating the presence of substantial cell-cell variation (see Fig. S1e), which is typically found

in cells transitioning from one state to another45. While the full nature of this state has yet to be determined,

it is consistent with the recently proposed ‘formative’ phase of pluripotency, characterized by dissolution of core

pluripotency sustaining mechanisms and increased interaction with the extracellular matrix30.

To investigate this possibility further we constructed representative networks for each of the four identified

states using the first three eigen-networks and the weight vector corresponding to the centroid for each cluster

(see Fig. 4b). The resulting networks may be thought of as representations of the characteristic patterns of
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network activity within each of the four states we identified. These networks show that: (1) the naïve state is

characterized by strong co-regulatory activity between members of the core transcriptional circuit and strong

integration of signalling pathways with this core sub-network (Fig. 4b). (2) By contrast, the formative state is

characterized by partial dissolution of the core transcriptional circuit (in particular a loss of Nanog, Sox2 and

p53 activity), which is accompanied by changes in cell-cell (CD54) and cell-matrix (CD73, CD44) mediated

signaling. However, cells in this state continue to perceive environmental signals via the LIF/Stat3 signaling

pathway (Fig. 4b), indicating continued receptivity to environmental cues. (3) The subsequent primed state is

marked by a further dissolution of the core transcriptional circuit, including the loss of Klf4 regulatory activity

(Fig. 4b) and a decrease in LIF/Stat3 signaling (Fig. 4b), suggesting that these cells are transitioning out of

pluripotency. Accordingly, the primed state is also marked by the positive regulation of EpCAM (Fig. 4b),

suggesting the onset of cell polarization, as is observed in the epiblast of the egg cylinder in vivo 46.

In summary, this analysis revealed the presence of four distinct cellular communities, each characterized by

different levels of activity of regulatory network archetypes, within mouse ES cell populations cultured in 0i

conditions. To determine how general these results were we also examined network expression patterns mESCs

cultured in 2i conditions, which stimulate Wnt signaling activity and reduce Erk-phosphorylation using small

molecule inhibitors of MEK, and thereby shield the core transcriptional circuitry from extrinsic differentiation

cues39. In accordance with the nature of these conditions we found that populations 1, 2 and 4 (corresponding to

differentiated, primed and formative pluripotency states) were comprehensively depleted in mESCs cultured in

2i conditions, while cluster 3 (corresponding to the naïve state) was robustly maintained (Fig. 3e). These results

re-affirm the potency of these conditions to purify the ground state of pluripotency, and provide mechanistic

insight into the molecular mode of action of these conditions.

Taken together these results indicate the presence of three distinct states of pluripotency each distinguished

by characteristic patterns of regulatory network activity within individual cells.

Individual cells transition through distinct network activity states during repro-

gramming

To further investigate the biological importance of the regulatory network archetypes we had identified we then

sought to determine their temporal expression during cellular reprogramming of somatic cells to pluripotency.

During cellular reprogramming, pluripotency regulatory network activity is typically initially established

through the ectopic expression of four trans-genes, Oct4, Sox2, Klf4 and c-Myc (OSKM)40. Subsequently,

the concerted action of these core reprogramming factors leads to profound changes to the cellular phenotype,

ultimately re-instating a self-sustaining pluripotent identity in a small proportion of cells. The dynamics of

this process are thought to be initially driven by low frequency stochastic events followed by the deterministic

progression through a series of characteristic intermediate, partially reprogrammed, expression states47. It is

presumed that these intermediate partially reprogrammed states correspond to partial re-configurations of the

pluripotency regulatory network48. However, the relationships between regulatory network reconfigurations and

the dynamics of reprogramming are not well understood.

To address this issue, we considered data from a reprogramming time-course in which the expression of

ectopic OSKM transgenes were induced in secondary MEFs by doxycycline (dox) supplementation of the MEF
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Figure 5: Dynamics of regulatory network activity during cellular reprogramming. (a) Violin plots of

changes in surprisal (Eq. (3)) over time. A gradual decrease in surprisal in the population accompanies cellular

reprogramming. The red arrow marks the end of doxycycline treatment. (b) The fraction of cells classified into

each of the four clusters identified in the training data. Class labels are as in Fig. 3b.

culture medium for 16 days, followed by a further 14 days in 0i conditions without dox37.

To analyze this data we first fit our training data (expression patterns of NG mESCs cultured in 0i conditions)

projected onto the first three eigen-networks (as described above) with a Gaussian mixture model (GMM) with

four components. This GMM may be thought of as an estimate of the joint probability density function P(x)

for the training data, projected onto the first three PCs (where x ∈ R3 identifies points in PC space). We

then projected the reprogramming time-course data onto the first three PCs from the training data and used

the fitted GMM to estimate the likelihood of observing the expression patterns seen in the reprogramming

time-course within the pluripotent cell population. That is, if v is the expression pattern of a given cell in the

reprogramming time-course projected onto PCs 1-3 from the training data, we calculated P(v) as a measure of

the likelihood of observing v in the training population. The negative logarithm of this probability

S(v) = − log2 P(v) (3)

is the amount of information imparted by observation v with respect to the probability measure P 49. Informally,

S(v) is a measure of the ‘surprisal’ of observing the expression pattern v in a pluripotent population: cells

that express proteins in a pattern similar to that often seen in pluripotent cells have a low surprisal; while

cells that express proteins in a pattern that is unusual for pluripotent cells have a high surprisal. To obtain

assessment of the dynamics of reprogramming, we calculated the surprisal for each of the 263,692 NG cells in

the reprogramming time-course, and monitored how the distribution of surprisal in the population changed over

time during reprogramming.

We first observed that the surprisal remained high, and approximately constant, for the first 10-12 days of

reprogramming (Fig. 5a), indicating that cells in the starting population (in this case NG MEFs) consistently

exhibited expression patterns that are unusual for pluripotent cells, as expected. However, around days 10-12 the

population split into two distinct sub-populations: a majority sub-population in which the surprisal remained

high, and a minority sub-population in which the surprisal was substantially reduced, suggesting the emergence
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of population of pioneer partially reprogrammed cells (Fig. 5a). Over the next ∼ 20 days the proportion of

cells in the low surprisal sub-population gradually increased, indicating the consolidation and proliferation of a

robustly pluripotent population of cells (Fig. 5a).

To better understand the identity of this emerging pluripotent sub-population we sought to relate it to the

three alternate pluripotency states we had identified (see Fig. 5). To do so we used our fitted GMM to classify

each cell in the time-course into one of the four populations identified in the training data (Fig. 5b). Since

numerous cells, particularly at the beginning of the time-course, did not resolve well onto any of the clusters

in the training data (which is to be expected, since they are not pluripotent) we also incorporated a fifth class

to capture those cells with network activity states that were distinct from those found in the training data (for

details see Methods).

This analysis revealed that specific instances of regulatory network activity define distinct phases of the

reprogramming process (Fig. 5b).

Initially, while the majority of cells were unclassified, indicating lack of similarity to all of the pluripotent

training populations, a small proportion of cells were associated with the fourth cluster, corresponding to the

formative state of pluripotency. This observation is not unexpected as cells in the formative state express

endogenous OSKM in addition surface markers associated with mesenchymal states (see Fig. 3c). Similarly, in

the presence of dox, MEFs express the OSKM transgenes and begin undergoing the mesenchymal-to-epithelial

transition50, at which point they start to adopt a regulatory configuration similar to the formative state with

respect to the limited number of features quantified in this data.

This initial phase is followed by the emergence of a population of cells in cluster 1 (corresponding to arrested

or apoptotic cells that are frequently observed in reprogramming51) from day 10-14, followed closely by the

emergence of a population of cells in cluster 2 (corresponding to the primed pluripotent state) from day 17 and

lastly, the emergence of a small population of fully reprogrammed cells in cluster 3 (corresponding to the naïve

pluripotent state) after 22 days.

These data suggest that reprogrammed cells do not emerge in significant numbers until after after dox is

withdrawn, at which point the pluripotency regulatory network begins to assume a more natural configuration.

These observations are in accordance with the notion that activation of the OSKM transgenes prevent cells

from entering a stabilization phase of reprogramming in which the pluripotent state becomes fully established48.

Notably, at around the same time there is an apparent reduction in the frequency of cluster 4 cells, which are

marked by low Sox2 and p53 activity, indicating that these cells only exist transiently during reprogramming.

Since this population is more variable than the naïve and primed pluripotent populations, it may also mark

the handover from the early stochastic phase of reprogramming, in which the activation of OSKM transgenes

initiate transformation, to the late deterministic phase, in which the pluripotent cell identities are consolidated

by endogenous regulatory mechanisms47.

Taken together these results indicate that reprogrammed MEF cells enter pluripotency via the formative

state. It remains to be seen if this is a general characteristic of reprogramming, or if this particular route is due

to the fact that the MEF starting population has a mesenchymal origin that happens to be more similar to the

formative state than it is to the other pluripotent identities.
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Figure 6: Proposed topography of pluripotency states. Pluripotent stem cells descend a natural hierarchy

of distinct regulatory network activity states (black arrows). Despite this natural hierarchy, 0i culture conditions

permit the inter-conversion of these different network configurations in vitro. Somatic cell reprogramming

re-establishes a network configuration similar to that of the formative state, from which cells replenish the

remaining pluripotency states (red arrows). A different cocktail of reprogramming factors from different starting

populations may enable direct reprogramming to the primed or naïve states (orange arrows). Subset of cells

undergo cell cycle arrest or apoptosis (dashed arrows).

Discussion

The notion that there is a single well-defined pluripotent stem cell identity has been rapidly eroded by advances in

single cell analysis methods, which are now revealing ever greater varieties of pluripotency18–20;39. Collectively,

these results suggest that pluripotency is not a single phenotype but instead is a property that spans a continuum

of observable cell states1;30;39;52–54. This is in part because the densely connected pluripotency regulatory

network is rich in feedback loops which both stabilize pluripotency, and endow pluripotent cells with a remarkable

phenotypic plasticity5;55. Hence, to fully understand pluripotency, strategies to decipher regulatory networks

at single cell resolution are needed.

There have been a number of notable advances to this end, particularly with regard to methods for inferring

and analyzing regulatory networks directly from single cell data, which can reveal aspects of regulatory control

that are inaccessible to study with ensemble techniques such as ChIP-Seq14;47;54;56. For example, Trott and co-

workers have inferred regulatory network activity from correlation patterns in single cell data in different stem

cell sub-populations, and related these different activity patterns to different aspects of the stem cell identity14.

Similarly, Stumpf (not the current author) and colleagues have used powerful notions from information theory

to more precisely identify regulatory interactions from single cell time-course data56. However, single cell data

is inherently noisy, and consequently large numbers of cells are needed to gain the statistical power to accurately

distinguish functional from spurious interactions56.
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To circumvent this problem here we have presented a method that incorporates prior knowledge of regulatory

interactions directly into single cell expression patterns, rather than inferring regulatory interactions from the

data itself, and uses this prior knowledge to dissect the regulatory processes that give rise to different states of

pluripotency. This approach is similar to that taken by Teschendorff and colleagues, who, by projecting single

cell data onto a known regulatory network, find that pluripotency can be remarkably well related to systems-

level emergent network properties17. We anticipate that as single cell profiling methods develop we will see

concurrent advances in the statistical methods needed to investigate and interrogate the resulting data: indeed,

new statistical advances will be essential to fully realize the power of these new and emerging technologies. We

expect that Bayesian methods, which use known regulatory interactions as a prior to guide learning of functional

interactions directly from single cell data, will combine the benefits of the two approaches to this problem and

may therefore be particularly powerful.

In summary, we have adapted a simple image analysis method to infer the presence of four distinct pat-

terns of pluripotency, based on the activity patterns of three regulatory network archetypes within individual

cells. The power of our method is not due to its mathematical or computational sophistication – indeed, it is

mathematically and computationally straightforward – but rather in the biological interpretation it allows. As

such it provides a simple example of how methods from machine learning may be easily adapted to address

biological questions in an intuitive way. In particular, using this method we have identified a novel pluripotent

state, which appears to be an intermediate between the well-known naïve and primed states (see Fig. 6) and

shares many of the putative properties of a recently proposed ‘formative’ state30. Cells in this state are still

dependent on LIF/Stat3 signaling yet are characterized by partial dissolution of the core transcriptional regu-

latory circuit and distinct changes in cell-cell and cell-matrix interactions. Furthermore, these cells only appear

at low frequency in 0i culture conditions and transiently during the early stages of cellular reprogramming of

MEFs to pluripotency. Taken together these results suggest that this ‘formative’ state is a temporary interme-

diate in which the feedback mechanisms that stabilize the core pluripotency circuit become weakened and cells

begin to become competent for lineage allocation. It remains to be seen how the population we have identified

relates to recent observations of formative pluripotency characterized by loss of Rex1 expression and genome

wide reorganization57. We anticipate that the coming years will see greater advances in single cell profiling and

analysis methods that will enable us to address this question, and identify with greater precision the regulatory

networks that control the maintenance and exit from pluripotency.

Materials and methods

Single-cell expression data

Expression data from Zunder et al. (2015)37 was retrieved from the Cytobank repository (accession no. 43324).

In summary, these data contain measurements of 46 features taken at the single-cell level by mass cytometry,

from two separate engineered mouse embryonic stem cell (mESC) lines NG (Nanog-GFP) and NN (Nanog-

Neomycin). Each mESC line contains doxycycline (dox) inducible gene cassettes for Oct4, Sox2, Klf4 and

c-Myc used for secondary reprogramming to pluripotency from somatic mouse embryonic fibroblasts (MEFs).

Data includes the expression profiles of mESCs in steady state pluripotent stem cell culture conditions containing
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either Serum/LIF (denoted 0i) or Serum/LIF supplemented with 3µM GSK3 inhibitor CHIR-99021 and 1µM

MEK inhibitor PD-0325901 (denoted 2i). Furthermore, time-course data comprised of snapshots of MEFs

undergoing 16 days of dox treatment in MEF medium (DMEM, 10% serum) followed by 14 days without dox

(123 medium + LIF)37. De-barcoded raw data was processed in R58 version 3.3.2 using the flowCore59 package

version 1.40.4. Relevant features were logicle-transformed with parameters w = 0.6, t = 10, 000 and m = 4.5.

Cell cycle analysis

Classification of cell cylce status was performed based on the expression levels of Ki67 (absence indicates G0),

phosphorylation of Histone H3 (presence indicates M) as described in Figure 4c of Zunder et al. (2015)37.

Classification of G1-, G2- and S-phase was not possible due to a lack of discernible modes for marker IdU.

Ensemble regulatory network

An ensemble model of binary node interactions (valid for an abstract average cell) was derived from publicly

available data. Transcription factor binding data was derived from ChIPBase 2.041, and information on other

known interactions were sourced from KEGG42 and Reactome.org (see Table S1).

Statistical analysis

Principal components analysis

Principal components analysis of scaled and centered training data (expression from mouse ES cells cultured in

0i conditions, see above) was conducted in R58 using the prcomp function.

Gaussian mixture model

Gaussian mixture models were constructed in R58 using the Mclust package version 5.2.260. Fit quality was

assessed using the Bayesian information criterion (BIC). Minimum BIC indicates the best model fit, however,

models with a higher number of parameters often only provide marginally better fits and the overall quality

approaches a natural limit. Optimal trade off between increased parameters and quality of fit was obtained by

selecting the model corresponding to the ‘elbow’ in the plot of fit quality against number of components.

Density estimation

Estimate of the probability density function corresponding to the GMM identified above was obtained using the

densityMclust function in R58. Probability density estimates were calculated using the predict method in R58.

Classification

The GMM identified above was used for classification of data into either of four categories based on the highest

posterior probability in combination with a reject option to avoid misclassification of vastly dissimilar phe-

notypes. Thus, points outside the 90th percentile for all individual multivariate Gaussian distributions were

rejected as outliers.
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Software and computer code

Analyses were performed in R58 version 3.3.2. Computer code used in this study is available as a R-markdown

file from https://github.com/passt/Eigen-Networks.

Data availability

Data used in this study is available from Cytobank (accession 43324).
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Supplementary Figure 1: Sub-states of regulatory network activity. (a-c) Projection of NN mESC onto the

same principal component space derived from NG mESCs (shown in Fig. 3). NN mESC display qualitatively the

same population structure and corresponding node expression levels as NG mESCs. (d) Relationship between

number of multivariate Gaussian distributions required to fully represent population structure, given the number

of Principal Components used to represent network activity state. (e) Total variance/covariance within each

sub-population (estimated from trace of the covariance matrix and the sum of the off diagonal elements of the

covariance matrix for the respective fitted multivariate Gaussian models). (f) Fraction of cells of each cluster

in M-phase of the cell cycle. (g) Fraction of cells of each cluster in G0-phase of the cell cycle.
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